308 research outputs found

    Drawing Trees with Perfect Angular Resolution and Polynomial Area

    Full text link
    We study methods for drawing trees with perfect angular resolution, i.e., with angles at each node v equal to 2{\pi}/d(v). We show: 1. Any unordered tree has a crossing-free straight-line drawing with perfect angular resolution and polynomial area. 2. There are ordered trees that require exponential area for any crossing-free straight-line drawing having perfect angular resolution. 3. Any ordered tree has a crossing-free Lombardi-style drawing (where each edge is represented by a circular arc) with perfect angular resolution and polynomial area. Thus, our results explore what is achievable with straight-line drawings and what more is achievable with Lombardi-style drawings, with respect to drawings of trees with perfect angular resolution.Comment: 30 pages, 17 figure

    Testing Planarity of Geometric Automorphisms in Linear Time

    Get PDF
    It is a well-known result that testing a graph for planarity and, in the affirmative case, computing a planar embedding can be done in linear time. In this paper, we show that the same holds if additionally we require that the produced drawing be symmetric with respect to a given automorphism of the graph. This problem arises naturally in the area of automatic graph drawing, where symmetric and planar drawings are desired whenever possible

    An SPQR-tree-like embedding representation for level planarity

    Get PDF
    An SPQR-tree is a data structure that efficiently represents all planar embeddings of a biconnected planar graph. It is a key tool in a number of constrained planarity testing algorithms, which seek a planar embedding of a graph subject to some given set of constraints. We develop an SPQR-tree-like data structure that represents all level-planar embeddings of a biconnected level graph with a single source, called the LP-tree, and give a simple algorithm to compute it in linear time. Moreover, we show that LP-trees can be used to adapt three constrained planarity algorithms to the level-planar case by using them as a drop-in replacement for SPQR-trees

    SPQR-tree-like embedding representation for level planarity

    Get PDF
    An SPQR-tree is a data structure that efficiently represents all planar embeddings of a connected planar graph. It is a key tool in a number of constrained planarity testing algorithms, which seek a planar embedding of a graph subject to some given set of constraints. We develop an SPQR-tree-like data structure that represents all level-planar embeddings of a biconnected level graph with a single source, called the LP-tree, and give an algorithm to compute it in linear time. Moreover, we show that LP-trees can be used to adapt three constrained planarity algorithms to the level-planar case by using LP-trees as a drop-in replacement for SPQR-trees

    KĹŤlams in Graph Theory: Mathematics in South Indian Ritual Art

    Get PDF
    Kōlams are a ritual art form found in India, most commonly in the southern stateof Tamil Nadu. Comprised of different interlocking knots, these women-drawn designs are placed on the entrances to people’s home to showcase the household’s emotional state and ask the earth goddess Bhūdevi for forgiveness. More aesthetically pleasing kōlams are considered latshanam, where the design permeates beauty; monolinearity is one such aspect that implements latshanam. Using graph theory, we examine one style of these drawings, the labyrinthine variety, to identify if a given kōlam is monolinear and how to construct monolinear kōlams

    Drawing graphs for cartographic applications

    Get PDF
    Graph Drawing is a relatively young area that combines elements of graph theory, algorithms, (computational) geometry and (computational) topology. Research in this field concentrates on developing algorithms for drawing graphs while satisfying certain aesthetic criteria. These criteria are often expressed in properties like edge complexity, number of edge crossings, angular resolutions, shapes of faces or graph symmetries and in general aim at creating a drawing of a graph that conveys the information to the reader in the best possible way. Graph drawing has applications in a wide variety of areas which include cartography, VLSI design and information visualization. In this thesis we consider several graph drawing problems. The first problem we address is rectilinear cartogram construction. A cartogram, also known as value-by-area map, is a technique used by cartographers to visualize statistical data over a set of geographical regions like countries, states or counties. The regions of a cartogram are deformed such that the area of a region corresponds to a particular geographic variable. The shapes of the regions depend on the type of cartogram. We consider rectilinear cartograms of constant complexity, that is cartograms where each region is a rectilinear polygon with a constant number of vertices. Whether a cartogram is good is determined by how closely the cartogram resembles the original map and how precisely the area of its regions describe the associated values. The cartographic error is defined for each region as jAc¡Asj=As, where Ac is the area of the region in the cartogram and As is the specified area of that region, given by the geographic variable to be shown. In this thesis we consider the construction of rectilinear cartograms that have correct adjacencies of the regions and zero cartographic error. We show that any plane triangulated graph admits a rectilinear cartogram where every region has at most 40 vertices which can be constructed in O(nlogn) time. We also present experimental results that show that in practice the algorithm works significantly better than suggested by the complexity bounds. In our experiments on real-world data we were always able to construct a cartogram where the average number of vertices per region does not exceed five. Since a rectangle has four vertices, this means that most of the regions of our rectilinear car tograms are in fact rectangles. Moreover, the maximum number vertices of each region in these cartograms never exceeded ten. The second problem we address in this thesis concerns cased drawings of graphs. The vertices of a drawing are commonly marked with a disk, but differentiating between vertices and edge crossings in a dense graph can still be difficult. Edge casing is a wellknown method—used, for example, in electrical drawings, when depicting knots, and, more generally, in information visualization—to alleviate this problem and to improve the readability of a drawing. A cased drawing orders the edges of each crossing and interrupts the lower edge in an appropriate neighborhood of the crossing. One can also envision that every edge is encased in a strip of the background color and that the casing of the upper edge covers the lower edge at the crossing. If there are no application-specific restrictions that dictate the order of the edges at each crossing, then we can in principle choose freely how to arrange them. However, certain orders will lead to a more readable drawing than others. In this thesis we formulate aesthetic criteria for a cased drawing as optimization problems and solve these problems. For most of the problems we present either a polynomial time algorithm or demonstrate that the problem is NP-hard. Finally we consider a combinatorial question in computational topology concerning three types of objects: closed curves in the plane, surfaces immersed in the plane, and surfaces embedded in space. In particular, we study casings of closed curves in the plane to decide whether these curves can be embedded as the boundaries of certain special surfaces. We show that it is NP-complete to determine whether an immersed disk is the projection of a surface embedded in space, or whether a curve is the boundary of an immersed surface in the plane that is not constrained to be a disk. However, when a casing is supplied with a self-intersecting curve, describing which component of the curve lies above and which below at each crossing, we can determine in time linear in the number of crossings whether the cased curve forms the projected boundary of a surface in space. As a related result, we show that an immersed surface with a single boundary curve that crosses itself n times has at most 2n=2 combinatorially distinct spatial embeddings and we discuss the existence of fixed-parameter tractable algorithms for related problems

    A combinatorial approach to orthogonal placement problems

    Get PDF
    liegt nicht vor!Wir betrachten zwei Familien von NP-schwierigen orthogonalen Platzierungsproblemen aus dem Bereich der Informationsvisualisierung von einem theoretischen und praktischen Standpunkt aus. Diese Arbeit enthält ein gemeinsames kombinatorisches Gerüst für Kompaktierungsprobleme aus dem Bereich des orthogonalen Graphenzeichnens und Beschriftungsprobleme von Punktmengen aus dem Gebiet der Computer-Kartografie. Bei den Kompaktierungsproblemen geht es darum, eine gegebene dimensionslose Beschreibung der orthogonalen Form eines Graphen in eine orthogonale Gitterzeichnung mit kurzen Kanten und geringem Flächenverbrauch zu transformieren. Die Beschriftungsprobleme haben zur Aufgabe, eine gegebene Menge von rechteckigen Labels so zu platzieren, dass eine lesbare Karte entsteht. In einer klassischen Anwendung repräsentieren die Punkte beispielsweise Städte einer Landkarte, und die Labels enthalten die Namen der Städte. Wir präsentieren neue kombinatorische Formulierungen für diese Probleme und verwenden dabei eine pfad- und kreisbasierte graphentheoretische Eigenschaft in einem zugehörigen problemspezifschen Paar von Constraint-Graphen. Die Umformulierung ermöglicht es uns, exakte Algorithmen für die Originalprobleme zu entwickeln. Umfassende experimentelle Studien mit Benchmark-Instanzen aus der Praxis zeigen, dass unsere Algorithmen, die auf linearer Programmierung beruhen, in der Lage sind, große Instanzen der Platzierungsprobleme beweisbar optimal und in kurzer Rechenzeit zu lösen. Ferner kombinieren wir die Formulierungen für Kompaktierungs- und Beschriftungsprobleme und präsentieren einen exakten algorithmischen Ansatz für ein Graphbeschriftungsproblem. Oftmals sind unsere neuen Algorithmen die ersten exakten Algorithmen für die jeweilige Problemvariante

    A combinatorial approach to orthogonal placement problems

    Get PDF
    liegt nicht vor!Wir betrachten zwei Familien von NP-schwierigen orthogonalen Platzierungsproblemen aus dem Bereich der Informationsvisualisierung von einem theoretischen und praktischen Standpunkt aus. Diese Arbeit enthält ein gemeinsames kombinatorisches Gerüst für Kompaktierungsprobleme aus dem Bereich des orthogonalen Graphenzeichnens und Beschriftungsprobleme von Punktmengen aus dem Gebiet der Computer-Kartografie. Bei den Kompaktierungsproblemen geht es darum, eine gegebene dimensionslose Beschreibung der orthogonalen Form eines Graphen in eine orthogonale Gitterzeichnung mit kurzen Kanten und geringem Flächenverbrauch zu transformieren. Die Beschriftungsprobleme haben zur Aufgabe, eine gegebene Menge von rechteckigen Labels so zu platzieren, dass eine lesbare Karte entsteht. In einer klassischen Anwendung repräsentieren die Punkte beispielsweise Städte einer Landkarte, und die Labels enthalten die Namen der Städte. Wir präsentieren neue kombinatorische Formulierungen für diese Probleme und verwenden dabei eine pfad- und kreisbasierte graphentheoretische Eigenschaft in einem zugehörigen problemspezifschen Paar von Constraint-Graphen. Die Umformulierung ermöglicht es uns, exakte Algorithmen für die Originalprobleme zu entwickeln. Umfassende experimentelle Studien mit Benchmark-Instanzen aus der Praxis zeigen, dass unsere Algorithmen, die auf linearer Programmierung beruhen, in der Lage sind, große Instanzen der Platzierungsprobleme beweisbar optimal und in kurzer Rechenzeit zu lösen. Ferner kombinieren wir die Formulierungen für Kompaktierungs- und Beschriftungsprobleme und präsentieren einen exakten algorithmischen Ansatz für ein Graphbeschriftungsproblem. Oftmals sind unsere neuen Algorithmen die ersten exakten Algorithmen für die jeweilige Problemvariante
    • …
    corecore