2,198 research outputs found

    A Low Complexity 16 X 16 Butler Matrix Design Using Eight-Port Hybrids

    Get PDF
    Beamforming networks such as Butler Matrices are important for multibeam array antenna applications. The challenge for Butler Matrix design is that their complexity increases with the number of ports. In this paper, a novel approach of designing a 16 X 16 Butler Matrix with significant structure simplification is presented. The eight-port hybrids with no crossovers are used to simplify the network. To ensure the network has the same magnitude and phase responses as the standard one, the location and phase shifting value of each fixed phase shifter are derived from the SS -matrix of each hybrid. A 16×1616\times 16 Butler Matrix network operating from 9 GHz–11 GHz is designed to validate this concept. The compensated microstrip 3-dB/90° directional coupler, the phase shifter with a shunt open-and-short stub and the crossover with a resonating patch are used to reduce the transmission loss and enable broadband operation

    A Compact Broadband 16×16 Butler Matrix for Multibeam Antenna Array Applications

    Get PDF
    This paper presents a compact 16×16 Butler Matrix operated from 9 GHz - 11 GHz. Compared with the traditional structure, the presented network is much simpler and can be easily designed. The number of needed components in the design is only sixty, where the number of crossovers is four. In addition, the designed network can be fully realized in a single layer laminate with the size of 165 mm × 165 mm (5.5λ 0 × 5.5λ 0 ). It is shown that the maximum simulated output phase error at 10 GHz is only ±8° and the transmission coefficients are in the range of -14.5 ± 1.5dB over the bandwidth. The measured and simulated results agree well. The designed network can be a potential candidate for the one or two dimensional multibeam array antennas

    Dynamic Capacity Enhancement using a Smart Antenna in Mobile Telecommunications Networks

    Get PDF
    This work describes an investigation into the performance of antennas for mobile base station applications and techniques for improving the coverage and capacity within a base station cell. The work starts by tracing the development of mobile systems, both in technical and commercial terms, from the earliest analogue systems to present day broadband systems and includes anticipated future developments. This is followed by an outline of how smart antenna systems can be utilised to improve cell coverage and capacity. A novel smart antenna system incorporating an array of slant ± 450 dual- polarised stacked patch elements four columns wide excited by a novel multi-beam forming and beam shaping network has been designed, simulated and implemented. It is found that for an ideal smart antenna array, four narrow overlapping beams, one wide “broadcast channel” beam and right and left shaped beams can be provided. Results are presented for the simulation of the smart antenna system using CST EM simulation software which inherently includes mutual coupling and the effects of a truncated ground plane on the element patterns. The results show some significant changes to the desired set of coverage patterns and various mutual coupling compensation techniques have been reviewed. An improved design technique has been developed for compensating the performance degrading effects of mutual coupling and finite ground plane dimensions in microstrip antenna arrays. The improved technique utilises combination of two previously known techniques: complex excitation weights compensation by inversion of the array mutual coupling scattering matrix and the incorporation of a WAIM (wide angle impedance matching) sheet. The technique has been applied to a novel multi-beam smart antenna array to demonstrate the efficacy of the technique by electromagnetic simulation. In addition, a demonstrator array has been constructed and tested which has yielded a positive conformation of the simulation results. For the developed demonstrator array which provides seven different beams, beams “footprints” have been predicted both for free space propagation and for urban propagation to evaluate the dynamic capacity performance of the smart antenna in a 3G mobile network. The results indicate that sector capacity can be dynamically tailored to user demand profiles by selection of the appropriate beam patterns provided by the novel smart antenna system

    FMCW Radar with Enhanced Resolution and Processing Time by Beam Switching

    Get PDF
    We present the design of a novel K-band radar architecture for short-range target detection. Applications include direction finding systems and automotive radar. The developed system is compact and low cost and employs substrate-integrated-waveguide (SIW) antenna arrays and a 4×44\times 4 Butler matrix (BM) beamformer. In particular, the proposed radar transmits a frequency modulated continuous-wave (FMCW) signal at 24 GHz, scanning the horizontal plane by switching the four input ports of the BM in time. Also, in conjunction with a new processing method for the received radar signals, the architecture is able to provide enhanced resolution at reduced computational burden and when compared to more standard single-input multiple-output (SIMO) and multiple-input multiple-output (MIMO) systems. The radar performance has also been measured in an anechoic chamber and results have been analyzed by illuminating and identifying test targets which are 2° apart, while also making comparisons to SIMO and MIMO FMCW radars. Moreover, the proposed radar architecture, by appropriate design, can also be scaled to operate at other microwave and millimeter-wave frequencies, while also providing a computationally efficient multi-channel radar signal processing platform

    Design of Reconfigurable Multiple-Beam Array Feed Network Based on Millimeter-Wave Photonics Beamformers

    Get PDF
    In this chapter, elaborating the direction of designing photonics-based beamforming networks (BFN) for millimeter-wave (mmWave) antenna arrays, we review the worldwide progress referred to designing multiple-beam photonics BFN and highlight our last simulation results on design and optimization of millimeter-photonics-based matrix beamformers. In particular, we review the specialties of mmWave photonics technique in 5G mobile networks of Radio-over-Fiber (RoF) technology based on fiber-wireless architecture. In addition, the theoretical background of array antenna multiple-beam steering using ideal models of matrix-based phase shifters and time delay lines is presented including a general analysis of radiation pattern sensitivity to compare updated photonics beamforming networks produced on phase shifter or true-time delay approach. The principles and ways to optimized photonics BFN design are discussed based on the study of photonics BFN scheme including integrated 8×8 optical Butler matrix (OBM). All schemes are modeled using VPIphotonics Design Suite and MATLAB software tools. In the result of simulation experiments, the outcome is obtained that both the integrated optical Butler matrix itself and the BFN based on it possess an acceptable quality of beams formation in a particular 5G pico-cell

    Two dimensional switched beam antenna at 28 GHz for fifth generation wireless system

    Get PDF
    Fifth generation (5G) wireless system is expected to enable new device-to-device (D2D) and machine-to-machine (M2M) applications that will impact both consumers and industry. Moreover, for efficient M2M communication, both one dimensional (1-D) and two dimensional (2-D) beam switching is highly needed for high data-rate wireless radio links. A planar array with 2-D beam switching capabilities is highly desirable in 5G system. This thesis proposes a new technique of achieving simple and cost effective 2-D beam switching array antenna at 28 GHz for 5G wireless system. The technique involves lateral cascading of Butler matrix (BM) beamforming network (BFN). However, designing a planar BM at 28 GHz that will allow K-connector is not a trivial issue because the distances between the ports are X/4 electrical length apart. Nevertheless, two branch line coupler (BLC) with unequal ports separation at 28 GHz on a single substrate are designed and applied to design 1-D switched beam antennas based on BLC and 4 * 4 BM. Then two of these antennas are laterally cascaded to achieve 2-D beam switching antenna. This novel concept is the basis for choosing BM BFN in the design. The proposed 1-D array antennas on BLC and BM have wide measured impedance bandwidth of 18.9% (5.3 GHz) and 21.7% (6.1 GHz) and highest gain of 14.6 dBi and 15.9 dBi, respectively. The 2-D switched beam antenna on cascaded BLC has highest realized gain of 14.9 dB, radiation efficiency of 86%, 86.8%, 85.5%, and 83.4% at ports 1 to 4, respectively. The switching range of from -25o to +18° in the x-z plane and from -18o to 24o in the y-z plane, while the 2-D switched beam antenna based on cascaded 4 * 4 BM has switching range of -41o to 43o in the x-z plane and -43o to 42o in the y-z plane with highest realized gain of 14.4 dBi. The proposed antennas have great potentials for 5G wireless communication system applications

    Innovative Butler Matrix Concepts Based on Novel Components For 2-D Beamforming

    Get PDF
    Several innovative concepts and schemes to enrich the features of Butler matrices (BMs) to enhance their suitability over the conventional schemes are discussed, demonstrated, and analyzed. Mobile communication and radar systems require compact and versatile multibeam-forming networks (MBFNs). Therefore, the study is aimed to provide feasible and practical solutions with more flexible beam numbers of BMs, more concise configurations of the two-dimensional (2-D) beamforming, and broadband characteristics while maintaining the intrinsic merits of conventional BMs (such as theoretically lossless, spatially orthogonal beams, and relatively simple structure). In addition, the study implements some of the concepts to millimeter-wave (mm-wave) frequencies applications. Concretely, the effects of some components, such as T-junctions and crossovers, on the bandwidth of parallel-feeding networks and MBFNs, are investigated and analyzed. The corresponding solutions to broaden the bandwidth are suggested and verified by the measurements. Further, for the 2-D beamforming based on BMs, a generalized scheme to build 2-D MBFN with any 2M+N beams based on traditional 2M× 2M- and 2N× 2N BMs is elaborated and experimentally verified. Especially as the key component of 2-D BMs, an innovative eight-port coupler with a very compact structure is proposed. The applications of the coupler for 2-D monopulse arrays, dual-polarized monopulse arrays, and mm-wave 2-D beamforming are also demonstrated. Besides, two solutions to extend the numbers of beams of BMs from traditional 2N × 2N to almost arbitrary number, such as 2M×3N or M × 2N, are introduced by using a three-way coupler and electrically switchable coupler, respectively (M and N are arbitrary integers greater than 0). Though the majority of ideas and examples presented is exemplified by planar circuits and transverse-electro-magnetic (TEM) transmission lines, they can also be transferred to and applied on other circuit forms, such as ridge-gap waveguide (RGW), printed RGW (PRGW), substrate-integrated waveguide (SIW), and packaged microstrip line (PMSL) for mm-wave applications. Keywords: Butler matrices, two-dimensional Butler matrices, directional couplers, reconfigurable couplers, phase shifters, crossovers, eight-port couplers, packaged microstrip line

    Photonic Vector Processing Techniques for Radiofrequency Signals

    Full text link
    [EN] The processing of radiofrequency signals using photonics means is a discipline that appeared almost at the same time as the laser and the optical fibre. Photonics offers the capability of managing broadband radiofrequency (RF) signals thanks to its low transmission attenuation, a variety of linear and non-linear phenomena and, recently, the potential to implement integrated photonic subsystems. These features open the door for the implementation of multiple functionalities including optical transportation, up and down frequency conversion, optical RF filtering, signal multiplexing, de-multiplexing, routing and switching, optical sampling, tone generation, delay control, beamforming and photonic generation of digital modulations, and even a combination of several of these functionalities. This thesis is focused on the application of vector processing in the optical domain to radiofrequency signals in two fields of application: optical beamforming, and photonic vector modulation and demodulation of digital quadrature amplitude modulations. The photonic vector control enables to adjust the amplitude and phase of the radiofrequency signals in the optical domain, which is the fundamental processing that is required in different applications such as beamforming networks for direct radiating array (DRA) antennas and multilevel quadrature modulation. The work described in this thesis include different techniques for implementing a photonic version of beamforming networks for direct radiating arrays (DRA) known as optical beamforming networks (OBFN), with the objectives of providing a precise control in terrestrial applications of broadband signals at very high frequencies above 40 GHz in communication antennas, optimizing the size and mass when compared with the electrical counterparts in space application, and presenting new photonic-based OBFN functionalities. Thus, two families of OBFNs are studied: fibre-based true time delay architectures and integrated networks. The first allow the control of broadband signals using dispersive optical fibres with wavelength division multiplexing techniques and advanced functionalities such as direction of arrival estimation in receiving architectures. In the second, passive OBFNs based on monolithically-integrated Optical Butler Matrices are studied, including an ultra-compact solution using optical heterodyne techniques in silicon-on-insulator (SOI) material, and an alternative implementing a homodyne counterpart in germanium doped silica material. In this thesis, the application of photonic vector processing to the generation of quadrature digital modulations has also been investigated. Multilevel modulations are based on encoding digital information in discrete states of phase and amplitude of an electrical signal to enhance spectral efficiency, as for instance, in quadrature modulation. The signal process required for generating and demodulating this kind of signals involves vector processing (phase and amplitude control) and frequency conversion. Unlike the common electronic or digital implementation, in this thesis, different photonic based signal processing techniques are studied to produce digital modulation (photonic vector modulation, PVM) and demodulation (PVdM). These techniques are of particular interest in the case of broadband signals where the data rate required to be managed is in the order of gigabit per second, for applications like wireless backhauling of metro optical networks (known as fibre-to-the-air). The techniques described use optical dispersion in optical fibres, wavelength division multiplexing and photonic up/down conversion. Additionally, an optical heterodyne solution implemented monolithically in a photonic integrated circuit (PIC) is also described.[ES] El procesamiento de señales de radiofrecuencia (RF) utilizando medios fotónicos es una disciplina que apareció casi al mismo tiempo que el láser y la fibra óptica. La fotónica ofrece la capacidad de manipular señales de radiofrecuencia de banda ancha, una baja atenuación, procesados basados en una amplia variedad de fenómenos lineales y no lineales y, recientemente, el potencial para implementar subsistemas fotónicos integrados. Estas características ofrecen un gran potencial para la implementación de múltiples funcionalidades incluyendo transporte óptico, conversión de frecuencia, filtrado óptico de RF, multiplexación y demultiplexación de señales, encaminamiento y conmutación, muestreo óptico, generación de tonos, líneas de retardo, conformación de haz en agrupaciones de antenas o generación fotónica de modulaciones digitales, e incluso una combinación de varias de estas funcionalidades. Esta tesis se centra en la aplicación del procesamiento vectorial en el dominio óptico de señales de radiofrecuencia en dos campos de aplicación: la conformación óptica de haces y la modulación y demodulación vectorial fotónica de señales digitales en cuadratura. El control fotónico vectorial permite manipular la amplitud y fase de las señales de radiofrecuencia en el dominio óptico, que es el procesamiento fundamental que se requiere en diferentes aplicaciones tales como las redes de conformación de haces para agrupaciones de antenas y en la modulación en cuadratura. El trabajo descrito en esta tesis incluye diferentes técnicas para implementar una versión fotónica de las redes de conformación de haces de en agrupaciones de antenas, conocidas como redes ópticas de conformación de haces (OBFN). Se estudian dos familias de redes: arquitecturas de retardo en fibra óptica y arquitecturas integradas. Las primeras permiten el control de señales de banda ancha utilizando fibras ópticas dispersivas con técnicas de multiplexado por división de longitud de onda y funcionalidades avanzadas tales como la estimación del ángulo de llegada de la señal en la antena receptora. En la segunda, se estudian redes de conformación pasivas basadas en Matrices de Butler ópticas integradas, incluyendo una solución ultra-compacta utilizando técnicas ópticas heterodinas en silicio sobre aislante (SOI), y una alternativa homodina en sílice dopado con germanio. En esta tesis, también se han investigado técnicas de procesado vectorial fotónico para la generación de modulaciones digitales en cuadratura. Las modulaciones multinivel codifican la información digital en estados discretos de fase y amplitud de una señal eléctrica para aumentar su eficiencia espectral, como por ejemplo la modulación en cuadratura. El procesado necesario para generar y demodular este tipo de señales implica el procesamiento vectorial (control de amplitud y fase) y la conversión de frecuencia. A diferencia de la implementación electrónica o digital convencional, en esta tesis se estudian diferentes técnicas de procesado fotónico tanto para la generación de modulaciones digitales (modulación vectorial fotónica, PVM) como para su demodulación (PVdM). Esto es de particular interés en el caso de señales de banda ancha, donde la velocidad de datos requerida es del orden de gigabits por segundo, para aplicaciones como backhaul inalámbrico de redes ópticas metropolitanas (conocida como fibra hasta el aire). Las técnicas descritas se basan en explotar la dispersión cromática de la fibra óptica, la multiplexación por división de longitud de onda y la conversión en frecuencia. Además, se presenta una solución heterodina implementada monolíticamente en un circuito integrado fotónico (PIC).[CA] El processament de senyals de radiofreqüència (RF) utilitzant mitjans fotònics és una disciplina que va aparèixer gairebé al mateix temps que el làser i la fibra òptica. La fotònica ofereix la capacitat de manipular senyals de radiofreqüència de banda ampla, una baixa atenuació, processats basats en una àmplia varietat de fenòmens lineals i no lineals i, recentment, el potencial per implementar subsistemes fotònics integrats. Aquestes característiques ofereixen un gran potencial per a la implementació de múltiples funcionalitats incloent transport òptic, conversió de freqüència, filtrat òptic de RF, multiplexació i demultiplexació de senyals, encaminament i commutació, mostreig òptic, generació de tons, línies de retard, conformació de feix en agrupacions d'antenes i la generació fotònica de modulacions digitals, i fins i tot una combinació de diverses d'aquestes funcionalitats. Aquesta tesi es centra en l'aplicació del processament vectorial en el domini òptic de senyals de radiofreqüència en dos camps d'aplicació: la conformació òptica de feixos i la modulació i demodulació vectorial fotònica de senyals digitals en quadratura. El control fotònic vectorial permet manipular l'amplitud i la fase dels senyals de radiofreqüència en el domini òptic, que és el processament fonamental que es requereix en diferents aplicacions com ara les xarxes de conformació de feixos per agrupacions d'antenes i en modulació multinivell. El treball descrit en aquesta tesi inclou diferents tècniques per implementar una versió fotònica de les xarxes de conformació de feixos en agrupacions d'antenes, conegudes com a xarxes òptiques de conformació de feixos (OBFN), amb els objectius de proporcionar un control precís en aplicacions terrestres de senyals de banda ampla a freqüències molt altes per sobre de 40 GHz en antenes de comunicacions, optimitzant la mida i el pes quan es compara amb els homòlegs elèctrics en aplicacions espacials, i la presentació de noves funcionalitats fotòniques per agrupacions d'antenes. Per tant, s'estudien dues famílies de OBFNs: arquitectures de retard en fibra òptica i arquitectures integrades. Les primeres permeten el control de senyals de banda ampla utilitzant fibres òptiques dispersives amb tècniques de multiplexació per divisió en longitud d'ona i funcionalitats avançades com ara l'estimació de l'angle d'arribada del senyal a l'antena receptora. A la segona, s'estudien xarxes de conformació passives basades en Matrius de Butler òptiques en fotònica integrada, incloent una solució ultra-compacta utilitzant tècniques òptiques heterodinas en silici sobre aïllant (SOI), i una alternativa homodina en sílice dopat amb germani. D'altra banda, també s'ha investigat en aquesta tesi tècniques de processament vectorial fotònic per a la generació de modulacions digitals en quadratura. Les modulacions multinivell codifiquen la informació digital en estats discrets de fase i amplitud d'un senyal elèctric per augmentar la seva eficiència espectral, com ara la modulació en quadratura. El processat necessari per generar i desmodular aquest tipus de senyals implica el processament vectorial (control d'amplitud i fase) i la conversió de freqüència. A diferència de la implementació electrònica o digital convencional, en aquesta tesi s'estudien diferents tècniques de processament fotònic tant per a la generació de modulacions digitals (modulació vectorial fotònica, PVM) com per la seva demodulació (PVdM). Això és de particular interès en el cas de senyals de banda ampla, on la velocitat de dades requerida és de l'ordre de gigabits per segon, per a aplicacions com backhaul sense fils de xarxes òptiques metropolitanes (coneguda com fibra fins l'aire). Les tècniques descrites es basen en explotar la dispersió cromàtica de la fibra òptica, la multiplexació per divisió en longitud d'ona i la conversió en freqüència. A més, es presePiqueras Ruipérez, MÁ. (2016). Photonic Vector Processing Techniques for Radiofrequency Signals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63264TESI

    Coconut Phytophthora. Workshop proceedings, 26-30 October 1992, Manado, Indonesia

    Full text link
    Ce séminaire sur le Phythophthora du cocotier avait pour but de réunir tous les acteurs d'un projet démarré en 1990 et de faire le point sur les études réalisées pour la connaissance et la lutte contre ce champignon. Ce projet a donné une grande priorité aux échanges d'informations et aux complémentarités entre les équipes de recherche européennes et tropicale

    Dynamic capacity enhancement using a smart antenna in mobile telecommunications networks

    Get PDF
    This work describes an investigation into the performance of antennas for mobile base station applications and techniques for improving the coverage and capacity within a base station cell. The work starts by tracing the development of mobile systems, both in technical and commercial terms, from the earliest analogue systems to present day broadband systems and includes anticipated future developments. This is followed by an outline of how smart antenna systems can be utilised to improve cell coverage and capacity. A novel smart antenna system incorporating an array of slant ± 450 dual- polarised stacked patch elements four columns wide excited by a novel multi-beam forming and beam shaping network has been designed, simulated and implemented. It is found that for an ideal smart antenna array, four narrow overlapping beams, one wide “broadcast channel” beam and right and left shaped beams can be provided. Results are presented for the simulation of the smart antenna system using CST EM simulation software which inherently includes mutual coupling and the effects of a truncated ground plane on the element patterns. The results show some significant changes to the desired set of coverage patterns and various mutual coupling compensation techniques have been reviewed. An improved design technique has been developed for compensating the performance degrading effects of mutual coupling and finite ground plane dimensions in microstrip antenna arrays. The improved technique utilises combination of two previously known techniques: complex excitation weights compensation by inversion of the array mutual coupling scattering matrix and the incorporation of a WAIM (wide angle impedance matching) sheet. The technique has been applied to a novel multi-beam smart antenna array to demonstrate the efficacy of the technique by electromagnetic simulation. In addition, a demonstrator array has been constructed and tested which has yielded a positive conformation of the simulation results. For the developed demonstrator array which provides seven different beams, beams “footprints” have been predicted both for free space propagation and for urban propagation to evaluate the dynamic capacity performance of the smart antenna in a 3G mobile network. The results indicate that sector capacity can be dynamically tailored to user demand profiles by selection of the appropriate beam patterns provided by the novel smart antenna system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore