2,394 research outputs found

    Machine-Learning-Based Prediction of HVAC-Driven Load Flexibility in Warehouses

    Get PDF
    This paper introduces a methodology for predicting a warehouse’s reduced load while offering flexibility. Physics-based energy simulations are first performed to model flexibility events, which involve adjusting cooling setpoints with controlled temperature increases to reduce the cooling load. The warehouse building encompasses office and storage spaces, and three cooling scenarios are implemented, i.e., exclusive storage area cooling, exclusive office area cooling, and cooling in both spaces, to expand the study’s potential applications. Next, the simulation data are utilized for training machine learning (ML)-based pipelines, predicting five subsequent hourly energy consumption values an hour before the setpoint adjustments, providing time to plan participation in demand response programs or prepare for charging electric vehicles. For each scenario, the performance of an Artificial Neural Network (ANN) and a tree-based ML algorithm are compared. Moreover, an expanding window scheme is utilized, gradually incorporating new data and emulating online learning. The results indicate the superior performance of the tree-based algorithm, with an average error of less than 3.5% across all cases and a maximum hourly error of 7%. The achieved accuracy confirms the method’s reliability even in dynamic scenarios where the integrated load of storage space and offices needs to be predicted

    Machine Learning for Smart and Energy-Efficient Buildings

    Full text link
    Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning

    Scaling energy management in buildings with artificial intelligence

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Laxity-Aware Scalable Reinforcement Learning for HVAC Control

    Full text link
    Demand flexibility plays a vital role in maintaining grid balance, reducing peak demand, and saving customers' energy bills. Given their highly shiftable load and significant contribution to a building's energy consumption, Heating, Ventilation, and Air Conditioning (HVAC) systems can provide valuable demand flexibility to the power systems by adjusting their energy consumption in response to electricity price and power system needs. To exploit this flexibility in both operation time and power, it is imperative to accurately model and aggregate the load flexibility of a large population of HVAC systems as well as designing effective control algorithms. In this paper, we tackle the curse of dimensionality issue in modeling and control by utilizing the concept of laxity to quantify the emergency level of each HVAC operation request. We further propose a two-level approach to address energy optimization for a large population of HVAC systems. The lower level involves an aggregator to aggregate HVAC load laxity information and use least-laxity-first (LLF) rule to allocate real-time power for individual HVAC systems based on the controller's total power. Due to the complex and uncertain nature of HVAC systems, we leverage a reinforcement learning (RL)-based controller to schedule the total power based on the aggregated laxity information and electricity price. We evaluate the temperature control and energy cost saving performance of a large-scale group of HVAC systems in both single-zone and multi-zone scenarios, under varying climate and electricity market conditions. The experiment results indicate that proposed approach outperforms the centralized methods in the majority of test scenarios, and performs comparably to model-based method in some scenarios.Comment: In Submissio

    Internal Fault Diagnosis of MMC-HVDC Based on Classification Algorithms in Machine Learning

    Get PDF
    With the development of the HVDC system, MMC-HVDC is now the most advanced technology that has been put into use. In power systems, faults happen during the operation due to natural reasons or devices physical issues, which would cause serious economic losses and other implications. Thus, fault detection and analysis are extremely important, especially in the HVDC system. Existing works in literature mainly focus on the faults detection and analysis on the system side such as short circuit of the AC side, and open circuit of the DC side. However, little attention has been paid to the fault detection and analysis inside the converters. With the technology development of converter devices, replacing the whole converter becomes more expensive. Thus, my research mainly focuses on the detection and classification of the faults within the internal of the MMC module. In this research, an SPS model of MMC-HVDC is built as the example. Faults including short circuit and open circuit located inside the MMC module are simulated. Machine learning algorithms are chosen as the tool to achieve the goal of detecting faults and locating the fault position inside the MMC module precisely. After comparing the basic characteristics and properly application situations of various methods of machine learning, Coarse KNN, Complex Tree and Bagged Tree (Random Forest) are deployed to solve the problem. The performance of the methods are analyzed and compared, to get the most proper method in solving the problem

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area
    • …
    corecore