105 research outputs found

    A wireless platform for in vivo measurement of resistance properties of the gastrointestinal tract

    Get PDF
    Active locomotion of wireless capsule endoscopes has the potential to improve the diagnostic yield of this painless technique for the diagnosis of gastrointestinal tract disease. In order to design effective locomotion mechanisms, a quantitative measure of the propelling force required to effectively move a capsule inside the gastrointestinal tract is necessary. In this study, we introduce a novel wireless platform that is able to measure the force opposing capsule motion, without perturbing the physiologic conditions with physical connections to the outside of the gastrointestinal tract. The platform takes advantage of a wireless capsule that is magnetically coupled with an external permanent magnet. A secondary contribution of this manuscript is to present a real-time method to estimate the axial magnetic force acting on a wireless capsule manipulated by an external magnetic field. In addition to the intermagnetic force, the platform provides real-time measurements of the capsule position, velocity, and acceleration. The platform was assessed with benchtop trials within a workspace that extends 15 cm from each side of the external permanent magnet, showing average error in estimating the force and the position of less than 0.1 N and 10 mm, respectively. The platform was also able to estimate the dynamic behavior of a known resistant force with an error of 5.45%. Finally, an in vivo experiment on a porcine colon model validated the feasibility of measuring the resistant force in opposition to magnetic propulsion of a wireless capsule

    Towards tactile sensing active capsule endoscopy

    Get PDF
    Examination of the gastrointestinal(GI) tract has traditionally been performed using tethered endoscopy tools with limited reach and more recently with passive untethered capsule endoscopy with limited capability. Inspection of small intestines is only possible using the latter capsule endoscopy with on board camera system. Limited to visual means it cannot detect features beneath the lumen wall if they have not affected the lumen structure or colour. This work presents an improved capsule endoscopy system with locomotion for active exploration of the small intestines and tactile sensing to detect deformation of the capsule outer surface when it follows the intestinal wall. In laboratory conditions this system is capable of identifying sub-lumen features such as submucosal tumours.Through an extensive literary review the current state of GI tract inspection in particular using remote operated miniature robotics, was investigated, concluding no solution currently exists that utilises tactile sensing with a capsule endoscopy. In order to achieve such a platform, further investigation was made in to tactile sensing technologies, methods of locomotion through the gut, and methods to support an increased power requirement for additional electronics and actuation. A set of detailed criteria were compiled for a soft formed sensor and flexible bodied locomotion system. The sensing system is built on the biomimetic tactile sensing device, Tactip, \cite{Chorley2008, Chorley2010, Winstone2012, Winstone2013} which has been redesigned to fit the form of a capsule endoscopy. These modifications have required a 360o360^{o} cylindrical sensing surface with 360o360^{o} panoramic optical system. Multi-material 3D printing has been used to build an almost complete sensor assembly with a combination of hard and soft materials, presenting a soft compliant tactile sensing system that mimics the tactile sensing methods of the human finger. The cylindrical Tactip has been validated using artificial submucosal tumours in laboratory conditions. The first experiment has explored the new form factor and measured the device's ability to detect surface deformation when travelling through a pipe like structure with varying lump obstructions. Sensor data was analysed and used to reconstruct the test environment as a 3D rendered structure. A second tactile sensing experiment has explored the use of classifier algorithms to successfully discriminate between three tumour characteristics; shape, size and material hardness. Locomotion of the capsule endoscopy has explored further bio-inspiration from earthworm's peristaltic locomotion, which share operating environment similarities. A soft bodied peristaltic worm robot has been developed that uses a tuned planetary gearbox mechanism to displace tendons that contract each worm segment. Methods have been identified to optimise the gearbox parameter to a pipe like structure of a given diameter. The locomotion system has been tested within a laboratory constructed pipe environment, showing that using only one actuator, three independent worm segments can be controlled. This configuration achieves comparable locomotion capabilities to that of an identical robot with an actuator dedicated to each individual worm segment. This system can be miniaturised more easily due to reduced parts and number of actuators, and so is more suitable for capsule endoscopy. Finally, these two developments have been integrated to demonstrate successful simultaneous locomotion and sensing to detect an artificial submucosal tumour embedded within the test environment. The addition of both tactile sensing and locomotion have created a need for additional power beyond what is available from current battery technology. Early stage work has reviewed wireless power transfer (WPT) as a potential solution to this problem. Methods for optimisation and miniaturisation to implement WPT on a capsule endoscopy have been identified with a laboratory built system that validates the methods found. Future work would see this combined with a miniaturised development of the robot presented. This thesis has developed a novel method for sub-lumen examination. With further efforts to miniaturise the robot it could provide a comfortable and non-invasive procedure to GI tract inspection reducing the need for surgical procedures and accessibility for earlier stage of examination. Furthermore, these developments have applicability in other domains such as veterinary medicine, industrial pipe inspection and exploration of hazardous environments

    New Techniques in Gastrointestinal Endoscopy

    Get PDF
    As result of progress, endoscopy has became more complex, using more sophisticated devices and has claimed a special form. In this moment, the gastroenterologist performing endoscopy has to be an expert in macroscopic view of the lesions in the gut, with good skills for using standard endoscopes, with good experience in ultrasound (for performing endoscopic ultrasound), with pathology experience for confocal examination. It is compulsory to get experience and to have patience and attention for the follow-up of thousands of images transmitted during capsule endoscopy or to have knowledge in physics necessary for autofluorescence imaging endoscopy. Therefore, the idea of an endoscopist has changed. Examinations mentioned need a special formation, a superior level of instruction, accessible to those who have already gained enough experience in basic diagnostic endoscopy. This is the reason for what these new issues of endoscopy are presented in this book of New techniques in Gastrointestinal Endoscopy

    Small bowel motility quantitation using MRI and its relationship to gastrointestinal symptoms

    Get PDF
    The small bowel is difficult to analyse due to its deep anatomical location and the large variation seen in individuals, in regard to both anatomy and function including motility. Dynamic MRI allows small bowel motility to be captured and visually assessed by radiologists, but there is often large inter-observer variation and a lack of complicated motility patterns being investigated. This thesis aims to explore the link between abnormal motility and gastrointestinal (GI) symptoms in Crohn’s disease (CD) and irritable bowel syndrome (IBS) using MRI. Firstly, a scan duration of 15 seconds and a temporal resolution of 1 image per second were shown to be sufficient for robust small bowel MRI motility measurements. Next, a validation study confirmed an association between aberrant motility and CD patient symptoms, particularly diarrhoeal stools (rho = -0.29). The strongest association was in patients with higher symptom severity (rho = -0.633). Building on this work, more complex motility metrics were developed and compared to subjective radiological scoring. Spatial and temporal variation were found to be associated with CD patient symptoms and were also particularly difficult to visually assess. The motility metrics were applied in clinical IBS data to explore differences in IBS subgroups. Significantly reduced temporal variation of motility (P < 0.001) and area of motile bowel (P < 0.001) was found in IBS-C (constipation-predominant) compared to IBS-M (mixed constipation and diarrhoea). Finally, texture analysis (TA) terminal ileum (TI) to colon ratios were found to be higher for TA contrast (P = 0.005) and lower for TA energy (P = 0.03) in IBS-C compared to healthy controls (HCs). Ascending colon diameter was shown to be significantly larger in IBS-C than HCs (P = 0.005)

    A wireless platform for in vivo measurement of resistant properties of the gastrointestinal tract

    Get PDF
    Abstract Active locomotion of wireless capsule endoscopes has the potential to improve the diagnostic yield of this painless technique for the diagnosis of gastrointestinal tract disease. In order to design effective locomotion mechanisms, a quantitative measure of the propelling force required to effectively move a capsule inside the gastrointestinal tract is necessary. In this study, we introduce a novel wireless platform that is able to measure the force opposing capsule motion, without perturbing the physiologic conditions with physical connections to the outside of the gastrointestinal tract. The platform takes advantage of a wireless capsule that is magnetically coupled with an external permanent magnet. A secondary contribution of this manuscript is to present a real-time method to estimate the axial magnetic force acting on a wireless capsule manipulated by an external magnetic field. In addition to the intermagnetic force, the platform provides real-time measurements of the capsule position, velocity, and acceleration. The platform was assessed with benchtop trials within a workspace that extends 15 cm from each side of the external permanent magnet, showing average error in estimating the force and the position of less than 0.1 N and 10 mm, respectively. The platform was also able to estimate the dynamic behavior of a known resistant force with an error of 5.45%. Finally, an in vivo experiment on a porcine colon model validated th

    Frontiers of robotic endoscopic capsules: a review

    Get PDF
    Digestive diseases are a major burden for society and healthcare systems, and with an aging population, the importance of their effective management will become critical. Healthcare systems worldwide already struggle to insure quality and affordability of healthcare delivery and this will be a significant challenge in the midterm future. Wireless capsule endoscopy (WCE), introduced in 2000 by Given Imaging Ltd., is an example of disruptive technology and represents an attractive alternative to traditional diagnostic techniques. WCE overcomes conventional endoscopy enabling inspection of the digestive system without discomfort or the need for sedation. Thus, it has the advantage of encouraging patients to undergo gastrointestinal (GI) tract examinations and of facilitating mass screening programmes. With the integration of further capabilities based on microrobotics, e.g. active locomotion and embedded therapeutic modules, WCE could become the key-technology for GI diagnosis and treatment. This review presents a research update on WCE and describes the state-of-the-art of current endoscopic devices with a focus on research-oriented robotic capsule endoscopes enabled by microsystem technologies. The article also presents a visionary perspective on WCE potential for screening, diagnostic and therapeutic endoscopic procedures

    Toward Bio-Inspired Tactile Sensing Capsule Endoscopy for Detection of Submucosal Tumors

    Get PDF
    © 2016 IEEE. Here, we present a method for lump characterization using a bio-inspired remote tactile sensing capsule endoscopy system. While current capsule endoscopy utilizes cameras to diagnose lesions on the surface of the gastrointestinal tract lumen, this proposal uses remote palpation to stimulate a bio-inspired tactile sensing surface that deforms under the impression of both hard and soft raised objects. Current capsule endoscopy utilizes cameras to visually diagnose lesions on the surface of the gastrointestinal tract. Our approach introduces remote palpation by deploying a bio-inspired tactile sensor that deforms when pressed against soft or hard lumps. This can enhance visual inspection of lesions and provide more information about the structure of the lesions. Using classifier systems, we have shown that lumps of different sizes, shapes, and hardnesses can be distinguished in a synthetic test environment. This is a promising early start toward achieving a remote palpation system used inside the GI tract that will utilize the clinician's sense of touch

    Detection of small bowel tumors in endoscopic capsule images by modeling non-gaussianity of texture descriptors

    Get PDF
    This paper presents an approach to the automatic detection of small bowel tumors by processing endoscopic capsule images. The most significant texture information is selected by using wavelet processing and captured in the image domain from an appropriate synthesized image. Co-occurrence matrices are used to derive texture descriptors by modeling second order statistics of color image levels. These descriptors are then modeled by using third and fourth order moments in order to cope with distributions that tend to become non-Gaussian especially in some pathological cases. The proposed approach is supported by a classifier based on radial basis functions procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data and shows that higher order moments can be effective in modeling capsule endoscopic images regarding tumor detection.Centre Algoritm
    • …
    corecore