27,515 research outputs found

    Cross-layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks

    Get PDF
    This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints. By dual decomposition, the resource allocation problem naturally decomposes into three subproblems: congestion control, routing and scheduling that interact through congestion price. The global convergence property of this algorithm is proved. We next extend the dual algorithm to handle networks with timevarying channels and adaptive multi-rate devices. The stability of the resulting system is established, and its performance is characterized with respect to an ideal reference system which has the best feasible rate region at link layer. We then generalize the aforementioned results to a general model of queueing network served by a set of interdependent parallel servers with time-varying service capabilities, which models many design problems in communication networks. We show that for a general convex optimization problem where a subset of variables lie in a polytope and the rest in a convex set, the dual-based algorithm remains stable and optimal when the constraint set is modulated by an irreducible finite-state Markov chain. This paper thus presents a step toward a systematic way to carry out cross-layer design in the framework of “layering as optimization decomposition” for time-varying channel models

    Setting Parameters by Example

    Full text link
    We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.Comment: 13 pages, 3 figures. To be presented at 40th IEEE Symp. Foundations of Computer Science (FOCS '99

    Reducing Electricity Demand Charge for Data Centers with Partial Execution

    Full text link
    Data centers consume a large amount of energy and incur substantial electricity cost. In this paper, we study the familiar problem of reducing data center energy cost with two new perspectives. First, we find, through an empirical study of contracts from electric utilities powering Google data centers, that demand charge per kW for the maximum power used is a major component of the total cost. Second, many services such as Web search tolerate partial execution of the requests because the response quality is a concave function of processing time. Data from Microsoft Bing search engine confirms this observation. We propose a simple idea of using partial execution to reduce the peak power demand and energy cost of data centers. We systematically study the problem of scheduling partial execution with stringent SLAs on response quality. For a single data center, we derive an optimal algorithm to solve the workload scheduling problem. In the case of multiple geo-distributed data centers, the demand of each data center is controlled by the request routing algorithm, which makes the problem much more involved. We decouple the two aspects, and develop a distributed optimization algorithm to solve the large-scale request routing problem. Trace-driven simulations show that partial execution reduces cost by 3%10.5%3\%--10.5\% for one data center, and by 15.5%15.5\% for geo-distributed data centers together with request routing.Comment: 12 page

    Fast Detour Computation for Ride Sharing

    Get PDF
    Todays ride sharing services still mimic a better billboard. They list the offers and allow to search for the source and target city, sometimes enriched with radial search. So finding a connection between big cities is quite easy. These places are on a list of designated origin and distination points. But when you want to go from a small town to another small town, even when they are next to a freeway, you run into problems. You can't find offers that would or could pass by the town easily with little or no detour. We solve this interesting problem by presenting a fast algorithm that computes the offers with the smallest detours w.r.t. a request. Our experiments show that the problem is efficiently solvable in times suitable for a web service implementation. For realistic database size we achieve lookup times of about 5ms and a matching rate of 90% instead of just 70% for the simple matching algorithms used today.Comment: 5 pages, 2 figure environment, 4 includegraphic

    Models and Algorithms for Some Covering Problems on Graphs

    Get PDF
    2014 - 2015Several real-life problems as well as problems of theoretical importance within the field of Operations Research are combinatorial in nature. Combinatorial Optimization deals with decision-making problems defined on a discrete space. Out of a finite or countably infinite set of feasible solutions, one has to choose the best one according to an objective function. Many of these problems can be modeled on undirected or directed graphs. Some of the most important problems studied in this area include the Minimum Spanning Tree Problem, the Traveling Salesman Problem, the Vehicle Routing Problem, the Matching Problem, the Maximum Flow Problem. Some combinatorial optimization problems have been modeled on colored (labeled) graphs. The colors can be associated to the vertices as well as to the edges of the graph, depending on the problem. The Minimum Labeling Spanning Tree Problem and the Minimum Labeling Hamiltonian Cycle Problem are two examples of problems defined on edge-colored graphs. Combinatorial optimization problems can be divided into two groups, according to their complexity. The problems that are easy to solve, i.e. problems polynomially solvable, and those that are hard, i.e. for which no polynomial time algorithm exists. Many of the well-known combinatorial optimization problems defined on graphs are hard problems in general. However, if we know more about the structure of the graph, the problems can become more tractable. In some cases, they can even be shown to be polynomial-time solvable. This particularly holds for trees...[edited by Author]XIV n.s

    The edge-disjoint path problem on random graphs by message-passing

    Get PDF
    We present a message-passing algorithm to solve the edge disjoint path problem (EDP) on graphs incorporating under a unique framework both traffic optimization and path length minimization. The min-sum equations for this problem present an exponential computational cost in the number of paths. To overcome this obstacle we propose an efficient implementation by mapping the equations onto a weighted combinatorial matching problem over an auxiliary graph. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behaviour of both the number of paths to be accommodated and their minimum total length.Comment: 14 pages, 8 figure
    corecore