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Abstract: This paper introduces a methodology for predicting a warehouse’s reduced load while
offering flexibility. Physics-based energy simulations are first performed to model flexibility events,
which involve adjusting cooling setpoints with controlled temperature increases to reduce the cooling
load. The warehouse building encompasses office and storage spaces, and three cooling scenarios are
implemented, i.e., exclusive storage area cooling, exclusive office area cooling, and cooling in both
spaces, to expand the study’s potential applications. Next, the simulation data are utilized for training
machine learning (ML)-based pipelines, predicting five subsequent hourly energy consumption
values an hour before the setpoint adjustments, providing time to plan participation in demand
response programs or prepare for charging electric vehicles. For each scenario, the performance
of an Artificial Neural Network (ANN) and a tree-based ML algorithm are compared. Moreover,
an expanding window scheme is utilized, gradually incorporating new data and emulating online
learning. The results indicate the superior performance of the tree-based algorithm, with an average
error of less than 3.5% across all cases and a maximum hourly error of 7%. The achieved accuracy
confirms the method’s reliability even in dynamic scenarios where the integrated load of storage
space and offices needs to be predicted.

Keywords: load forecasting; warehouse buildings; machine learning; flexibility in buildings; demand
response; multi-layer perceptron

1. Introduction

The unpredictable nature of renewable energy sources leads to intermittent generation
that gives rise to balancing issues between supply and demand in the electrical grid [1].
Therefore, smart grids have been introduced for dynamically balancing the load. Demand
Side Management (DSM) is a possible approach to adjust the consumption based on
the rate of renewable energy production [2,3]. Efficiency improvements, controlling the
consumption load, and the control of distributed energy resources are among DSM’s
possible actions [4]. Demand-side strategies that incentivize/penalize customers for shifting
or reducing their consumption during peak periods are called Demand Response (DR) [5].
DR programs contribute to improving grid reliability, reducing aggregate electricity prices,
and providing opportunities for participants to achieve cost savings [6].

Buildings are excellent candidates for contributing to grid stability by offering flexi-
bility due to their considerable energy consumption [7]. Within this setting, a building’s
capacity to reduce, shed, shift, modulate, or generate electricity provided by on-site dis-
tributed energy resources (DERs) is often called demand flexibility or energy flexibility.

Energies 2023, 16, 5407. https://doi.org/10.3390/en16145407 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16145407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0014-4835
https://orcid.org/0009-0009-3240-3174
https://orcid.org/0000-0003-4405-2956
https://orcid.org/0000-0003-1622-2444
https://orcid.org/0000-0003-0783-5425
https://doi.org/10.3390/en16145407
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16145407?type=check_update&version=1


Energies 2023, 16, 5407 2 of 15

The building sector is responsible for a notable share of 36% of global energy consump-
tion, causing about 40% of the total emissions worldwide [8]. Among this load, heating,
ventilation, and air conditioning (HVAC) consumption with a substantial share of 38% [9]
holds a promising potential to contribute to providing flexibility in buildings. Among
different categories of buildings, warehouses, which are the buildings that serve as facilities
to receive, store, and dispatch goods [10], are of substantial significance. Warehouses hold a
share of 11% of the emissions in the logistics sector [11], where a significant portion of their
emissions is due to HVAC consumption [12]. HVAC loads are among the thermostatically
controlled loads (TCLs) [13–15] that offer promising potential for delivering demand flexi-
bility to the grid. Despite the continued increase in warehouse demand, the importance of
their energy efficiency and consumption is often neglected [16]. Warehouses have a high
thermal inertia due to their specific architecture with high ceilings and vast indoor spaces,
providing them with a high amount of flexibility [17]. Moreover, enormous uninterrupted
rooftop spaces in warehouses provide them with a high capacity for photovoltaic (PV)
panel installation [18], which can be manipulated to deliver flexibility to the grid.

Cooling consumption is extremely important among HVAC loads in buildings, given
that its demand has doubled since 2000, as shown in the International Energy Agency
(IEA) assessments [19]. It has emerged as the fastest-growing demand in buildings, and
projections indicate that this demand is expected to triple by 2050 [20–22]. Moreover,
advancements in technologies and higher levels of welfare require more refrigeration loads
as well as HVAC loads in warehouses. A lack of refrigeration accounts for approximately
20% of total food losses [23], which indicates an upward demand for refrigeration load,
especially in developing countries. Moreover, due to the significant share of the cooling
load in the warehouse facility’s energy consumption, in contrast to the majority of commer-
cial/industrial customers, the corresponding energy demand varies notably with a change
in weather conditions. Accordingly, the cooling load holds extreme significance when it
comes to warehouses.

Deploying DR strategies has been facilitated through Internet of Things (IoT) tech-
nologies and Artificial Intelligence (AI) [24] in recent years. By recognizing patterns and
solving non-linear functions, AI and machine learning (ML) can handle extensive data and
contribute to complex computations required to enable DR [25,26]. In this context, grid-
interactive efficient buildings (GEBs) leverage smart technologies and on-site distributed
energy sources to provide DR while optimizing energy costs and meeting occupants’ com-
fort and productivity requirements [27]. Consumption and generation in GEBs can be
altered based on signals from the grid [28]. Before receiving a signal, the building fol-
lows the typical consumption, also known as the baseline load. In general, the baseline
load represents the regular energy consumption of the building in the absence of any
DR measures [29]. Upon receiving the grid signal, the load of the building is reduced
for a certain period, followed by a rebound effect. Prediction of the load of the building
levels allows planning for participation in DR and responding to these signals. Accurate
prediction of building energy consumption ensures grid safety and mitigates financial risks
in electricity market management [30]. Load predictions can be performed on the baseline
load during the flexibility event to quantify the energy flexibility offered by the building
to compensate the participants [29]. Numerous works in the literature exist in this field,
from averaging methods [31–33], control groups [34], and regression methods [29,35–37].
Alternatively, the load of the building during the demand response can be predicted in
advance. Campodonico et al. [38] employed deep learning neural networks to predict the
demand flexibility of the HVAC load in a modeled office building. When the penalty-aware
signal was received, predictions for up to 3 h in advance were made. Results were reported
considering the Mean Absolute Percentage Error (MAPE), with a maximum value of 3.55%
reported during testing.
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Identified Research Gap and Contributions of the Current Work

Buildings have a high potential to provide flexibility to the grid through their HVAC
consumption and thermal mass. Various studies have tried to address this issue in resi-
dential and non-residential buildings. However, the flexibility of warehouses needs to be
further investigated. No previous work has investigated demand flexibility prediction in
warehouses. Furthermore, with the increasing demand for HVAC cooling loads in ware-
houses, there are opportunities for interventions that can provide flexibility to the grid that
need to be further explored. Prediction of hourly demand flexibility in warehouses could
provide warehouse managers with opportunities to respond to DR programs, save costs,
enhance the comfort of the occupants, and incorporate the charging of electric vehicles
(EVs). Moreover, most of the literature on load prediction has utilised a batch learning
approach without investigating the effect of gradually incorporating new data.

Motivated by the identified research gap, this work introduces a method to predict the
demand flexibility of the HVAC load (reduced electric load under a flexibility event) enabled
through adjusting the cooling system’s setpoints in a modeled warehouse. Modeling was
conducted from one hour prior to the initiation of a flexibility event, extending for up to
four hours after its onset. Therefore, the contributions of the present study can be listed
as follows:

• Performing physics-based modeling on warehouse buildings, including office spaces,
for three different cooling scenarios aiming to cover various case studies.

• Performing adjustments of cooling setpoints to reduce consumption and provide
flexibility.

• Implementing ML-based pipelines to perform multi-step predictions on five hourly
consumption values of the building one hour ahead of the flexibility event. This allows
for the simultaneous prediction of the baseline load (the preceding hour), the load
reduction resulting from the setpoint adjustment, and the load behavior for up to four
hours after the flexibility event.

• Comparing the performance of a tree-based machine learning algorithm (random
forest (RF) regressor) and an ANN algorithm (MLP) in predicting the electrical load
under DSM scenarios.

• Employing multi-step forecasting with an expanding window training scheme to
emulate the real-case scenarios where flexibility event data are generated progressively
over time.

HVAC-based flexibility can effectively be utilized in warehouses for balancing (in-
creasingly utilized) EV vehicle’s charging load, along with participation in DR programs
and flexibility markets (available for all types of buildings). The growing utilization of elec-
tric trucks in the transport/warehousing sector (suggested in decarbonization programs)
raises concerns about the impact of the resulting charging load on the grid, especially in
real-world case studies where EVs arrive in the evening and require partial charging for
nighttime deliveries [39]. The proposed methodology can effectively assess the possibility
of charging trucks without causing a surge in consumption by reducing the HVAC load.
The results of the implemented methodology can thus proactively recommend the optimal
number of trucks and how much charging can be provided to them (in terms of kWh) in
advance, owing to the fact that predictions of the expected load reduction are provided an
hour before the setpoint adjustments are imposed.

Moreover, DR (and participation in flexibility markets) is becoming increasingly
popular in the industrial sector owing to the corresponding notable incentives. However,
without a tool that determines the extent to which the setpoint adjustment strategy can
reduce the load and the resulting load reduction duration, these facilities cannot effectively
participate in these programs. This research work was initiated with the intention of
addressing the challenges faced by conditioned warehouse facilities to balance the growing
EV charging load while participating in demand response programs.
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2. Methodology

This section outlines the details of the methodology for predicting short-term electricity
consumption under flexibility schemes in a warehouse in Los Angeles, CA. This study
integrates a physics-based energy simulation for the building (Figure 1) with state-of-the-art
regressive ML models for multiple forecasting of short-term time series. Accordingly, the
details of the case study buildings, the physics-based co-simulation, the adopted cooling
scenarios, and the procedure for emulating the flexibility events are presented. Finally,
the methodology for predicting five hourly load values an hour ahead of the setpoint
adjustment (the baseline consumption an hour before the initiation of the event and the
penalty aware load up to 4 h after the flexibility event) using ML pipelines is explained.
Additionally, a schematic representation of the adopted methodology is presented in
Figure 2.

Figure 1. Sample of the warehouse building used in physics-based simulations.

Figure 2. Schematic representation of the proposed methodology.

2.1. Case Study

The reference warehouse building model [40] utilized in the EnergyPlus physics-based
co-simulation was developed under the ANSI/ASHRAE/IES Standard 90.1 [41]. A detailed
description of the building is provided in Table 1. The simulations are performed for Los
Angeles, California, which is classified as Climatic Zone 3B. The warehouse building inte-
grates office space and storage space, and three different cooling scenarios are considered:
(1) exclusively providing cooling for the storage space, (2) only cooling the office spaces
with storage spaces unconditioned, and (3) conditioning both storage and office spaces.
The details of the methodology applied in modeling and emulating the flexibility events
are provided in Figure 2.
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Table 1. Description of the buildings used in the physics-based simulations in EnergyPlus.

Building Type Warehouse
Location Los Angeles, CA, USA
Simulation period May–September
Frequency 15 (min)
Status New building
Total floor area 4836 (m2)
Cooling type Packaged air conditioning unit
Cooling setpoint—offices 24 ◦C
Cooling setpoint—storage 26 ◦C
Flexibility temperature threshold 2 ◦C (±0.2)
Cooling setback—all zones 30 ◦C

2.2. Physics-Based Energy Simulation

A physics-based co-simulation utilizing EnergyPlus V9.4 [42] and its Python API [43]
was conducted to simulate the penalty-aware electricity consumption of the warehouse
during a flexibility event. Simulations were performed with a sub-hourly resolution of
four timestamps per hour (15 min intervals) during the summer cooling season (from mid-
May to the middle of September) of two consecutive simulated years. Simulations were
executed using the weather conditions of Climatic Zone 3B, California (LA). The weather
file for the exact location was converted from the typical meteorological year (TMY) weather
file into the current meteorological year (CMY) for 2016 and 2017 using the diyepw tool [44].
This is to ensure the reliability and feasibility of the validation and testing approach and
to deploy the expanding window method similar to real-world scenarios. The choice of
California as the location of the simulated buildings was firstly motivated by the fact that
the flexibility simulation is performed for the cooling systems, which can be implemented
in moderately warm areas (the implementation in cold regions is not feasible due to the
non-existing/low cooling load, while the implementation in extremely warm/hot areas
(e.g., middle east) is not possible as it will result in low durations of flexibility measures).
Secondly, the emergency load reduction program of California State [45] is an established
demand response program, and the specifications of the performed predictions (up to 5 h)
have been partially inspired based on this existing program.

Flexibility events were introduced by temporarily relaxing the cooling setpoints on
all working days in the three aforementioned scenarios, resulting in a decreased electricity
consumption associated with cooling. In scenario 1, where the cooling load is provided in
storage, the flexibility event terminates before the 4 h duration limit in case the temperature
in storage exceeds 2 ◦C above the setpoint. In scenario 2 (conditioned offices only), the
maximum duration of the event is up to one hour (between 5 p.m. and 6 p.m.) based on
the schedules of the buildings or if the temperature increase exceeds the 2 ◦C threshold.
In scenario 3 (cooling load in both offices and storage), should the temperature increase
exceed 2 ◦C in any of the conditioned zones, cooling is resumed only in that zone, and the
flexibility event continues for up to 4 h (between 5 p.m. and 9 p.m.). In the case of the
offices, a setpoint flexibility range of 2 ◦C was suggested in a study conducted by Nicol
and Humphreys [46]. In their research, aimed at determining the upper thresholds of
maximum temperatures attainable within European (France, Greece, Portugal, Sweden,
and the UK) office buildings while maintaining thermal comfort, the researchers noted that
with temperature deviations within the range of ±2 K from the established comfort level, a
significant majority (exceeding 80% of the subjects) reported experiencing a state of comfort.
A similar indication (setpoint flexibility of 2 ◦C for the cooling season) was also suggested
in a study conducted in office buildings in Japan (conducted by Tan et al. [47]). In the case
of the warehouse, a conditioned warehouse that is utilized for storing medical devices
has been considered in the present study; the default setpoint and the acceptable setpoint
flexibility have been both suggested by the energy management team of a warehouse
facility for medical devices (based on the required temperature range for the storage of the
corresponding devices and field experience). It is also worth mentioning that the setpoint
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adjustment procedures simulated in the present study result in the temperature increase
reaching the maximum of 2 ◦C only in a few days, and these modifications are of limited
duration, lasting for a maximum of four hours.

2.3. Demand Response Prediction

The following part of this work incorporates collecting the obtained data from the simu-
lation and developing predictive pipelines for flexible load, considering a non-autoregressive
approach with multiple hourly predictions (up to 5 h). An RF regressor algorithm was
selected owing to the superior performance of tree-based algorithms in load prediction [29],
utilizing Python and the Scikit-learn package [48]. Moreover, due to its performance in
predicting load under demand response and to provide a comparison with the tree-based
algorithm, an Artificial Neuron Network (ANN) was also chosen to perform prediction
algorithms [38] employing TensorFlow [49]. Next, the predictive models were trained using
the sequential data of electrical consumption, outdoor temperature, and solar radiation
from 13:00 to 16:00 (the moment predictions are made). The obtained simulated data have
a sampling frequency of 15 min, which is then summed up (for consumption data) or
averaged (in the case of outdoor temperature and solar radiation) to achieve a sampling
frequency of one hour. Additionally, to capture the cyclic nature of cooling consumption,
the time of the year (encoded with a cosine function) is incorporated, resulting in a total
of 10 training features. The utilized features in the study are listed in Table 2, where the
number of lagged values was determined through a binary approach. Testing various
lagged values ranging from 2 to 24 h revealed that increasing the number of features does
not substantially improve the prediction performance. Hence, the optimal number of
lagged values, providing a balance between prediction accuracy and computational costs,
has been included in the analysis.

Table 2. The list of the features used for prediction.

Features Values

Day of Year -
External Temperature Last 3 hourly values before the prediction moment
Radiation Last 3 hourly values before the prediction moment
Electrical Consumption Last 3 hourly values before the prediction moment

Training is performed using an expanding window training scheme as explained in
Section 3.3, similar to the actual deployment scenario, where new data are incorporated
each time the building undergoes a flexibility event (online learning). These new data are
included in retraining the model. The results obtained from the first year of simulation
(2016) are employed for validation, while the following year’s data are used for testing.
The validation process is initiated when ten flexibility events are gathered. New data are
included in subsequent predictions until the end of the first year, with the total length of
the training data set (first year) incorporating 89 flexibility events. Moreover, the testing
commenced with the data available from the first year, incorporating 89 testing data points
(second year) with a similar approach. Then, the model was retrained, incorporating the
new data points after making each test prediction, and the average prediction accuracy in
the second year is reported. Moreover, the number of estimators in the RFR was set to 700
and the number of epochs in the MLP was equal to 300.

3. Complementary Concepts

This section will present an overview of the concepts utilized in the development
of this study, including the machine learning algorithms, training methodology, and the
metrics employed to assess the reliability of the models.
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3.1. Random Forest Regressor

As a machine learning algorithm, random forest utilizes an ensemble of decision trees
to generate predictions. Training each tree on a different random sample of the data makes
the final prediction more accurate and less prone to overfitting. This approach creates
a robust predictor less sensitive to specific training data and provides more generalized
insights [50,51].

3.2. Multi-Layer Perceptron

MLP is a type of ANN that uses multiple interconnected layers with many neurons
to uncover hidden relationships between the outputs and features used for training the
model [52,53]. During the training of the MLP model, data are passed through hidden layers
until they reach the output layer. The weights of each neuron are then calculated through
forward propagation, and the model is optimized using Stochastic Gradient Descent (SGD)
with backward propagation. The loss gradient is recalculated multiple times to improve
the accuracy and minimize the loss.

3.3. Multi-Step Forecasting with Expanding Window Training Scheme

The sequential nature of the flexibility events and load behavior calls for a time series
approach in training the predictive models and assessing their performance. Additionally,
in real-case scenarios, new data are introduced progressively as the building undergoes
more flexibility events, thus returning more training opportunities to the model. This
behavior can be represented in the validation and testing process by the expanding window
scheme [54]. Moreover, incorporating new data and retraining allows the model to include
recent changes in the behavior of the load or environmental features in its predictions. This
study’s prediction output consists of five consecutive time stamps representing the local
time series of electrical consumption. Therefore, multi-step forecasting [55,56] is utilized to
achieve this in addition to the expanding window training scheme.

3.4. Evaluation Metrics

The current work takes advantage of three different accuracy metrics (Mean Absolute
Percentage Error (MAPE), Normalized Mean Bias Error (NMBE), and the Coefficient of
Variation of the Root Mean Squared Error (CV(RMSE))) to report and benchmark the
forecasting results.

MAPE =
100%

n

n

∑
i=1

|yi − ŷi|
yi

(1)

NMBE =
100%

ȳ
∑n

i=1(yi − ŷi)

n
(2)

CV(RMSE) =
100%

ȳ

√
∑n

i=1(yi − ŷi)2

n− 1
(3)

The MAPE measures the average prediction error and considers significant variations
without being influenced by the output scale. This allows for comparing different case
studies with varying amounts of electrical load. ASHRAE Guideline 14 [57,58] recommends
using NMBE and CV(RMSE) as benchmarking metrics. The NMBE measures the average
error of a sample, with negative values suggesting over-predictions and positive values
indicating under-predictions. However, if there are errors that can cancel each other out,
the NMBE may not accurately reflect the overall error. To address this, the CV(RMSE)
is used to measure the model’s ability to predict the overall data pattern regardless of
error cancellation [57–59]. Moreover, yi in these equations denotes the actual values in the
dataset, ŷ represents the predicted value, and ȳ represents the mean of the actual values in
the dataset. Finally, i returns the count of the element in the dataset.
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As per ASHRAE Guideline 14, hourly predictions of a model are considered calibrated
if the NMBE value falls within the range of ±10%, while the maximum acceptable error
for CV(RMSE) is below 30%. Additionally, the International Performance Measurement
and Verification Protocol (IPMVP) [60] establishes more strict performance evaluation
standards, with the maximum acceptable threshold of ±5% for NMBE and indicating that
CV(RMSE) values must not exceed 20%.

4. Results and Discussion

This section initially details the results of physics-based simulations for the warehouse
building regarding three studied cooling scenarios: (1) only in the storage area, (2) only
in the offices, and (3) in both storage and offices. The effect of the proposed setpoint
adjustment strategy and the resulting reduction in the cooling load is illustrated and
discussed. Next, the results of predictive models for multi-step load forecasting under a
demand flexibility event are provided and discussed. The considered scenarios assume a
flexibility measure will be imposed an hour after the moment that the predictions occur.
The five hourly forecasted loads include an hour ahead baseline consumption and four
consecutive hours of reduced load under the flexibility event. The performance of RFR, a
tree-based machine learning algorithm, and an ANN algorithm (MLP) are then compared
in terms of the MAPE during the validation process. Finally, the best-performing algorithm
is selected for each study case, and the results are presented in terms of the CV(RMSE)
and NMBE.

4.1. Flexibility Events Simulations

As explained in Section 2.2, flexibility events are simulated in a warehouse building
through cooling setpoint adjustments for three different cooling scenarios. Figure 3 presents
the energetic behavior of the investigated cases under moderate environmental conditions.
As previously stated, the offices’ schedule terminates the cooling load at 18:00, which is
why the cooling setpoint increases to 30 ◦C. A comparison of the first and third cases clearly
demonstrates that the cooling load of the storage spaces significantly exceeds that of the
offices. The flexibility provided by the office lasts for a short time, as the temperature in
thte offices quickly exceeds the threshold after 15 min. However, also providing cooling in
the storage spaces, as in case 3, extends this duration, and the temperature increase in the
offices remains within the accepted threshold for 45 min, followed by the conclusion of the
working hours in the office.

On the other hand, the temperature in the storage space during this specific day
does not exceed the established limit in both cases 1 and 3. Yet, the reduction in the load
compared to the baseline occurs mainly in the first hour after the flexibility event starts,
as the baseload consumption (even without flexibility measures) would have also become
zero after a particular time owing to the environmental conditions.

A visual representation of the trend in energy consumption under the flexibility event
for a sample day characterized by more severe weather conditions is provided in Figure 4.
Higher temperatures and radiation during this day extend the demand for cooling in
the building into the later evening hours, potentially benefiting more from the proposed
setpoint adjustment strategy. This is evident in cases 1 and 3, where there is a notable
disparity between the baseline and flexible consumption. The thermal mass of the storage
spaces provides flexibility, resulting in longer hours of deactivated cooling, while the
demand for cooling is evident in the baseload. Nevertheless, the offices follow a similar
trend in energy consumption, while a more significant consumption is generally observed
due to extreme environmental conditions.
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Figure 3. Flexibility event on 07–20 that represents the behavior of all cases under normal environ-
mental conditions.

Figure 4. Flexibility event on 09–01 that represents the behavior of all cases under extreme environ-
mental conditions.
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4.2. Predictive Modeling

The following subsections present a comprehensive assessment of the performance of
the predictive models (RFR and MLP) in forecasting the electrical load during the simulated
flexibility events.

4.2.1. Case 1—Cooling in the Storage Area Only

The accuracy obtained by the two predictive algorithms during the validation process
(explained in Section 2.3) is provided in Table 3. The hourly load is forecasted up to 5 h in
advance, and the resulting hourly and average accuracy is reported. “Hour 0” signifies the
one-hour ahead baseline consumption before the flexibility event starts. “Hour 1” coincides
with the reduced consumption due to the setpoint adjustment 2 h ahead of the prediction
timestamp and 1 h into the flexibility event, and so on. Accordingly, temperature could
exceed the defined threshold anytime after the initiation of the event, and the transition
back to typical consumption can occur at any of the subsequent timestamps. The superior
performance of RFR is evident at all the timestamps (with an average MAPE of 3.95%)
compared to the MLP. Additionally, it can be observed that the prediction of the second hour
of the flexibility event, “Hour 2”, is specifically more challenging for both prediction models.
This can be attributed to the transitions into normal behavior being mainly experienced
during this hour. Overall, it can be concluded that RFR performs reliably in predicting
the hour-ahead baseline load, the consumption reduction due to setpoint adjustments,
the transition to normal consumption, and the rebound effect when the flexibility event
terminates. Overall, it performs well in predicting the load behavior during the flexibility
event from an hour before it starts.

Table 3. MAPE accuracy for validation process in Case 1—only storage.

MAPE (%) Hour 0 Hour 1 Hour 2 Hour 3 Hour 4 Total

RF Regressor 4.49 4.32 7.55 2.89 0.47 3.95
MLP 6.32 7.42 14.43 11.82 8.60 9.72

Testing, which involves the second year data, is achieved by employing the best-
performing algorithm from the validation phase. An improvement is evident in most
prediction horizons compared to the previous phase, as shown in Table 4. This could be
credited to the expanding window training method adopted in this work, which provides
an increased training opportunity for the algorithms, including a broader scope of external
temperatures and solar radiation. Additionally, considering the CV(RMSE) and NMBE,
it can be observed that the obtained results fall within the thresholds defined by the
ASHRAE guideline 14 and IPMVP explained in Section 3.4. Therefore, the models are
considered calibrated.

Table 4. Test accuracy metrics (%) for Case 1—only storage.

Metric Hour 0 Hour 1 Hour 2 Hour 3 Hour 4 Total

MAPE 3.24 3.22 6.92 2.34 0.59 3.26
CV(RMSE) 12.83 6.94 15.81 3.91 0.88 15.46
NMBE −1.18 0.36 −4.70 −0.61 −0.05 −0.97

4.2.2. Case 2—Only Office

In the second scenario (Case 2), where the cooling load is provided in the office spaces
only, the predictions are limited to two consecutive timestamps as the flexibility event
terminates after an hour due to the schedule (internal gain and lighting calendars), which
ends at 18:00. Therefore, “Hour 0” consists of the prediction of the normal consumption
of the building in the next hour, at the end of which the setpoint adjustments lead to
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load reductions. Regarding the performance of models on the validation set, a notable
improvement is observed in general compared to the previous case (Table 5). The behavior
observed in Section 4.1, where the office’s low thermal inertia leads to a more predictable
load behavior, can be attributed as the underlying cause. Moreover, RFR outperforms the
MLP model in all prediction horizons, similar to the previous case study.

Table 5. MAPE accuracy for validation process in Case 2—only office.

MAPE [%] Hour 0 Hour 1 Total

RF Regressor 1.38 1.89 1.63
MLP 1.99 3.69 2.84

Table 6 presents the performance of RFR on the test dataset (second year), where a
further improvement in the MAPE is observed for both prediction horizons. Similar to
the previous case, the reason for this is incorporating additional training points using the
expanding window training scheme. Moreover, models are considered calibrated based on
ASHRAE 14 and IPMVP.

Table 6. Test accuracy metrics [%] for Case 2—only office.

Metric Hour 0 Hour 1 Total

MAPE 0.97 1.72 1.35
CV(RMSE) 1.53 3.62 2.08
NMBE −0.30 −0.34 −0.31

4.2.3. Case 3—Both Storage and Office

The results obtained in the validation process for the third case that provides cooling
both in the storage and office area are presented in Table 7. Similarly, the office working
schedule concludes after the first hour of the flexibility event (corresponding to the second
hour of the prediction horizon), and the cooling system ceases operation in those zones.
However, the storage area has uninterrupted working hours, indicating that flexibility
can continue until 21:00, the end of investigated hours. The obtained results indicate a
notably superior performance of RFR (MAPE score of 4.18%) compared to the MLP model
in all prediction horizons. Moreover, a lower prediction accuracy in the second hour is
observed (especially in the case of MLP with 18.61%), which can be explained by the
transient behaviors caused by the termination of office working hours and rebound effects
in the storage spaces.

Table 7. MAPE accuracy for validation process in Case 3—both storage and office.

MAPE [%] Hour 0 Hour 1 Hour 2 Hour 3 Hour 4 Total

RF Regressor 4.88 4.63 7.94 2.94 0.51 4.18
MLP 9.77 9.01 18.61 12.45 11.06 12.18

Finally, the results of predictions of RFR on the test set for case 3 are delivered in Table 8.
Expectedly, improvements in the forecasts are observed as the testing is performed in the
second year with an expanding window. Consequently, including new data points enhances
the training process, providing more training opportunities for the models. Hence, an
impressive MAPE score of 3.26% achieved during the testing of the third case demonstrates
the model’s reliability in forecasting loads during demand response scenarios, even in
dynamic situations that involve zones with different thermal behaviors and schedules.
Moreover, the discussion regarding ASHRAE 14 and IPMVP calibration criteria is valid
here, as the results align with the predefined thresholds.
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Table 8. Test accuracy metrics (%) for Case 3—both storage and office.

Metric Hour 0 Hour 1 Hour 2 Hour 3 Hour 4 Total

MAPE 3.38 3.45 6.82 2.38 0.55 3.32
CV(RMSE) 11.95 7.61 15.33 3.98 0.85 14.61
NMBE −1.17 0.26 −4.23 −0.79 −0.03 −0.97

5. Conclusions

The performance of ML-based pipelines in performing short-term predictions on
reduced load, under flexibility events, in a modeled warehouse building was assessed in
the current work. Physics-based energy simulations were performed using EnergyPlus
on a modeled warehouse in Los Angeles, California, under a summer cooling scenario.
Flexibility events were imposed using setpoint adjustments in the cooling system at 17:00,
leading to a reduced electrical consumption while containing the temperature increase
within a limited threshold of 2.1 ◦C. Moreover, the maximum duration of the flexibility
event was set to 4 h. Three different cases were introduced, broadening the applicability of
the proposed approach to various cooling scenarios. The first case considered the cooling
demand only in the storage areas, while the second case included non-conditioned storage
with cooling provided for the offices. Finally, the last case considered the cooling load in
both storage and office zones. The results of the simulation were employed to train machine-
learning-based pipelines to predict (at 16:00 with a total of five outputs) the five hourly
values of the building’s consumption, including one hour before the flexibility event and up
to four hours after the setpoint adjustment. Therefore, the first hour prediction contained
the baseline load consumption of the building at the end of which flexibility measures
are imposed (through setpoint adjustment) and the subsequently reduced consumption
and rebound effect during the next four hours after the initiation of the flexibility event.
Two different forecasting pipelines of RFR and MLP were implemented to compare their
performance. Moreover, simulations were performed for two consecutive years and an
expanding window scheme was selected as the training method. The first year simulations
were employed for validation and second year data were used for testing.

The obtained results indicated that in all the simulated case studies, RFR outperformed
the MLP algorithm. Therefore, it can be inferred that the tree-based machine learning
algorithm is better suited than the MLP model in this application, which involves expanding
windows and limited observations. Moreover, it was shown that the forecasting pipelines
with RFR could achieve an average error of less than 3.5% in all three cases with a maximum
error of 7%. The accuracy achieved, particularly in the third scenario that incorporated
both offices and storage spaces with distinct thermal behavior and demands, demonstrates
the reliability of the proposed approach and the implemented machine-learning-based
pipelines. It was also observed that flexibility events in case 2 (only offices) would terminate
quickly owing to the low thermal inertia observed in the simulation stage, leading to less
transient behavior and a higher prediction accuracy for that specific case. Next, the results
were reported considering error metrics suggested by ASHRAE standard 14 and IPMVP
for calibrated models and were shown to fall within the defined threshold. Furthermore, it
was shown that expanding window training that gradually incorporates new data points
to emulate online learning enhances the model’s performance consistently as new training
opportunities are introduced and also allows retraining the models on the latest shifts in
load behavior or environmental characteristics.

Including the extra hour of forecasting ahead of the flexibility event, involving setpoint
adjustment, establishes the baseline load consumption in the next hour, after which the
flexibility measures are imposed. This will provide an accurate assessment of the load
reduction that can be obtained through the proposed setpoint adjustment. Additionally,
predicting load values an hour in advance, with the accuracy offered in the current work,
provides a reliable tool and sufficient planning time for integrating EV charging or planning
to engage in demand response programs. Moreover, the load values for up to four hours
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after initiating the flexibility measure represent the rebound effect and the resulting load
penalty, which can effectively be used in the decision-making mechanism.
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