20,746 research outputs found

    Incorporating a Local Binary Fitting Model into a Maximum Regional Difference Model for Extracting Microscopic Information under Complex Conditions

    Get PDF
    This paper presents a novel region-based method for extracting useful information from microscopic images under complex conditions. It is especially used for blood cell segmentation and statistical analysis. The active model detects several inner and outer contours of an object from its background. The method incorporates a local binary fitting model into a maximum regional difference model. It utilizes both local and global intensity information as the driving forces of the contour model on the principle of the largest regional difference. The local and global fitting forces ensure that local dissimilarities can be captured and globally different areas can be segmented, respectively. By combining the advantages of local and global information, the motion of the contour is driven by the mixed fitting force, which is composed of the local and global fitting term in the energy function. Experiments are carried out in the laboratory, and results show that the novel model can yield good performances for microscopic image analysis

    Hybrid Active Contour Based on Local and Global Statistics Parameterized by Weight Coefficients for Inhomogeneous Image Segmentation

    Get PDF
    Image inhomogeneity often occurs in real-world images and may present considerable difficulties during image segmentation. Therefore, this paper presents a new approach for the segmentation of inhomogeneous images. The proposed hybrid active contour model is formulated by combining the statistical information of both the local and global region-based energy fitting models. The inclusion of the local region-based energy fitting model assists in extracting the inhomogeneous intensity regions, whereas the curve evolution over the homogeneous regions is accelerated by including the global region-based model in the proposed method. Both the local and global region-based energy functions in the proposed model drag contours toward the accurate object boundaries with precision. Each of the local and global region-based parts are parameterized with weight coefficients, based on image complexity, to modulate two parts. The proposed hybrid model is strongly capable of detecting region of interests (ROIs) in the presence of complex object boundaries and noise, as its local region-based part comprises bias field. Moreover, the proposed method includes a new bias field (NBF) initialization and eliminates the dependence over the initial contour position. Experimental results on synthetic and real-world images, produced by the proposed model, and comparative analysis with previous state-of-the-art methods confirm its superior performance in terms of both time efficiency and segmentation accuracy

    Segmentation of optic disc in retinal images for glaucoma diagnosis by saliency level set with enhanced active contour model

    Get PDF
    Glaucoma is an ophthalmic disease which is among the chief causes of visual impairment across the globe. The clarity of the optic disc (OD) is crucial for recognizing glaucoma. Since existing methods are unable to successfully integrate multi-view information derived from shape and appearance to precisely explain OD for segmentation, this paper proposes a saliency-based level set with an enhanced active contour method (SL-EACM), a modified locally statistical active contour model, and entropy-based optical disc localization. The significant contributions are that i) the SL-EACM is introduced to address the often noticed problem of intensity inhomogeneity brought on by defects in imaging equipment or fluctuations in lighting; ii) to prevent the integrity of the OD structures from being compromised by pathological alterations and artery blockage, local image probability data is included from a multi-dimensional feature space around the region of interest in the model; and iii) the model incorporates prior shape information into the technique, for enhancing the accuracy in identifying the OD structures from surrounding regions. Public databases such as CHASE_DB, DRIONS-DB, and Drishti-GS are used to evaluate the proposed model. The findings from numerous trials demonstrate that the proposed model outperforms state-of-the-art approaches in terms of qualitative and quantitative outcomes

    Dense deformation field estimation for atlas registration using the active contour framework

    Get PDF
    A key research area in computer vision is image segmentation. Image segmentation aims at extracting objects of interest in images or video sequences. These objects contain relevant information for a given application. For example, a video surveillance application generally requires to extract moving objects (vehicles, persons or animals) from a sequence of images in order to check that their path stays conformed to the regulation rules set for the observed scene. Image segmentation is not an easy task. In many applications, the contours of the objects of interest are difficult to delineate, even manually. The problems linked to segmentation are often due to low contrast, fuzzy contours or too similar intensities with adjacent objects. In some cases, the objects to be extracted have no real contours in the image. This kind of objects is called virtual objects. Virtual objects appear especially in medical applications. To draw them, medical experts usually estimate their position from surrounding objects. The problems related to image segmentation can be greatly simplified with information known in advance on the objects to be extracted (the prior knowledge). A widely used method consists to extract the needed prior knowledge from a reference image often called atlas. The goal of the atlas is to describe the image to be segmented like a map would describe the components of a geographical area. An atlas can contain three types of information on each object being part of the image: an estimation of its position in the image, a description of its shape and texture, and the features of its adjacent objects. The atlas-based segmentation method is rather used when the atlas can characterize a range of images. This method is thus especially adapted to medical images due to the existing consistency between anatomical structures of same type. There exist two types of atlas: the determinist atlas and the statistical atlas. The determinist atlas is an image which has been selected or computed, to be the most representative of an image category to be segmented. This image is called intensity atlas. The contours of the objects of interest (the objects to be extracted in images of the same type) have been traced manually on the intensity atlas, or by using a semi-automatic method. A label is often attributed to each one of these objects in order to differentiate them. In this way, we obtain a labeled version of the atlas called labeled atlas. The statistical atlas is an atlas created from a database of images in order to be the most representative of a certain type of images to be segmented. In this atlas, the position and the features of the objects of interest depend on statistical measures. In this thesis, we are focused on the use of determinist atlases for image segmentation. The segmentation process with a determinist atlas consists to deform the objects delineated in the atlas in order to better align them with their corresponding objects in the image to be segmented. To perform this task, we have distinguished two types of approaches in the literature. The first approach consists to reduce the segmentation problem in an image registration problem. First of all, a dense deformation field that registers (i.e. puts in point-to-point spatial correspondence) the atlas to the image to be segmented, is explicitly computed. Then, this transformation is used to project the assigned labels onto each atlas structure on the image to be segmented. The advantage of this approach is that the deformation field computed from the registration of visible contours allows to easily estimate the position of virtual objects or objects with fuzzy contours. However, the methods currently used for the atlas registration are often only based on the intensity atlas. That means that they do not exploit the object-based information that can be obtained by combining the intensity atlas with its labeled version. In the second approach, the atlas contours selected by the labeled atlas are directly deformed without using a geometrical deformation. For that, this approach is based on matching contour techniques, generally called deformable models. In this thesis, we are interested to a particular type of deformable models, which are the active contour segmentation models. The advantage of the active contour method is that this segmentation technique has been designed to exploit the image information directly linked to the object to be delineated. By using object-based information, active contour models are frequently able to extract regions where the atlas-based segmentation method by registration fails. On the other hand, the result of this local segmentation method is very sensitive to the initial atlas contour position regarding to the target contours. On the other hand, this local segmentation method is very sensitive to the initial position of the atlas contours: the closer they are to the contours to be detected, the more robust the active contour-based segmentation will be. Besides, this segmentation technique needs prior shape models to be able to estimate the position of virtual objects. The main objective of this thesis is to design an algorithm for atlas-based segmentation which combines the advantages of the dense deformation field computed by the registration algorithms, with local segmentation constraints coming from the active contour framework. This implies to design a model where the registration and segmentation by active contours are jointly performed. The atlas registration algorithm that we propose is based on a formulation allowing the integration of any segmentation or contour regularization forces derived from the theory of the active contours in a non parametric registration process. Our algorithm led us to introduce the concept of hierarchical atlas registration. Its principle is that the registration of the main image objects helps the registration of depending objects. This allows to bring progressively the atlas contours closer to their target and thus, to limit the risk to be stuck in a local minimum. Our model had been designed to be easily adaptable to various types of segmentation problems. At the end of the thesis, we present several examples of atlas registration applications in medical imaging. These applications highlight the integration of manual constraints in an atlas registration process, the modeling of a tumor growth in the atlas, the labelization of the thalamus for a statistical study on neuronal connections, the localization of the subthalamic nucleus (STN) for deep brain stimulation (DBS) and the compensation of intra-operative brain shift for neuronavigation systems

    Image segmentation with variational active contours

    Get PDF
    An important branch of computer vision is image segmentation. Image segmentation aims at extracting meaningful objects lying in images either by dividing images into contiguous semantic regions, or by extracting one or more specific objects in images such as medical structures. The image segmentation task is in general very difficult to achieve since natural images are diverse, complex and the way we perceive them vary according to individuals. For more than a decade, a promising mathematical framework, based on variational models and partial differential equations, have been investigated to solve the image segmentation problem. This new approach benefits from well-established mathematical theories that allow people to analyze, understand and extend segmentation methods. Moreover, this framework is defined in a continuous setting which makes the proposed models independent with respect to the grid of digital images. This thesis proposes four new image segmentation models based on variational models and the active contours method. The active contours or snakes model is more and more used in image segmentation because it relies on solid mathematical properties and its numerical implementation uses the efficient level set method to track evolving contours. The first model defined in this dissertation proposes to determine global minimizers of the active contour/snake model. Despite of great theoretic properties, the active contours model suffers from the existence of local minima which makes the initial guess critical to get satisfactory results. We propose to couple the geodesic/geometric active contours model with the total variation functional and the Mumford-Shah functional to determine global minimizers of the snake model. It is interesting to notice that the merging of two well-known and "opposite" models of geodesic/geometric active contours, based on the detection of edges, and active contours without edges provides a global minimum to the image segmentation algorithm. The second model introduces a method that combines at the same time deterministic and statistical concepts. We define a non-parametric and non-supervised image classification model based on information theory and the shape gradient method. We show that this new segmentation model generalizes, in a conceptual way, many existing models based on active contours, statistical and information theoretic concepts such as mutual information. The third model defined in this thesis is a variational model that extracts in images objects of interest which geometric shape is given by the principal components analysis. The main interest of the proposed model is to combine the three families of active contours, based on the detection of edges, the segmentation of homogeneous regions and the integration of geometric shape prior, in order to use simultaneously the advantages of each family. Finally, the last model presents a generalization of the active contours model in scale spaces in order to extract structures at different scales of observation. The mathematical framework which allows us to define an evolution equation for active contours in scale spaces comes from string theory. This theory introduces a mathematical setting to process a manifold such as an active contour embedded in higher dimensional Riemannian spaces such as scale spaces. We thus define the energy functional and the evolution equation of the multiscale active contours model which can evolve in the most well-known scale spaces such as the linear or the curvature scale space

    Localizing Region-Based Active Contours

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2008.2004611In this paper, we propose a natural framework that allows any region-based segmentation energy to be re-formulated in a local way. We consider local rather than global image statistics and evolve a contour based on local information. Localized contours are capable of segmenting objects with heterogeneous feature profiles that would be difficult to capture correctly using a standard global method. The presented technique is versatile enough to be used with any global region-based active contour energy and instill in it the benefits of localization. We describe this framework and demonstrate the localization of three well-known energies in order to illustrate how our framework can be applied to any energy. We then compare each localized energy to its global counterpart to show the improvements that can be achieved. Next, an in-depth study of the behaviors of these energies in response to the degree of localization is given. Finally, we show results on challenging images to illustrate the robust and accurate segmentations that are possible with this new class of active contour models
    • …
    corecore