326 research outputs found

    The graphic display of computer memory data.

    Get PDF

    The logic design of a digital control computer.

    Get PDF

    Sensor for viscosity and shear strength measurement

    Full text link

    Hybrid spintronics and straintronics: An ultra-low-energy computing paradigm

    Get PDF
    The primary obstacle to continued downscaling of charge-based electronic devices in accordance with Moore\u27s law is the excessive energy dissipation that takes place in the device during switching of bits. Unlike charge-based devices, spin-based devices are switched by flipping spins without moving charge in space. Although some energy is still dissipated in flipping spins, it can be considerably less than the energy associated with current flow in charge-based devices. Unfortunately, this advantage will be squandered if the method adopted to switch the spin is so energy-inefficient that the energy dissipated in the switching circuit far exceeds the energy dissipated inside the system. Regrettably, this is often the case, e.g., switching spins with a magnetic field or with spin-transfer-torque mechanism. In this dissertation, it is shown theoretically that the magnetization of two-phase multiferroic single-domain nanomagnets can be switched very energy-efficiently, more so than any device currently extant, leading possibly to new magnetic logic and memory systems which might be an important contributor to Beyond-Moore\u27s-Law technology. A multiferroic composite structure consists of a layer of piezoelectric material in intimate contact with a magnetostrictive layer. When a tiny voltage of few millivolts is applied across the structure, it generates strain in the piezoelectric layer and the strain is transferred to the magnetostrictive nanomagnet. This strain generates magnetostrictive anisotropy in the nanomagnet and thus rotates its direction of magnetization, resulting in magnetization reversal or \u27bit-flip\u27. It is shown after detailed analysis that full 180 degree switching of magnetization can occur in the symmetric potential landscape of the magnetostrictive nanomagnet, even in the presence of room-temperature thermal fluctuations, which differs from the general perception on binary switching. With proper choice of materials, the energy dissipated in the bit-flip can be made as low as one attoJoule at room-temperature. Also, sub-nanosecond switching delay can be achieved so that the device is adequately fast for general-purpose computing. The above idea, explored in this dissertation, has the potential to produce an extremely low-power, yet high-density and high-speed, non-volatile magnetic logic and memory system. Such processors would be well suited for embedded applications, e.g., implantable medical devices that could run on energy harvested from the patient\u27s body motion

    Magnetic domain walls : Types, processes and applications

    Full text link
    Domain walls (DWs) in magnetic nanowires are promising candidates for a variety of applications including Boolean/unconventional logic, memories, in-memory computing as well as magnetic sensors and biomagnetic implementations. They show rich physical behaviour and are controllable using a number of methods including magnetic fields, charge and spin currents and spin-orbit torques. In this review, we detail types of domain walls in ferromagnetic nanowires and describe processes of manipulating their state. We look at the state of the art of DW applications and give our take on the their current status, technological feasibility and challenges.Comment: 32 pages, 25 figures, review pape

    Detection of Magnetic Fields Using Fibre Optic Interferometric Sensors.

    Get PDF
    The principle aim of the work described in this thesis is to determine a suitable optical detection system for d.c. and low frequency magnetic fields which are likely to be encountered in practical magnetometer applications. To construct a sensitive magneotmeter one arm of an optical fibre Mach-Zehnder interferometer has been magnetically sensitised using a magnetostrictive material. Since the signal frequency range of interest was in the region of 0.01 to 10Hz, clearly the signal was in the same frequency band as the environmental noise associated with ambient temperature and pressure variations. Initially, a technique was developed to measure the magnetic field from the shift of the total fringe pattern generated by a modified Mach-Zehnder interferometer and a minimum detectable magnetic field of 10e-7 tesla.m. was obtained. This minimum detectable magnetic field has been improved by a number of modifications. A technique has been developed which utilises an a.c. bias field to put the magnetic signal on a carrier so that it can be measured at a frequency where the amplitude of the interferometer 1/f noise is much reduced. To maintain maximum interferometric sensitivity to this signal active homodyne demodulation techniques have been developed to maintain the interferometer at quadrature by compensating for the environmental noise. A minimum detectable magnetic field of 5x10e-10 tesla.m. has been achieved with this system. As an alternative to the Mach-Zehnder interferometer a Fabry-Perot interferometer, which utilises multiple-beam interference, has been considered. This type of interferometer consists of a single fibre with high reflectivity coatings on its ends. Such an interferometer has been used as a sensor and as an external cavity in laser frequency stabilisation scheme

    STRAINTRONIC NANOMAGNETIC DEVICES FOR NON-BOOLEAN COMPUTING

    Get PDF
    Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation to non-Boolean computing, both of which have been studied in this work. Detailed studies of the effects of nanomagnet material fabrication defects and surface roughness variation (found in real nanomagnets) on the switching process and ultimately device performance of those switches have been performed theoretically. The results of these studies place the viability of straintronics logic (Boolean) and/or memory in question. With a view to analog computing and signal processing, analog spin wave based device operation has been evaluated in the presence of defects and it was found that defects impact their performance, which can be a major concern for the spin wave based device community. Additionally, the design challenge for low barrier nanomagnet which is the building block of binary stochastic neurons based probabilistic computing device in case of real nanomagnets has also been investigated. This study also cast some doubt on the efficacy of probabilistic computing devices. Fortunately, there are some non-Boolean applications based on the collective action of array of nanomagnets which are very forgiving of material defects. One example is image processing using dipole coupled nanomagnets which is studied here and it showed promising result for noise correction and edge enhancement of corrupted pixels in an image. Moreover, a single magneto tunnel junction based microwave oscillator was proposed for the first time and theoretical simulations showed that it is capable of better performance compared to traditional microwave oscillators. The experimental part of this work dealt with spin wave modes excited by surface acoustic waves, studied with time resolved magneto optic Kerr effect (TR-MOKE). New hybrid spin wave modes were observed for the first time. An experiment was carried out to emulate simulated annealing in a system of dipole coupled magnetostrictive nanomagnets where strain served as the simulated annealing agent. This was a promising outcome and it is the first demonstration of the hardware variant of simulated annealing of a many body system based on magnetostrictive nanomagnets. Finally, a giant spin Hall effect actuated surface acoustic wave antenna was demonstrated experimentally. This is the first observation of photon to phonon conversion using spin-orbit torque and although the observed conversion efficiency was poor (1%), it opened the pathway for a new acoustic radiator. These studies complement past work done in the area of straintronics
    • …
    corecore