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Abstract

Kōlams are a ritual art form found in India, most commonly in the southern state

of Tamil Nadu. Comprised of different interlocking knots, these women-drawn designs

are placed on the entrances to people’s home to showcase the household’s emotional

state and ask the earth goddess Bhudevi for forgiveness. More aesthetically pleasing

kōlams are considered latshanam, where the design permeates beauty; monolinearity

is one such aspect that implements latshanam. Using graph theory, we examine

one style of these drawings, the labyrinthine variety, to identify if a given kōlam is

monolinear and how to construct monolinear kōlams.
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4.3.3 Two kōlams with cyclic blocks on top of their inverse medial graphs. 55

4.3.4 A cut vertex v shared between two blocks A1 and A2. . . . . . . . . 57

4.3.5 SK(7, {(1, 2)Y , (1, 4)Y }), its blocks, and the inverse medial graph. . . 59

4.4.1 A block and its inverse medial graph. . . . . . . . . . . . . . . . . . 60

4.4.2 A block and its inverse medial graph after adding new path. . . . . . 60

4.4.3 Two internal pulli paths and their effects on number of straight Eu-

lerian cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.4 Effects of internal pulli path that connects two vertices in the same

knot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.5 Inserting barriers in a block and its effects. . . . . . . . . . . . . . . 64

4.4.6 Making a block D monolinear in one variation. . . . . . . . . . . . . 68

4.4.7 Making a block D monolinear in a second variation. . . . . . . . . . 69

4.4.8 The algorithm on a block requiring symmetry. . . . . . . . . . . . . 70

vii



1

Chapter 1

Introduction

The subject of mathematics is widely considered to be the antithesis of the fine

arts, specifically visual arts. Math is seen as a rigid field where only one answer is

allowed, but in art, the possibilities are limitless. Despite this uninformed opinion,

mathematics and art are more intrinsically alike than most people give credit. Upper

level mathematics is more flexible than many perceive, allowing for variety in finding

solutions. Furthermore, math can be used to analyze art, identifying designs and how

they interact with each other. The mathematical field of graph theory can be used

to draw the connections between these seemingly unrelated topics.

In the southernmost state of India of Tamil Nadu, kōlams are a ritual art work

performed by women and hijra, a third gender in Tamil society. Composed of in-

tertwining lines and dot matrices, these designs hold strong spiritual power within

Hinduism. One such design is found in Figure 1.0.1. These kōlams have innate al-

gorithms and are explored in the field of computer science, yet their mathematical

nature does not end in the modern research topic of computer science. Just as graph

theory is sometimes understood as a visual math field, kōlams are artistic and phys-

ical mathematics. Furthermore, kōlams can be viewed as a cultural interpretation of

graph theory.
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Figure 1.0.1: Lotus and conch in reef knot [16].

To support this claim, we first discuss kōlams in depth, including their origins,

purposes, and creation in Chapter 2. We conclude Chapter 2 by comparing kōlams to

related art forms and examining completed research on these other designs. With the

cultural relevance of kōlams, in Chapter 3 we discuss topological graph theoretic terms

and concepts that will aid us when considering these Southern Indian drawings. We

merge the above topics in Chapter 4, drawing the connections between graph theory

and the kōlam tradition.
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Chapter 2

Cultural Context

If someone asked whether mathematics and art were similar, most people would

answer no. On a base level, most mathematics courses leading up to upper-level

theory deal with a systematic way of solving a problem. In calculus, we use derivatives

over and over again; algebra uses the same methods when solving for x; and even high

school geometry has a large disconnect from art. Most people view them as opposites

of thinking. Math is rigid, whereas art is fluid. In art, there is no one solution,

while math only has a limited number of correct answers. However, as math courses

advance in difficulty, the notion that the field is rigid seems to be incorrect. Artists

and mathematicians must be adaptable in their thinking, open to criticisms and

change as new thoughts and ideas are introduced.

One of the easiest examples to connect the realms of mathematics and art is the

kōlam, an art form from the Indian subcontinent that is heavily dependent upon algo-

rithms. In this chapter, we introduce these culturally-rich drawings, as well as their

mysterious origins, the historical and modern uses, and highlight similar drawings

from all across the globe, ranging from Ireland to Vanuatu in the South Pacific. Feed-

ing a Thousand Souls by Nagarajan [14] and Sengupta’s Kōlam Tradition in South

India [16] are the primary sources for the background on kōlams in this work.
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2.1 Kōlam and Its Murky Origins

For roughly 600 years, women from the Southern Indian region of Tamil Nadu have

woken up before dawn to prepare their vāsil pati, the area in front of their houses, so

as to “feed a thousand souls,” an important aspect of daily Hindu life. After sweeping

the entrances to their homes before the sun rises, women prepare rice flour or stone

powder and create elegant drawings on the fresh canvas. These drawings, called

kōlam in Tamil and other names in various Indian languages and dialects, signify the

artist’s desires. Some of these various forms include rangol̄i from Gujarat, muggulu

in Andhra Pradesh and Karnataku, and more across various states in Southern India

[16], seen in Figure 2.1.1. Kōlam, as Vijaya Nagarajan [14] mentions, are made mostly,

though not exclusively, by Hindu women in the Tamil Nadu region as a reminder of

the goddess Bhūdevi; “[W]e do everything on [Bhūdevi]...[she has] endless patience.”

Many women view kōlam as delicately as they can, since proficiency in making the

pictures is associated with a strong sense of womanliness and ability as a proprietor

of the household. The art of drawing kōlam is highly stratified by gender; men are

quick to dismiss the sheer amount of knowledge and talent that goes into creating

them. Even hijra, who identify as neither men nor women, have participated in this

long-standing tradition.

Although kōlam are very traditional, the exact beginnings of this art is hard

to pinpoint and sources tend to disagree on the origin of this form. The Tamil

word kōlam means many things, including beauty, form, and play, so sources tend to

argue on when exactly the paintings became a commonality across Southern India.

Although sources say that kōlam are referenced as early as 300 BCE, many, if not

most, agree that roughly 600 years ago is a more conducive starting point, including

both researchers Sengupti [16] and Nagarajan [14]. However, the story of one Hindu

saint from the 9th century CE, Āntal, greatly mirrors the reasons behind making

kōlam.
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Figure 2.1.1: Map of the states of India, Tamil Nadu in dark pink, other states with
kōlam equivalents in light pink [1].

As the only female saint of the twelve Vaishnavite saints of medieval Tamil Nadu,

Āntal is often recognized for her two song-poems, the Tiruppāvai and Nācciyār Tiru-

moli. However, her connection with Vishnu is why she is considered a “key [leitmotif]

in women’s stories on the origins of the kōlam” [14]. As the adopted daughter of a

saint, Āntal was tasked with gathering tulasi and flowers every day, with the goal of

creating sacred garlands to offer to Vishnu. Even though offerings were for Vishnu

and meant to stay away from people to keep pure, she could not resist her admiration

with Vishnu. When each garland was complete at the time of offering ceremony, Āntal

let her imagination run wild as she imagined she was Vishnu’s bride. She did this very

often, and her father caught her in the act one day, reprimanding her and withhold-

ing the polluted garland from the offering. When Vishnu confronted Āntal’s father,

Vishnu said that he preferred the flowers Āntal used. After he heard this, Āntal’s

father began to realize that his daughter was chosen by Vishnu and was therefore an

incarnation of Vishnu’s wife. For more details regarding Āntal’s upbringing and her
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journey to being a Vaishnavite saint, refer to Chapter 5 of Feeding a Thousand Souls

[14].

Āntal’s deep love and dedication to Vishnu is seen in the second of her aforemen-

tioned song-poems, Nācciyār Tirumoli. In fact, she even references kōlams, using the

Sanskrit word mandala. This is one of the main reasons for attributing kōlams to

Āntal. However, Nagarajan provides a more thorough comparison between the two.

The art form and Āntal’s story both provide elements asking for forgiveness from the

gods. In kōlams, artists ask for Bhūdevi’s forgiveness, but Āntal asked Vishnu for

forgiveness. Additionally, the sacred month of Mārkali is the most auspicious time

of the year for honoring both; early morning is also the most important time for rec-

ognizing both Bhūdevi and Vishnu. In reciting Āntal’s poems and drawing kōlams,

the person starts a conversation with divinity at the beginning of the day, making

passersby aware of the grace of gods and goddesses. Although the origins of kōlam

may not be set in stone, Āntal is one possibility of why kōlams are so wide-spread

across Tamil Nadu.

Kōlams, despite their murky origins, are intrinsic to culture in Tamil Nadu. A

modern retelling of Antal’s dedication to Vishnu, the art of Tamil women asks for

forgiveness to Bhūdevi while simultaneously fulfilling the aforementioned daily Hindu

duty of “feeding a thousand souls.” With that goal in mind, there are different

occasions when a woman draws kōlams outside of the daily activity. Furthermore,

the communal nature of the art form leads to a pseudo hierarchy, where certain

qualities are emphasized over others.

2.2 Special Occasions and Latshanam

Just as the motives behind drawing kōlam are tied to the story of the Hindu priest, so

is its usage tied to Hinduism. As noted previously, one of the daily rituals of Hinduism
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is “feeding a thousand souls.” This phrase is why the drawings are typically made

out of rice flour, allowing the insects to eat it, feeding souls in the process. In Feeding

a Thousand Souls [14], Nagarajan mentions that the exact amount of beings fed is

not of importance, but rather that the artist is nourishing those beings with the daily

pictures, blessing all who walk over them.

Because kōlam-drawing is a ritual, Nagarajan notes that Tamil women, especially

those who practice Hinduism, fulfill their social obligation daily [14]. However, just as

with almost – if not, all – religions, special holidays warrant extravagance. Nagarajan

mentions that Christian women who accept the mysticism of kōlams will create elegant

designs on Christmas. However, for Hindu women, Christmas is not the reason many

extravagant kōlams are made during December and January.

The Tamil month of Margazhi, lasting from mid-December until mid-January, is

the most favorable month to create kōlam. According to Hindu beliefs, the gods

and goddesses roam the earth right before dusk and disappear after dawn during

this month. Thus, Nagarajan notes that an observer is likely to see kōlams drawn

at both dawn and dusk for this reason [14]. Furthermore, Āntal, a key figure to

Tamil women and kōlam-drawing, is celebrated during Margazhi. Of her two song-

poems mentioned in Section 2.1, the first, titled Tiruppāvai (translated into English

as “Turn Around”), commemorates this month with 30 verses, one for each day of the

month. While creating their art, women will recite a verse for the day from this vow

song, remembering Āntal and imbuing a stronger auspicious energy into the kōlam.

Tamil women both in the state and elsewhere continue the tradition with the goal of

creating a “shining” kōlam, both during the propitious month and not. The festival

of Pongal, which occurs during the transition between Margazhi and the next Tamil

month Thai, is when most kōlams are drawn. During this celebration people hold

kōlam competitions to gauge who the best is – or rather – whose design is the most

latshanam.
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Latshanam, a romanization of the Tamil word for shining, is a key characteristic

of ideal kōlams. If someone says that a drawing has latshanam, they mean that

the inner beauty of the figure permeates the entire drawing. Even if a kōlam doesn’t

shine, the drawing still highlights characteristics of the artist. As a design increases in

complexity and detail, observers view its creator as patient with the ability to create

beauty around them. Sengupta mentions that skilled women can even create kōlam

with well over 100 pulli, the Tamil word for dots [16]. These two ideas reflect the

woman’s traditional core, since patience and creative ability are seen as necessary to

run a household. Aside from encompassing as many pulli as possible, another signifier

of latshanam is monolinearity, when the kōlam is drawn in only one line. Though

there are many examples that are not, monolinearity shows a woman’s intelligence

and dedication [14].

In the hopes of creating latshanam kōlams, women not only practice their drawing

abilities but also compare their notes with others. Nagarajan writes that finding shin-

ing pictures is trial and error, evident in notebooks used for experimenting designs.

Since they are shared so frequently, kōlams are not known by author but instead by

their design. For example, the shield knot kōlams seen in Figure 2.2.1 are not known

by their original creator(s) but instead by the design referencing a shield. Another

prominent design is called Brahma’s knot, seen in Figure 2.2.2. Well-known, and

even not well-known, designs drawn by creative women lead to variations on them,

providing new and interesting figures to inspect and educate.

Figure 2.2.1: Different levels of the shield knot, starting with the Nezhi kōlam [16].
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Figure 2.2.2: Brahma’s knot [10]

As with all art forms, there is not one be-all-end-all design to follow, even when

looking at them. Sengupta broadly categorizes kōlams into kodu and pulli. Figure

2.2.3 shows the two different categories. The former of the two groups, kodu, features

“geometric design...[using] straight lines often leaving a central area free except for

a single dot or with no dot at all” [16]. Pulli kōlam, on the other hand, feature nu-

merous dots throughout the design, circumscribed by curving lines. Naturally, these

two broad categories lead into smaller and more precise categories, which Sengupta

discusses in Chapter 3 of Kōlam Tradition in South India [16]. Of the subcategories,

variations include concentric squares, interlocking triangles, circles, and even figu-

rative designs [14]. The one type discussed in this paper is the labyrinthine pulli

kōlam, which is comprised of a square of pulli spaced roughly ten centimeters apart,

configured in a maze-like shape to indicate transformation, either for those entering

the house or those leaving it [16]. The type of kōlams this research focuses on is pulli

kōlam, and the remainder of this work will only consider drawings of that style. Thus,

“kōlam” will refer only to this style.

Both Nagarajan and Sengupta provide more nuances of kōlam design in their

respective works, [14] and [16]. However, as with learning an instrument, thoughtful

kōlam-making comes with time and practice. The next question then is how kōlams

are created.
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(a) Example of kodu kōlam [16].

(b) Example of pulli kōlam [16].

Figure 2.2.3: Variations in kodu and pulli kōlams.

2.3 Creating a Pulli Kōlam

Before dawn, women begin their kōlam-crafting of the day. Some women opt to draw

another kōlam at sunset, and this routine is the same. Their canvas, the threshold to

the home, needs to be cleaned, regardless of the time of drawing. The artist cleans

this area and possibly pours water on the region. This optional preparation step

allows the kōlams to last longer. After the entire canvas is prepared, the artist is

ready to prepare the drawing instrument: not a paintbrush nor a pencil, but powder.

Although rice flour is most commonly used, stone powder, a cheaper alternative to

the relatively expensive flour, also provides the same results. After both the canvas

and the powder or flour are ready, the artist can begin their work for the day.

Beginning by creating a large array of dots, the woman draws a number of pulli in

columns and rows spaced evenly apart. This matrix of points on the ground mark the

location of the kōlam. Figure 2.3.1a shows the pulli all spaced roughly ten centimeters

apart, which follows the standard. Depending upon the artist and the desired kōlam,
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the dots will either be circumscribed or connected. For pulli kōlam, the artist draws

the lines to weave around the points on the ground. Figure 2.3.1b shows the start of

this process. Memorizing a pattern from her notebook, the woman copies her design,

ensuring that each line she creates begins and ends at the same point, forming closed

curves. Once one line is completed, should the design warrant multiple lines, the

remaining lines are made one at a time with the goal to finalize the designer’s vision

and match their memory. Although the word “line” is used, in a kōlam’s design these

lines act similarly to sona, as Chavey [6] shared. To summarize Chavey and apply

it to the Indian art form, the pulli drawn identify natural boundaries for the kōlam

to exist. The lines of the art use these boundaries, smoothly curving as the line

approaches them. Figure 2.3.1c shows the details of a finalized kōlam with 100, 000

pulli.

(a) Details of pulli arrangement [14]. (b) The beginnings of a kōlam [16].

(c) Details of a kōlam with 100, 000 pulli
[14].

Figure 2.3.1: Steps of kōlam-making.

As she draws the kōlam, the artist follows a few conventions. Adapting this

list from Ishimoto [12] and Gopalan [10], and using the social criteria provided by



2.3. Creating a Pulli Kōlam 12

Nagarajan [14] and Sengupta [16], there are rules guiding the kōlam’s composition.

The rules are as follows:

Rule 2.3.1 (Kōlam Crafting Rules – Adapted from [12] and [10].).

1. All pulli should be circumscribed.

2. Every pulli must be isolated from another. One pulli is allowed in each empty

space between lines.

3. Each line in the kōlam must be closed.

4. Only one circumscription of a line is allowed to encompass each pulli. We cannot

circle around a pulli multiple times.

5. Each line circumscribing a dot should do so via a teardrop, a lens, a partial

stadium, a fan, or a square.

6. The kōlam should retain some form of symmetry, either through a reflection or

a rotation.

In our to come to a more sound understanding of each rule, there is further

elaboration on each, even those that are easier to understand. To satisfy the fifth of

these rules, various shapes must circumscribe the pulli. Elaborating on the shapes

used to circumscribe, some are easier to recognize, but each of the five shapes have

importance in the overall design of the kōlam. A teardrop, a lanceolate with one

pointed end seen in Figure 2.3.2a, is the shape that loops around the cardinal pulli in

the drawing. The direction of the teardrop is indicated by the direction the point of

the teardrop is facing. A lens is a two-sided circular shape, similar to the intersection

in a Venn diagram as in Figure 2.3.2b. A stadium is a rectangle with two semi-circles

attached on opposite ends, as seen in Figure 2.3.2c, and we consider the partial

stadium as a rectangle with one semi-circle on an end, depicted in Figure 2.3.2d. A
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fan, also known as a sector of a circle and found in Figure 2.3.2e, is a three-sided

shape where two straight sides are of equal length and the remaining side is the arc of

a circle connecting the two. Diamonds have sides of equal length and are rotated so

that the corners face the cardinal directions. Figure 2.3.2 shows what each of these

shapes look like isolated, in the orientation they might appear in the kōlam. In short,

once all pulli are circumscribed sufficiently as desired, the drawing is done. To help

understand what is occurring, pulli will always be colored red.

(a) A down-facing teardrop. (b) A (horizontal) lens.
(c) A full stadium with a
pulli inside.

(d) A partial stadium. (e) A downward-facing fan. (f) A diamond.

Figure 2.3.2: Six shapes used to circumscribe pulli.

With the kōlam finished, its spiritual abilities start, and the task of feeding of a

thousand souls commences. The drawings bless those who walk over them, wiping

away the figures throughout the day. All that interact with the figure, human or not,

are blessed from the gods as they passively act in the ritual. Nagarajan mentions

that around noontime the flour designs are faded away from passersby. When the

sun is setting, women start this whole process over again. They sweep the thresholds,

gather their flour or powder, and draw a kōlam for the nighttime [14]. In completing

this ritual daily, women keep their karma in balance.

Kōlam-crafting is intention; each movement the artist makes is highly calculated

and highly meaningful. In Tamil culture, kōlams express the mental state of the artist.

The artist shows birth, marriage, and various stages of life. Furthermore, the absence

of a kōlam indicates a somber event such as death has occurred in the household.

These figures show just a fraction of the culture of Tamil Nadu, hopefully providing
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a sense of what happens in the background of kōlams, the religious intention, the

mental state of the artist, and even the state of all members of the household. As

we travel outside of Tamil Nadu, we see similar figures, stretching around the globe

from Celtic cultures to African ones and even different peoples in the South Pacific.

Figure 2.3.3: Map of world with different kōlam-related designs in pink. 1: Celtic
knots, 2: Sona, 3: Nitus, unlabelled: Kōlams.

2.4 Cross-Cultural Encounters

Kōlams, in their exact form, are unique to Southern India, but similar figures exist

elsewhere. See Figure 2.3.3 to see four regions where kōlams and similar art forms can

be found. These comparable art forms, especially those that have been examined in

more depth than kōlam, aid in the analysis of the Southern Indian figures. One similar

form of drawing is that of Celtic knots. The Celtic “interlaced patterns,” as Sengupta

shares, have origins in the Roman Empire during the third and fourth centuries, and

interlaces are even seen within Byzantine architecture, Medieval illumination, Coptic,
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Ethiopian, and Islamic art [16]. Despite possessing a written history that survived

time, Celtic knots differ from kōlams in two key ways. Firstly, they lack pulli or any

equivalent dots in the empty spaces. Next, the Celtic knots are drawn on rectangular

grids [11]. In application, Celtic knots are used for protection just as kōlams are.

Figure 2.4.1 shows two different variations of Celtic knots.

(a) Celtic knot [11]. (b) A rectangular Celtic knot [8].

Figure 2.4.1: Two Celtic knot variants.

Celtic knots are not the only art form using these interlocking twists, nor is pro-

tection the only use for these art forms. Located in Central Africa, the Tchokwe

people also draw weaving lines in a similar fashion called sona. Compared to both

Celtic knots and kōlam, sona contain elements to both art forms. Specifically, the

men-drawn, story-telling sona use a matrix of dots, much like the Tamil art [3]. How-

ever, instead of having a scalable size, the drawn matrix does not need to be a specific

shape. Furthermore, circumscribing dots is not a requirement, as the dots become

either “interior” or “exterior” to the lines drawn, aiding in storytelling. Figure 2.4.2

shows the variety in the Tchowke designs.

Storytelling is not the only boon provided of these similarly-drawn figures. Travel-

ling to the South Pacific to Malekula, an island in Vanuatu, nitus can be seen. Nitus,

the sand drawings found here, are used in death ceremonies, granting the deceased

passage into the Land of the Dead [2]. A hi, a turtle nitu, can be seen in Figure 2.4.3.

The Vanuatu variants of these drawings are similar to the sona, despite needing sym-

metry like kōlam. Dots are not used for all figures, and those nitus that have dots are
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Figure 2.4.2: Many sona examples [15].

treated the same as in sona, either outside or inside the drawn lines, each conveying

an underlying message.

Whether they ask for forgiveness, provide protection, tell a story, or send on the

deceased, kōlam and the similar art forms are seen through many cultures, many

of whom seem entirely unconnected otherwise. Despite this, similar mindsets are

used when crafting. No matter who the specific creator was, each person had to

consider how one small choice would affect the whole figure. Algorithms and inventive

mathematical thinking give way to these unique drawings.
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Figure 2.4.3: Nitu example, showcasing direction when drawing [17].

2.5 Mathematical Research on Kōlam and Similar

Art

Since kōlams, as well as sona and nitus, have entered the global eye only recently, very

little research has emerged on the mathematical complexities of these line drawings.

That being said, ethnomathematician Marcia Ascher has formed a foundation for the

mathematics behind kōlam. In Mathematics Elsewhere [4], Marcia Ascher describes

some of the algorithmic processes in creating some kōlam, using string language. In

denoting which direction the line goes and the angle the line curves, she gave an

understanding of how repeated patterns in the Southern Indian art can be described

without words. Additionally, her findings gives a way to interpret how a kōlam with

a repeated pattern can be made if said pattern is repeated any number of times.

Outside of the ethnomathematic perspective, kōlam are highly intriguing to com-
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puter scientists. Yukitaka Ishimoto viewed kōlam under the pretext of knot theory,

interpreting kōlam forms given a diamond-shaped grid, and generalizing them to

their idea of an “Infinite kōlam” [12]. His goal was to find the number of pulli kōlam,

given a certain amount of dots in a configuration. Additionally, creating kōlam has

been the goal of computer scientists and mathematicians alike. Using topology to

create kōlam of any size, Venkatraman Gopalan and Brian VanLeeuwen proposed a

five-step approach to systematically draw a kōlam with N dots in any configuration

[10]. Though there is research in the Tamil designs, their Celtic counterparts have

been studied more. Gross and Tucker [11] viewed the Celtic drawings from a knot

theory perspective, finding a correspondence between Celtic knots and alternating

links. Connor and Ward [7] used Celtic knots to showcase how knot theory works.

The investigations of these varieties of design do not end here, however. Using sona,

Chavey [6] gives an understanding of how various forms of mathematical induction

work. The kōlams of Tamil Nadu provide just as much relevance to the mathematical

community as its related art forms.

The history of kōlam is rich, full of mystery and religion. Though its origins

remain partially unknown, Tamil women show that their ritual art connects many

seemingly unrelated fields. Art, religion, mathematics, and other fields unite in the

kōlams of each and every woman that draws one; all of the subjects are intrinsic to

the drawings. In the next chapter, we introduce graph theoretic concepts that we will

in turn apply to kōlam, showing that these figures are inherently mathematical.
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Chapter 3

Graph Theory Terminology

To aid our search of determining when kōlams are monolinear, we utilize graph theory.

In this chapter, we discuss the graph theoretic concepts we need for our analysis. After

identifying core ideas, we shift into topological graph theory to gain the depth and

connections necessary for our work.

3.1 Basic Terminology

We begin our terminology overview with the elements that comprise a graph: vertices

and edges.

Definition 3.1.1. A graph G is an ordered pair (V (G), E(G)) comprised of two

sets, the vertex set and edge set. The vertex set V (G) = {v0, v1, . . . , vn} is the set

of all vertices of G. The edge set of G, E(G) = {(vi, vj) | vi, vj ∈ V (G)}, is the

set consisting of the unordered pairs of vertices such that there is an edge between

vertices vi and vj.

Graphs highlight how items, often depicted as vertices, are related. These rela-

tionships are seen as the edges connected vertices. For any graph, there is no limit

to the number of vertices or edges. However, in our work we assume that all graphs
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will contain a finite amount of both vertices and edges. Additionally, we allow mul-

tiple edges between vertices and loops, edges that start and end at the same vertex.

Furthermore, we can traverse these graphs, showing further relationships between

vertices. One such traversal is by paths, which we go on to define.

Definition 3.1.2. A list of vertices, u = w1, . . . , wk = v, of a graph G is a u, v-walk.

When u = v, the walk is considered closed. If each vertex is distinct in a walk, the

walk is instead called a u, v-path If a path’s endpoints are the same, then the path

called a cycle.

a

b

c

d

e

f

g

h

Figure 3.1.1: An example of a graph, G.

Figure 3.1.1 gives us an example of graph that contains many cycles and paths.

In fact, the walk c, a, e, f, d, c is a cycle, and c, g, f, e, b, a is a path in this cycle in the

given graph G. Paths and cycles are integral parts of graphs that help identify innate

connections between vertices. Next, we discuss degree.

Definition 3.1.3. The number of edges incident to a vertex v ∈ G is the degree of

v, written as d(v). If all vertices have degree k, then the graph is k-regular.

Identifying degrees in a graph G can help us learn more about G itself. From

Figure 3.1.1, we can see the degrees of each vertex of the graph. Thus, d(c) = 6,

d(b) = d(e) = 4, d(a) = d(f) = 3, and d(g) = d(h) = d(i) = 2. Figure 3.1.2 shows

two examples of variations in 2-regular graphs. In the examples provided, we see the

next topic of discussion, what it means for a graph to be connected.
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a

b

c

d

e
f

(a) A disconnected 2-regular graph. (b) A connected 2-regular graph.

Figure 3.1.2: Variations in 2-regular graphs.

Definition 3.1.4. For a graph G, if there exists a path between any two vertices

u, v ∈ v(G), then G is a connected graph. On the other hand, if there exists a u, v ∈

V (G) such that there is no path between the two, then G is called disconnected. If

a graph is connected and contains no cycles, then the graph is a tree.

As mentioned in Figures 3.1.2a and 3.1.2b, we see some differences in disconnected

and connected graphs. Disconnected graphs will always be comprised of disconnected

subgraphs called components, and connected graphs will always contain a single com-

ponent. Additionally, Figure 3.1.4 showcases a tree. We next pose the question of

how to disconnect a connected graph. We start by finding subgraphs.

Definition 3.1.5. If a graph H has vertices v0, v1, ..., vk and edges e0, e1, ..., em that

all belong to a graph G, then H is a subgraph of G, and H ∈ G.

Figures 3.1.3a and 3.1.3b depict a graph and one possible subgraph. Vertices of

a subgraph do not need to have all the edges present in the base graph nor do all

vertices of a graph need to be present in the subgraph. As we can see in Figure 3.1.3,

five vertices of G are not present in H. Additionally, two edges, namely ef and jk

do not exist in H either. Should those two edges be in the subgraph, H would have

been considered an induced subgraph. We more formally define induced subgraphs.

Definition 3.1.6. Let G and H be graphs such that H is a subgraph of G. H is an

induced subgraph if and only if all edges in E(H) also exist in E(G).
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a

b c

de

f

g

h i

j k

(a) Graph G.

e

f

g

h

j k

(b) Subgraph H ⊂ G.

Figure 3.1.3: A graph and a subgraph.

Figure 3.1.4: A tree, T .

Definition 3.1.7. If the deletion of an edge e ∈ E(G) disconnects G, then e is a

cut-edge. Likewise, if the removal of a vertex v ∈ V (G) disconnects G, v is a cut-

vertex. If a maximally connected subgraph G has no cut-vertex, then G is considered

a block.

We can identify the cut-edges and cut-vertices from Figure 3.1.5a and even see

how their deletion affects the graph as a whole in Figures 3.1.5b and 3.1.5c. When

removing a cut edge, we only remove the edge. However, when we remove a cut-

vertex, we also eliminate all edges incident to said vertex. Every edge in a tree is a

cut-edge, and all vertices with degree 2 or larger in a tree are cut-vertices. We can

reexamine Figure 3.1.4 to help convince ourselves of this fact. The last topic we will
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mention before going into topological graph theory is the notion of subgraphs.

ev

(a) Graph G (b) G− e (c) G− v

Figure 3.1.5: Effects of cut vertices and cut edges in graphs.

Now that we have a general understanding of basic graph theory terms and ideas,

we shift our focus over to topological graph theory.

3.2 Topological Graph Theory

Thus far, we have only discussed graph theory in terms of general spaces. We can

place our graphs in any space, such as a 3-dimensional curved plane. An example

of a graph in such a plane is seen in Figure 3.2.1. Although we can place graphs in

higher dimensions, the graphs we will encounter will be placed in 2-dimensions for

simplicity’s sake. Figure 3.2.2 shows the same graph in a plane, oriented in 3 different

ways. Notice that in each of the four visualizations of the graph, the interactions

between vertices through edges remain the same. Vertex a is always has degree 3 and

is adjacent to vertices b, d, and e. Even if these visualizations all refer to the same

graph, we try to minimize the number of times edges overlap, which aids in legibility.

We aim to make our graphs planar, which we define.

Definition 3.2.1. A graph G that is drawn such that its edges only intersect at the

vertices is called a planar graph.
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y

z

x

Figure 3.2.1: A graph G, located on a curved 3-dimensional plane.

d

a

b c

f

e

(a) G in a 2-dimensional
setting.

d

a
b

c
f

e

(b) G in a different 2-
dimensional orientation.

d

a
b

c

f
e

(c) G in a planar construc-
tion.

Figure 3.2.2: Variations of G embedded in 2-dimensional settings.

Figure 3.2.2c shows a planar embedding of our aforementioned graph G. Pla-

nar graphs provide more insight about a specific graph, especially when regarding

relationships. Thus, we will only consider planar embeddings for graphs for the re-

mainder of this work. Thus no edges will cross over another in our constructions.

Beyond vertices and edges, planar graphs also result in faces, which we define next.

Definition 3.2.2. A region in a graph G that is bounded by a set of vertices and

edges is a face. We denote the set of all faces in G as F (G).

Figure 3.2.3 shows the faces of the graph, colored red, pink, and white. Note that
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d

a
b

c

f
e

1

2

3

Figure 3.2.3: Planar graph G with the three faces colored and numbered.

the exterior of the graph is also a face, extending as far as the graph’s placement will

allow. As alluded, one of the numerous things we can do with these faces is separate

them into groups by coloring them.

Definition 3.2.3. A k-face-coloring is a labeling φ : F (G) → T , where |T | = k. A

perfect k-face coloring occurs when no face of a color is next to another face with

the same color.

a

b
c

d

ef

g

(a) A 3-face coloring of a
graph G.

a

b
c

d

ef

g

(b) A 2-face coloring of G.

a

b
c

d

ef

g

(c) A 4-face coloring of G.

Figure 3.2.4: Graph G with various face colorings.

Figures 3.2.4 shows three alternative face colorings for a graph G. However,

when considering colorings, we typically want to find the minimum number of colors
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necessary for a perfect coloring. Figure 3.2.4b shows this minimum face color number

to be two. With all of this, let us instead shift our focus from graphs very briefly to

discuss knot theory, which will aid us later.

3.2.4 Knot Theory

We shift our focus from specific embeddings of graphs to the notion of knot theory.

Definition 3.2.5. A knot is a piecewise linear closed curve in R3. The collection of

one or more pairwise disjoint knots is known as a link.

Since showing three dimensions is difficult on paper, we often embed links and

knots in R2 in the form of a link diagram. In these link diagrams, we do not indicate

the direction of crossings, specifically the over and under directions. We can derive

graphs from the link diagram, which we call shadow graphs.

Definition 3.2.6. For a link L expressed as a link diagram, we can define the shadow

graph of L, SL, by its vertices and edges. A vertex v ∈ V (SL) is located where a

crossing in L is. An edge vivj ∈ E(SL) exists if and only if there is a curve connecting

two crossings vi, vj.

(a) An example of a link L. (b) L as a link diagram. (c) SL, the shadow graph of
L.

Figure 3.2.5: A link, link diagram, and its shadow graph.
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Figure 3.2.5 shows the relationship between a specific link, its link diagram L, and

its shadow graph SL. Since we will consider knots from a graph theory perspective,

our focus will be more on shadow graphs than links and link diagrams. As such, when

considering a shadow graph, if the link is understood from the context, we omit the

subscript, identifying the shadow graph as S. There are, of course, many interesting

features of shadow graphs. One such attribute is that any S is a 4-regular planar

graph, meaning that each shadow graph has a perfect 2-face coloring. Figure 3.2.6

showcases one such perfect 2-face coloring. However, this raises a new question: Are

there other ways to interpret this graph? Let’s explore one possibility using walks.

Figure 3.2.6: 2-face coloring of SL.

We use the idea of left-right walks, adapted from Godsil and Royle [9], which

are defined as follows. Replace each vertex with a disk of radius εv > 0 and redraw

each edge with width εe, with 0 < εe < εv, as seen in Figure 3.2.7a. In the middle

of each edge, we “pinch” the edge, forcing both sides to converge to a single point.

Figure 3.2.7b shows how the graph will look after this operation. We can “traverse”

the new graph by left-right walks, starting at one side of a disk-vertex, walking along

its boundary until an edge is reached, and then continuing the traversal along the

side of this edge. Upon arriving at the point in the center of the edge, we move

to the opposite side of the edge and continue the traversal until we reach the next

vertex. We then proceed to walk along the boundary of the disk-vertex until the side

of another edge is reached. This process is continued until we return to our starting

point, making a closed walk—one that alternates between the left and right sides of
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the traversed edges. We repeat this process until we have traversed over both sides of

each edge. As previously noted, this process of left-right walks can be performed on

any shadow graph S. For legibility in our drawings, we smooth the edges to appear

less jagged, resulting in Figure 3.2.7c.

e1

e4

e5 e6

e2 e3

v1 v2

v3

(a) Replacing vertices and edges step of left-
right walk process.

e1

e4

e5 e6

e2 e3

v1 v2

v3

(b) Pinching edges step of left-right walk
process.

e4

e5 e6

e1

e2 e3

(c) Tracing the graph in left-right walks.

Figure 3.2.7: The left-right walk process on shadow graph G.

Contrasting the process for walks, we find left-right walks specifically by writing

a list of vertices and edges. Using the “pinched” graph, we can find a walk in Figure

3.2.7b by writing a list of vertices and edges we traverse. We find that there are

three distinct left-right cycles in Figure 3.2.7b, namely v1, e1, v2, e4, v1, e5, v3, e2, v1;

v1, e1, v2, e3, v3, e6, v2, e4, v1; and v3, e5, v1, e2, v3, e3, v2, e6, v3. Note that the first two

of these cycles start with the same three elements. Despite this, these cycles use
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the two different sides of the edge e1, which control the second traversed edge in the

cycle. Instead of viewing this graph with its left-right walks, we can redefine the

graph, replacing the cross-over points with vertices. We call this graph the medial

graph, defined as follows.

Definition 3.2.7. Given a connected planar graph G, the medial graph, denoted

M(G), is defined as follows. Every edge in G corresponds to a vertex in M(G). For

each face in G, an edge e occurs between two vertices in M(G) if the corresponding

edges are incident.

(a) Graph G. (b) The medial graph M(G).

Figure 3.2.8: A graph and its medial graph.

Figure 3.2.8 shows a graph and its medial graph. At their core, medial graphs

exchange the roles of vertices, edges, and faces. Left-right walks help us identify these

new interactions. We discuss the implications of left-right walks on the medial graph

later in this section. Thus far, we have taken any planar graph and constructed

its medial graph, using left-right walks as the method. That being said, can we

“deconstruct” the medial graph into its original graph? Naturally, there is a way,

which is known as constructing the inverse medial graph, which we define below.

Definition 3.2.8. Given a 4-regular planar graph Γ, we define the inverse medial

graph of Γ, denoted IM(Γ), as follows. Select a face color C. Each C-colored face in



3.2. Topological Graph Theory 30

Γ corresponds to a vertex in IM(Γ), and there exists an edge between two vertices in

IM(Γ) if the corresponding faces in Γ share a vertex.

(a) 4-regular graph Γ, with perfect 2-face
coloring.

(b) The inverse medial graph IM(Γ) using
red faces.

Figure 3.2.9: A graph and one of its inverse medial graphs.

We see a graph and its inverse medial graph in Figure 3.2.9. Mirroring medial

graphs, inverse medial graphs also interchange the roles of vertices, edges, and faces

in a graph. Naturally, the interactions of the inverse medial graph counteract those of

the medial graph. Thus, unsurprisingly, the inverse medial graph of a medial graph

is the original graph, and the medial graph of an inverse medial graph is also the

original. In other words, one construction is the inverse of the other.

(a) A 4-regular graph G
with faces colored.

(b) IM(G)R based on red-
colored faces.

(c) IM(G)W based on the
white-colored faces.

Figure 3.2.10: Two different inverse medial graphs for a graph G.

One final note on inverse medial graphs is determining which face coloring to

consider. Since the initial graph is 2-face colorable, there are two possible inverse
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medial graphs that can result from this process. Because of this, we specify which

color is used to derive the inverse medial graph by including a subscript C, referring

to the face color C. Figure 3.2.10 shows the two variations on the inverse medial

graph of a 4-regular graph G. Note the statement in previous paragraph still holds:

regardless of which face color we choose in constructing the inverse medial graph from

G, applying the medial graph process to this graph will always result in returning to

this original graph, G—though possibly in different planar orientations.

(a) Inverse medial of G,
IM(G)R.

(b) A 4-regular graph G
with faces colored.

(c) The medial graph of G,
M(G).

Figure 3.2.11: IM(G), G, and M(G).

Consider the three graphs in Figure 3.2.11, which shows the inverse medial graph,

an original graph, and the medial graph. When traversing any of these three deriva-

tions of graphs seen in Figure 3.2.11, we have numerous options at each vertex to

create a walk. Our choice at each step, however, impact the overall walk. The goal of

traversing the graphs is to ensure we encounter each edge once. In order to traverse

the graphs in this manner, we travel these graphs using straight Eulerian cycles.

Definition 3.2.9. In a graph, if a cycle uses every edge of the graph at most once,

the cycle is called an Eulerian cycle. Should the cycle use each edge exactly once,

then we call the cycle an Eulerian tour. In an even-regular graph, Eulerian cycles

(tours) are considered straight if the cycle (tour) leaves a vertex by the opposite

edge from which it entered.

Straight Eulerian cycles are only applicable in even graphs, where we have a notion
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Figure 3.2.12: Figure 3.2.7c with straight Eulerian cycles denoted.

of an “opposite” edge, even if the orientation does not indicate edges are opposite

another. Using straight Eulerian cycles, we can easily travel through a shadow graph

(since it’s 4-regular) and identify the knots in its respective link. Additionally, should

a graph be traversable via a straight Eulerian tour—so it is comprised of just one

Eulerian cycle—we can topologically interpret the graph as a knot. Figure 3.2.12

denotes the graph from Figure 3.2.7c with its three straight Eulerian cycles. Recall,

in Figure 3.2.7b, we identified three separate left-right cycles and, unsurprisingly, the

three left-right cycles correspond to the three straight Eulerian cycles. From [9], we

have the following bijection:

Lemma 3.2.10 ([9]). Let G be a connected planar graph and let K be its medial

graph. Then there is a bijection between straight Eulerian cycles in K and left-right

cycles in G.

This lemma will be extremely useful in determining whether or not a kōlam is

monolinear, the overall goal of this research and one indicator of latshanam drawings.

In the next chapter, we utilize these graph theoretic ideas to interpret the ritual art

form mathematically.
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Chapter 4

Mathematical Kōlams

With our understanding of kōlam and graph theory, we now form the connection

between these two topics. First, we will rigorously define how to construct any kōlam.

In this process we clarify mathematical ways in which we can perceive the art. We then

define the idea of barriers and use them to identify variations among the drawings.

Finally, in the pursuit of culturally more significant drawings, we find a few ways in

which we can achieve two goals: identifying if a kōlam is monolinear and determining

ways to draw a monolinear kōlam.

4.1 Drawing a Kōlam

In Chapter 2, we discussed the Tamil perspective to drawing a kōlam, and although the

method to construct them may seem innate to most Tamil women, others may struggle

with the construction. In the hope of creating monolinear kōlam, we mathematically

show a way to draw some labyrinthine designs. Because of this, we start at the very

beginning, choosing where to place the pulli. For the remainder of this work, we

assume that n is an odd positive integer.

Definition 4.1.1. An n-pulli pattern is an arrangement of points in the Cartesian
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plane with coordinates (x, y), such that |x|+ |y| ≤ n− 1, for even integers x and y.

We can see an example of what this looks like in Figure 4.1.1 where n = 5. The

pulli will always be denoted in red. Looking closer at this pulli pattern, we notice that

the number of dots in both the rows and the columns follows the pattern 1, 3, 5, 3, 1,

forming in a diamond-like shape. In general, for any n-pulli pattern, the number of

pulli in both the rows and columns follow the pattern 1, 3, . . . , n− 2, n, n− 2, . . . , 3, 1

and, moreover, there are exactly n pulli in both the central row and central column

of the design. Thus, using basic counting techniques, we can count the total number

of pulli in any given pattern, which is n2+1
2

.

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Figure 4.1.1: An n = 5 pulli pattern over the Cartesian plane.

Once we have created a pulli pattern, we are free to begin making a kōlam. We

can draw any arbitrary kōlam, so long as we adhere to the Kōlam Crafting Rules

outlined in Rule 2.3.1. However, to understand the process of drawing, we start by

drawing what we refer to as a “dense” kōlam.

Rule 4.1.2 (Dense Kōlam Drawing). For n ≥ 3, to create a dense kōlam, we follow

these steps:
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1. Construct an n-pulli pattern according to Definition 4.1.1.

2. Place the drawing instrument at (0, n).

3. Draw from (0, n) to (0, n−2), tracing the left-half of a downward facing teardrop.

Then draw the line segment from (0, n− 2) to (n− 2, 0).

4. Draw the lower-half of a left-facing teardrop from (n− 2, 0) to (n, 0). Complete

the teardrop to (n− 2, 0).

5. Draw a line segment from (n − 2, 0) to (0,−(n − 2)). Create a right-facing

teardrop, curving up and left to (−n, 0) and down and right back to (−(n−2), 0).

6. Trace the line segment from (−(n− 2), 0) to (0, n− 2). Complete the curve by

connect to the starting point by drawing the right side of the downward facing

teardrop. Note the pulli at (n, 0), (0, n), (−n, 0), and (0, n) are circumscribed

by the teardrops.

7. Move the drawing instrument to the point
(
3
2
, n− 5

2

)
. Draw a semicircle of

radius
√
2
2

around (2, 2) to the point
(
5
2
, n− 7

2

)
. Draw the side of a stadium

from
(
5
2
, n− 7

2

)
to

(
−
(
n− 7

2

)
,−5

2

)
.

8. Draw a semicircle of radius
√
2
2
from

(
−
(
n− 7

2

)
,−5

2

)
to

(
−
(
n− 5

2

)
,−3

2

)
. Com-

plete the stadium by drawing from
(
−
(
n− 5

2

)
,−3

2

)
to

(
3
2
, n− 5

2

)
.

9. Repeat Steps 7 and 8, drawing a stadium starting at the points located at each(
2k − 1

2
, n− 2k + 1

2

)
, where 1 ≤ k ≤ n

2
, k ∈ Z. The last line drawn will start at

the point
(
n− 7

2
, 5
2

)
. When drawing each stadium, the edge on the lower right

side will start in Quadrant I and end in Quadrant III. Likewise, the other edge

travels the opposite direction.

10. Repeat steps 7–9 starting in the Quadrant II of the Cartesian plane, beginning

at the point
(
−3

2
, n− 5

2

)
. The last line drawn will start at the point

(
−7

2
, 5
2

)
, and
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all pulli should be circumscribed by the desired shapes mentioned in Rule 2.3.1.

Similar to the previous stadiums, the lower-left edge of each stadium begins

in Quadrant II and ends in Quadrant IV. The other edge follows the opposite

direction.
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Figure 4.1.2: Picture of a dense kōlam for n = 7, using Rule 4.1.2.

Figure 4.1.2 shows the dense kōlam of a 7-pulli pattern. Following the rules for

drawing, we can see that this figure is a link diagram comprised of five knots. While

in this figure we include the axes and grid, they are usually omitted. Because of this,

we will only draw pulli and kodu—dots and lines—for the remainder of this work.

In addition to our stipulation of n being an odd integer, we add one more re-

striction upon n: n > 3. Figure 4.1.3 shows why we omit the kōlams drawn on the

1-pulli and 3-pulli patterns. The only possible kōlam on a 1-pulli pattern is simply
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a circle, and in a 3-pulli pattern, the dense kōlam is compristed of a square with

four teardrops, one at each of the corners. Since these are the only kōlams on their

respective patterns, we focus our work on pulli patterns when n ≥ 5.

(a) Picture of the kōlam on 1-pulli pattern. (b) Kōlam on 3-pulli pattern.

Figure 4.1.3: Two kōlams on small pulli patterns.

As mentioned in Chapter 2, monolinear kōlams are considered more significant

than kōlams comprised of multiple lines. However, any kōlam on n ≥ 5 pulli con-

structed from the Dense Kōlam Drawing Rules 4.1.2 are multilinear. In order to

create these shining figures, we need to adjust the “dense” drawings. The way Tamil

women create monolinear kōlams is by limiting the number of times the lines inter-

sect. Figure 4.1.4 shows a woman working on making a monolinear kōlam, and we

can see this idea in the design. Consider the lower part of the design compared to the

lower part of the dense kōlam. We see teardrops in Figure 4.1.4 where the dense kōlam

has squares. Additionally, we see lenses in the lower half of this partially completed

kōlam. The way we can interpret creating these different shapes is by restricting the

number of crossings, which can be done by placing barriers in the n-pulli pattern.

Definition 4.1.3. In an n-pulli pattern, a barrier b is a vertical or horizontal line

segment of length two, centered at non-pulli integer points (x, y) such that |x|+|y| < n

and either x or y is odd, but not both.

Figure 4.1.5 shows how we can envision barriers in dense kōlams. We use a dashed

blue line to differentiate between barriers and the kodu of kōlams, which we color

black. Although none of the blue lines drawn in Figure 4.1.5 satisfy the defintion
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Figure 4.1.4: Woman drawing a monolinear kōlam, [14].

of barriers, as they are all centered where |x| + |y| = n, we can interpret them as

“external barriers”. These external barriers are innate, given from the size of the

pulli pattern. The external barriers limit the size in the dense kōlam, where we

create the maximum number of possible crossings. As n will always be finite, each

drawing is finite itself, so we only draw external barriers when needed for clarity of

interpretation. Even though external barriers always exist, even if the kōlam is not

dense, Figure 4.1.6 shows what occurs when we place a barrier inside the design.

This idea of a barrier appears in many mathematical works. Jablan [13] discusses

mirror curves, segments that lines reflectively bounce away from the mirror should

a line touch the curve, which act similarly to barriers. The main difference between

mirror curves and barriers is how a line interacts with them. When a line interacts

with a mirror curve, the line will continue its trajectory into the mirror, hitting it, and

the line bounces off at its supplementary angle with respect to the mirror. When a line

approaches a barrier, however, the line curves away from it, never making contact with

the barrier itself. A mirror curve’s location and orientation implies which direction

this supplementary angle turns. The same holds for barriers, although the angle

change is not immediate. Chavey [5] shows us a closer description of how barriers

work in kōlam, since the mirror curves in the sona designs of the Tchokwe people
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Figure 4.1.5: Dense kōlam for n = 7 with natural external barriers.

(a) Dense kōlam before
placing barrier.

(b) Dense kōlam after plac-
ing a vertical barrier.

(c) Dense kōlam after plac-
ing a horizontal barrier.

Figure 4.1.6: The effect of barriers in a dense kōlam, for n = 5.

work almost identically. The line curves away from the barrier instead of bouncing off

of it. The barriers simply alter the way the lines interact with each other, by forcing
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an edge to travel a new direction.

One vital consequence to note about barriers is where they can be placed. A

barrier line segment will always be placed such that the segment starts and ends

on x, y coordinates where both values are odd. This means that a barrier will never

intersect any pulli. However, there are two ways that a barrier can appear, as a vertical

line or as a horizontal line. We now identify the two types of barriers, vertical and

horizontal.

Definition 4.1.4. Consider an n-pulli pattern. A vertical barrier bV is a barrier

with midpoint (x, y) such that |x| + |y| < n and x is an odd integer. Similarly, a

horizontal barrier bH is a barrier with midpoint (x, y) where |x|+ |y| < n and y is

an odd integer.

(a) Placing a vertical barrier. (b) Effects of placing a horizontal barrier.

Figure 4.1.7: Placing barriers and its effects.

We see how the vertical and horizontal barriers look and act in Figures 4.1.7a

and 4.1.7b. Figure 4.1.8 shows what happens when we insert all possible barriers,

including the external barriers, in a 3-pulli pattern. We see that the barriers result

in a circle being drawn around each pulli. This is no rare occurrence. If we place all

barriers in any n-pulli pattern, we see the same design of circles surrounding each

pulli.

Considering both pulli and barriers, we can now commence a closer investigation

on kōlams as a whole. We provide a mathematical definition and notation of these

designs.

Definition 4.1.5. A kōlam , K(n,B), is a collection of closed lines over an n-pulli
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Figure 4.1.8: Resulting kōlam from considering all barriers.

pattern using a set of barriers B such that Rule 2.3.1 is maintained. If the kōlam is

drawn using only one line, then the kōlam is considered monolinear.

Using this definition of kōlams, we pave the way for our overall goal of creating

monolinear designs. In order to achieve this goal, we next look at symmetry with

barriers. Each drawing should have reflective symmetry. Unless a barrier lies on

the x− or the y-axis, introducing just one barrier will break the required symmetry

of the kōlam. Figure 4.1.9 indicates this, where Figure 4.1.9a shows a single barrier

placed on the y-axis, and Figure 4.1.9b depicts a barrier placed away from either axis.

Therefore, in situations such as Figure 4.1.9b, we need to carefully insert a second

barrier to ensure the design is in fact symmetric. We call this a barrier pair.

Definition 4.1.6. A vertical pair of barriers β = (x, y)X is a pair of two barriers

with midpoints (x, y) and (x,−y), mirrored across the x-axis. Likewise, a horizontal

pair of barriers β = (x, y)Y is a pair of two barriers with midpoints (x, y), (−x, y),

mirrored across the y-axis.

Figure 4.1.10 shows that the axis of symmetry holds no implication on the direction

of the barriers. We can add a vertical pair of vertical barriers or a vertical pair of

horizontal barriers, and the kōlam will still be symmetric. Notice the ordering of
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(a) Barrier placement that creates symme-
try.

(b) Barrier placement that does not create
symmetry.

Figure 4.1.9: Placing one barrier and the resulting symmetry or asymmetry.

(a) A horizontal pair of vertical barri-
ers, β = (1, 2)X .

(b) A vertical pair of vertical barriers,
β = (−1,−2)Y .

(c) A horizontal pair of horizontal bar-
riers, β = (2, 1)X .

(d) A vertical pair of horizontal barri-
ers, β = (−2,−1)Y .

Figure 4.1.10: Variations in barrier pairs.

words the four examples in Figure 4.1.10 use. When referring to barrier pairs, we first

indicate the axis of symmetry, then we identify which direction the barriers themselves

are oriented. What if we desired a kōlam with both reflective symmetries? That is,

can we combine a horizontal pair of barriers with a vertical pair of barriers? In short,
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we can; however, we must be careful to ensure symmetry for the entire drawing.

Figure 4.1.11: Drawing of K(5, B), for B = {(2, 1)X , (2, 1)Y }.

Examine Figure 4.1.11. A design such as this is why we must proceed with caution.

Imagine we folded this kōlam along both of its axes of symmetry. We would find that

the lower left of the drawing is not symmetric with the other sections. Thus, we

cannot have two barrier pairs that share a single barrier, such as the pairs (2, 1)X and

(2, 1)Y as seen in the figure. However, we can take two mirrored pairs, such as (2, 1)X

and (−2,−1)X or (2, 1)Y and (−2,−1)Y . We give this union of “mirrored pairs” a

name: a quad of barriers.

Definition 4.1.7. A quad of barriers β = (x, y)XY is a set of four similarly oriented

barriers with midpoints (x, y), (−x, y), (−x,−y), (x,−y).

Figure 4.1.12: Drawing of K(5, B), for B = {(2, 1)XY }.
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As noted in Definition 4.1.7, all barriers in a quad of barriers are in the same

orientation. That is to say quads of barriers will contain only four horizontal barriers

or four vertical barriers. Figure 4.1.12 shows a kōlam with a quad of barriers oriented

horizontally. We can verify that this drawing satisfies the symmetric requirements

of the Kōlam Crafting Rules 2.3.1 by “folding” the kōlam along both of its axes of

symmetry.

(a) K(7, {(1, 4)X}). (b) K(7, {(4, 1)Y }).

Figure 4.1.13: Two isomorphic kōlams.

Since Rule 4.1.2 is specifically for a dense kōlam, we include the way to create any

kōlam K(n,B), for any n-pulli pattern and any set of barriers B.

Rule 4.1.8 (General Kōlam Drawing Rules). When drawing any kōlam K(n,B), we

follow these steps.

1. Construct an n-pulli pattern.

2. Lightly draw each b ∈ B as a dotted line.

3. Place the drawing instrument at (0, n).

4. Draw from this point as done in Rule 4.1.2.

5. Upon reaching a barrier, trace a continuous curve from the current angle to its

supplementary curve, as seen in Figure 4.1.7.
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6. Continue tracing lines and following Step 5 when encountering barriers until

the line returns to the starting point with the starting angle.

7. If all pulli are circumscribed, proceed to Step 10. If not, select a pulli at (x, y)

that is not fully circumscribed, preferably whose sum |x|+ |y| is the largest and

in the first quadrant of the Cartesian plane.

8. From the chosen pulli, identify the number of adjacent pulli one cardinal unit

away.

• If there is 1 pulli, draw half of a teardrop facing the adjacent pulli that

has not already been drawn.

• If there are 2 pulli that form a line containing the chosen pulli, draw a

curve of a lens in the line that has not yet been drawn.

• If there are 2 pulli that do not form a line with the chosen pulli, draw part

of a partial stadium that has not been drawn.

• If there are 3 pulli, draw one side of a fan that has not been drawn.

• If there are 4 pulli, draw a side of a diamond that has not been drawn yet.

9. Continue drawing the line as in Rule 4.1.2, reacting to barriers as shown in Step

5. The curve will be finished when the curve arrives to the starting point with

the starting angle. Return to Step 7.

10. Erase all barriers. The kōlam is complete!

Rule 4.1.8, as well as Rule 4.1.2, can be considered as an algorithm, so these

two rules used with barrier sets rotated in 90◦ intervals will result in isomorphic

kōlams. With this understanding of barriers and how they impact kōlams, consider

Figure 4.1.13a, a drawing of K(7, {(1, 4)X}). If we rotate this image 90◦ clockwise,

this will look like Figure 4.1.13b. Although they are drawn differently, we say that
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these drawings are isomorphic, as they are simply a rotation of each other. Put more

generically, any kōlam can be rotated in any increment of 90◦, leading to unique

notations but still providing an isomorphic design. This means that pairs and quads

of barriers will be isomorphic if they are rotations of another. Despite this, we must

rotate the entire set of barriers of a kōlam in order to create an isomorphic drawing.

As an example, Figure 4.1.14 shows three separate kōlams using similar barrier sets.

We can see that two of these are isomorphic, namely Figures 4.1.14a and 4.1.14b. The

third kōlam, seen in Figure 4.1.14c is not isomorphic to either, since it uses barriers

seen in both, making the set of barriers distinct.

(a) K(5, {(2, 1)XY }). (b) K(5, {(1, 2)XY }). (c) K(5, {(2, 1)Y , (−1,−2)Y }).

Figure 4.1.14: Three kōlams with differing barrier sets.

Now that we know all the barriers we can place when drawing a kōlam, we begin

analyzing kōlam from a topological graph theory perspective.

4.2 Kōlams & Knot Theory

In order to utilize graph theory, we must first identify ways to view kōlams as graphs.

First, let us consider kōlams as links, defined in Definition 3.2.5. Though this is a

good start, these are in fact drawings, so we should embed these links in R2, creating

link diagrams, where we ignore any over/underlappings, since kōlams do not identify

these either. Thus, in addition to Definition 4.2.1, we have a topological definition of

kōlams.
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Definition 4.2.1. A kōlam K(n,B) is a link diagram with pulli that adheres to the

Kōlam Crafting Rules 2.3.1.

With this additional definition, we see that kōlams are a unique kind of link

diagrams, where the pulli are also drawn. We can see this, as there is no indication

of crossing over or under in the kōlams. The only information we can see is that

there are crossings. Recall Definition 3.2.6, where we derived a graph from the link

diagram. We can do the same with kōlams. Given a kōlam K(n,B), we define the

shadow graph of K(n,B), SK(n,B), according to Definition 3.2.6; the vertices are

located at the crossings of the kōlam and edges exist when there is a line in the

kōlam that connects two crossing without passing through any other crossings. In

essence, we remove the pulli and insert vertices at crossings. Figure 4.2.1 shows how

we transform a kōlam into a shadow graph.

(a) Kōlam K(5, {(2, 1)Y }). (b) A shadow graph SK(5, {(2, 1)Y }).

Figure 4.2.1: A kōlam and its shadow graph.

When considering the shadow graph of a kōlam, we have two major results. The

first is that the shadow graph will be 4-regular. We discussed this in Section 3.2.4.

As these shadow graphs are 4-regular, we can trace the graphs using straight Eulerian

cycles (tours) as mentioned in Definition 3.2.9. Additionally, because of the 4-regular

nature of the shadow graphs, we can find a perfect 2-face-coloring of the shadow graph

of any kōlam. Figure 4.2.2a shows a perfect coloring in red and white for the example
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in Figure 4.2.1. Note that the outside of the graph is also a face and is colored white.

Comparing the face-colored graph with the kōlam, we find an interesting discovery

here: the pulli lie in red faces of the shadow graph in this example. We can choose a

perfect 2-coloring of any shadow graph where the red-colored (or white-colored) faces

of the shadow correspond with the pulli in the kōlam. Thus, we can easily derive the

inverse medial graph of the shadow graph, notated IM(SK(n,B)), following Definition

3.2.8. Figure 4.2.2b shows the inverse medial graph of the shadow graph seen in Figure

4.2.2a.

(a) A perfect 2-face coloring of
SK(5, {(2, 1)Y }), with 13-red colored
faces and 3 white colored faces.

(b) The inverse medial graph of the
shadow graph, IM(SK(5, {(2, 1)Y })),
which contains 13 vertices.

Figure 4.2.2: Perfect 2-face coloring and inverse medial graph of a shadow graph.

Similarly, just as we can easily find the inverse medial graph of a shadow graph,

we can also reverse the process, starting at a graph and finding its medial graph,

following the left-right walk process to derive the medial graph mentioned in Section

3.2.4. Although we can find the medial graph of any graph, not all medial graphs will

result in a shadow graph of a kōlam; the graph must hold two details in order to result

in its medial graph being a shadow graph of a kōlam. First, we must have vertices

in the orientation of an n-pulli pattern. Additionally, all of the graph’s edges must

connect a vertex to the nearest vertex in a cardinal direction. Figure 4.2.3 shows two

graphs. Looking at Figure 4.2.3a, we see a graph that cannot become a kōlam after

left-right walks, even if the vertices are reoriented in the plane. Among the numerous
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reasons why, one immediate indication is the three cycle. Any graph that will result

in a kōlam will contain either no cycles or a cycle of even length greater than or equal

to four. This is due to the construction of pulli patterns and kōlams. Figure 4.2.3b

shows a graph that will result in a kōlam. Even if a graph will result in a shadow

graph of a kōlam, we have no immediate indication of whether or not the respective

kōlam will be monolinear.

(a) A graph whose medial graph is
not the shadow graph of a kōlam.

(b) A graph whose medial graph is
the shadow graph of a kōlam.

Figure 4.2.3: Identifying graphs whose medial graphs are not and are shadow graphs
of a kōlam.

Recall Lemma 3.2.10. If we have a connected graph and its medial graph, we

can determine the number of straight Eulerian cycles in the medial graph from the

number of left-right walks in the starting graph. Thus, as shadow graphs are medial

graphs depicting kōlams, this lemma provides us a direct way of identifying how many

straight Eulerian cycles will be in a drawing. We rephrase Lemma 3.2.10 to apply

to kōlams, using straight Eulerian cycles on the shadow graphs of kōlams and the

left-right cycles of the inverse medial graphs of said graphs.

Corollary 4.2.2. Let IM(SK(n,B)) be an inverse medial graph of a shadow graph

SK(n,B). Then there is a bijection between the number of left-right cycles in the

graph IM(SK(n,B)) and the number of straight Eulerian cycles used in SK(n,B).

Proof. This follows directly from Definition 4.2.1 and Lemma 3.2.10.
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Recall Defintion 4.2.1, where monolinear kōlams contain only one line. Due to the

correspondence between kōlam and its shadow graph, our objective is to find when a

shadow graph contains a straight Eulerian tour. Thus, we have another corollary.

Corollary 4.2.3. The following are equivalent:

1. A kōlam K(n,B) is composed of ℓ lines.

2. A shadow graph SK(n,B) contains ℓ straight Eulerian cycles.

3. The inverse medial of a shadow graph, IM(SK(n,B)), results in ℓ left-right

cycles.

Proof. This proof is a direct conclusion of Corollary 4.2.2 and Definition 4.2.1.

As we proceed, we aim to determine whether a given kōlam is monolinear, then

we seek to create monolinear kōlam using blocks.

4.3 Blocks and Kōlam Monolinearity

We provide theorems discussing when a kōlam is monolinear. In order to get there,

we first identify issues when determining whether a kōlam is monolinear. The most

logical way of finding the number of lines in a kōlam – and thereby checking if the

kōlam is in fact monolinear – is by tracing the design according to its construction.

However, as we are provided with a larger number of pulli, such as the 100,000 pulli

example, [14], this can become easily cumbersome, tedious, and time-consuming.

Consider tracing the two examples in Figure 4.3.1. In Figure 4.3.1a we see there are

three lines comprising K(5, {(1, 0)Y }), and Figure 4.3.1b shows K(5, {(1, 0)Y , (1, 2)Y })

is monolinear. How can we quickly deduce the number of lines needed to create a

larger drawing? The answer starts in subdividing the given kōlam. However as kōlams

themselves are not graphs, we use the shadow graph of the kōlam, isolating sections

by using blocks.
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(a) B = {(1, 0)Y }. (b) B = {(1, 0)Y , (1, 2)Y }.

Figure 4.3.1: Two variants of K(5, B), for two different B.

Recalling Definition 3.1.7, we can identify any blocks within the shadow graph of

a kōlam. In order to find these blocks, we must identify the maximally connected

subgraphs that don’t contain any cut vertices. Then, once we have determined the

number of blocks in the shadow graph as well as how the blocks are connected to one

another, we can investigate what occurs within each block. Additionally, each cut

vertex in the shadow graph will correspond to a cut edge in its inverse medial graph.

However, there are some cut edges in the inverse medial graph whose removal isolates

only a vertex. As the lone vertex in the inverse medial graph corresponds to an edge

in the shadow graph, we can disregard these cut edges of the inverse medial graph.

All the other cut edges in the inverse medial graph, however, correspond to vertices

shared between two blocks.

To see this notion more clearly, Figure 4.3.2 showcases the monolinear kōlam

called Brahma’s knot, K(7, {(2, 3)XY }), along with its shadow graph, inverse me-

dial graph, and the blocks comprising its shadow graph outlined in pink. Looking

at Figure 4.3.2d, we see that Brahma’s knot can be divided into three blocks. If

we find the structures in the inverse medial graph that correspond to the blocks

of the shadow graph, we see the upper and lower blocks correspond to trees in

the inverse medial graph, but the central block corresponds to a cyclic subgraph
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of IM(SK(7, {(2, 3)XY })). This gives us two types of possible blocks based on the

composition of the inverse medial graph of the blocks.

(a) Brahma’s knot, K(7, {(2, 3)XY }). (b) The shadow graph SK(7, {(2, 3)XY }).

(c) IM(SK(7, {(2, 3)XY })), with the blocks
of the shadow graph. (d) The blocks of SK(7, {(2, 3)XY }).

Figure 4.3.2: Blocking process on the Brahma’s knot kōlam

Definition 4.3.1. Let A be a block in SK(n,B). Define IM(A) to be the inverse

medial graph of A. That is, IM(A) is the induced subgraph of IM(SK(n.B)) that

corresponds to block A in SK(n.B), removing any edges the connect to vertices outside

A. If IM(A) contains a cycle, then A is a cyclic block. Otheriwse, A is an acyclic

block.

As previously mentioned, our categorization of blocks is based on the inverse

medial graph. This is because the blocks within shadow graphs always contain cycles,

and, while the straight Eulerian cycles in a shadow graph aid us in determining the
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number of lines needed to construct the associated kōlam, they prove to be more

challenging to work with when determining monolinearity. Hence, we turn our view

of the number of lines in a kōlam to the blocks of its shadow graph and the inverse

medial graph.

Despite this difficulty, we can trace the shadow graph and its blocks. Should we

do this, we find an interesting comparison between the types of blocks. Even though

a cyclic block may have more than one straight Eulerian cycle, any acyclic block will

always be a straight Eulerian tour.

Theorem 4.3.2. Any acyclic block A in SK(n,B) is composed of exactly one straight

Eulerian tour.

Proof. Let A be an acyclic block in SK(n,B) and IM(A) be its inverse medial graph.

We use induction on k, the number of vertices in IM(A). If IM(A) only has one

vertex, v, then the left-right walk of IM(A) can be written as v or ev, v, ev, depending

on whether A is the only block of the shadow graph or there is an edge between

A and another block, respectively. For the latter of these, we consider the inverse

medial graph. As we traverse IM(A), using a left-right walk, the walk ev, v, ev can

be interpreted as starting at v, using one side of ev to walk back to v, then walking

on the other side of ev after reaching the vertex. Thus, from Corollary 4.2.3, since

IM(A) contains one left-right walk, A is a straight Eulerian tour.

Assume, then, that for any acyclic block whose corresponding inverse medial sub-

graph has k ≥ 1 vertices, this block is a straight Eulerian tour. We will show that A

is a straight Eulerian tour when IM(A) has k + 1 vertices.

Let v be a leaf of IM(A). From the basis step, the left-right walk around v is

ev, v, ev, a straight Eulerian tour. The inductive step tells us that A − v is also

a straight Eulerian tour. Thus, to find a left-right walk of IM(A), we insert the

left-right walk ev, v, ev where v exists in the cycle of A itself. Thus, the full cycle

will be v1, e1, v2, e2, . . . , vi, ev, v, ev, vi, . . . , ek−1, vk, ek−1, . . . , e1, v1. If we translate this
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cycle into IM(A), the left-right walk of the inverse medial graph must maintain the

alternating nature while still including ev, v, ev. That is, if the original walk uses the

left side of the edge ei, it would then use the right side of the next edge. However,

since we inserted a straight Eulerian cycle, we first traverse ev on the right side.

After traversing to v, we return along the left side of ev. Thus, the next edge must

be traversed upon its right side. This is the same side the original walk used, so the

walk continues as normal, using all edges and vertices. Since this left-right walk uses

each side of all edges and each vertex, IM(A) is single left-right walk. By Corollary

4.2.3, A must be a straight Eulerian tour.

Therefore, every acyclic block is a straight Eulerian tour.

There is a natural corollary from this theorem. Consider a kōlam whose only

block is acyclic. Since any acyclic block is monolinear, we can see that this kōlam is

monolinear.

Corollary 4.3.3. For any kōlam, K, and its inverse medial graph IM(K), if IM(K)

is a tree, then K is monolinear.

Proof. This proof follows directly from Theorem 4.3.2.

Unlike their acyclic counterparts, cyclic blocks are not automatically monolinear.

We can see this with any K(n, ∅) where n ≥ 5. Recalling Rule 4.1.2, in order to create

the dense kōlam K(n, ∅), we create n− 2 distinct knots. We see that K(5, ∅) contains

three knots in Figure 4.3.3a. Additionally, we see K(5, {(2, 1)Y }) in Figure 4.3.3b,

a monolinear kōlam. Below the two kōlams we see their respective inverse medial

graphs in Figures 4.3.3c and 4.3.3d. Both of these kōlams have cyclic blocks in their

corresponding shadow graphs, but the designs contain different numbers of lines. One

natural way to determine whether or not a cyclic block is a straight Eulerian tour

is to simply trace the block. However, this may not always be enough. We provide
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some conjectures about when a cyclic block will be composed of a straight Eulerian

tour.

(a) K(5, ∅). (b) K(5, {(2, 1)Y }).

(c) IM(SK(5, ∅)). (d) IM(SK(5, {(2, 1)Y })).

Figure 4.3.3: Two kōlams with cyclic blocks on top of their inverse medial graphs.

Even though cyclic blocks may or may not be comprised of a straight Eulerian

tour, examples previously shown help identify conjectures on when blocks will have

this property.

Conjecture 4.3.4. For a cyclic block A in SK(n,B), A will be a straight Eulerian

tour as long as:

(a) A is an induced subgraph such that it contains all vertices in SK(n,B) corre-

sponding to crossings on the horizontal (or vertical) axis, as well as all vertices

above or below (to the left or to the right) of this axis. (See Figure 4.3.3d, for

example.)
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(b) The largest cycle of IM(A) is equal to 2k, for an odd natural number k, or

(c) The largest cycle of IM(A) contains paths inside of itself that connect two ver-

tices.

Additionally, we have some intuition on blocks that cannot be a straight Eulerian

tour purely based on their inverse medial graph.

Conjecture 4.3.5. For a cyclic block A in SK(n,B), A cannot be a straight Eulerian

tour when

(a) The largest cycle of IM(A) can be drawn as a square with sides of odd length

greater than 2,

(b) The largest cycle in IM(A) is a four cycle, or

(c) The only cycle in IM(A) is the boundary, meaning inside the cycle there are

only leaves.

We now shift from conversation purely on blocks to the focus of the research –

finding when a kōlam will be monolinear. The following lemma is needed to show

this latshanam quality.

Lemma 4.3.6. Let A1 and A2 be two distinct blocks in SK(n,B) that share a cut

vertex. If A1 is composed of m1 straight Eulerian cycles and A2 is composed of m2

straight Eulerian cycles, then A1 ∪ A2 is composed of m1 +m2 − 1 straight Eulerian

cycles.

Proof. Let v be the cut vertex shared by A1 and A2. Since SK(n,B) is 4-regular and

v lies on a cycle in both A1 and A2, the degree of v is two in each block and, thus, v

lies on one distinct cycle in each block.

Let v, e1, u1, . . . , ui−1, ei, v be straight Eulerian cycle in A1 that goes though v

and v, f1, w1, . . . , wj−1, fj, v be the straight Eulerian cycle in A2 that passes through
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v as shown in Figure 4.3.4. To create a straight Eulerian cycle in A1 ∪ A2 passing

through v, we may begin at v, traverse from e1 to u1 and back up to v via ui−1, ei,

then continue to the opposite edge from ei, f1, located in A2. We then traverse this

cycle in A2, ending with fj with is incident to v and opposite from edge e1 where

we started. Hence, we have created one straight Eulerian cycle in A1 ∪ A2 from two

separate cycles in these blocks. As the remaining cycles were not used in this traversal

and A1 and A2 share at most one cut vertex by the definition of a block, we now have

m1 +m2 − 1 straight Eulerian cycles in A1 ∪ A2.

A1

A2

v
u1

ui−1 w1

wj−1

Figure 4.3.4: A cut vertex v shared between two blocks A1 and A2.

Note that we may apply this process iteratively, adding another block to the

current union of blocks. In each case, the total number of straight Eulerian cycles

needed to traverse this subgraph of SK(n,B) is one less than the sum needed to

traverse the two individual subgraphs. Thus, if we were to take the union of all

blocks—i.e., the entire shadow graph itself—the number of straight Eulerian cycles

will be equal to the number of cycles within each block minus the total number of

blocks plus one. Using this idea, we now have a natural way to identify when a kōlam

will be monolinear based on its shadow graph.

Theorem 4.3.7. Given a kōlam K(n,B) and its shadow graph SK(n,B), K(n,B) is

monolinear if and only if for each block A in SK(n,B), A is a straight Eulerian tour.

Proof. We prove the sufficiency of the statement by contraposition. Let A1, A2, . . . , Aℓ

be the blocks in SK(n,B) such that each block Ai is composed of mi straight Eule-
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rian cycles, 1 ≤ i ≤ ℓ. Without loss of generality, assume m1 > 1. By repeating

application of Lemma 4.3.6, the total number of straight Eulerian cycles in SK(n,B)

is m1 +m2 + · · ·+mℓ − ℓ+ 1. Since m1 > 1, m1 +m2 + · · ·+mℓ ≥ ℓ+ 1. Therefore,

m1 +m2 + · · ·+mℓ − ℓ+ 1 ≥ (ℓ+ 1)− ℓ+ 1 = 2. Hence, SK(n,B) is not a straight

Eulerian tour, and consequently K(n,B) is monolinear.

We now prove the necessity of the statement. Let each block Ai ∈ SK(n,B),

1 ≤ i ≤ ℓ be a straight Eulerian tour, and assume that K(n,B) is not monolinear.

Since there are ℓ blocks in SK(n,B), all of which are straight Eulerian tours, repeated

applications of Lemma 4.3.6 tells us the number of straight Eulerian cycles in SK(n,B)

is ℓ− ℓ + 1 = 1. Thus, SK(n,B) is a straight Eulerian tour and, moreover, by 4.2.3,

K(n,B) is a monolinear kōlam, contradicting our assumption. Hence, K(n,B) is

monolinear iff for each block A in SK(n,B), A is a straight Eulerian tour.

Simply put, when we divide any shadow graph of a kōlam into blocks, if each of

those blocks is monolinear, then the entire drawing is monolinear, and vice versa.

Naturally, we must determine when a block is a straight Eulerian tour. To moti-

vate this, consider Figure 4.3.5. We see SK(7, {(1, 2)Y , (1, 4)Y }) split into its five

blocks. Tracing each individual block inside of the boundary, we find that each of

the blocks is made of a straight Eulerian tour, which means that the kōlam is mono-

linear. We can cement this by tracing the drawing as we normally would; the kōlam

K(7, {(1, 2)Y , (1, 4)Y }) is monolinear. Additionally, we can identify the inverse medial

graph of the associated shadow graph of this kōlam. Thus, we can see four of the five

blocks are acyclic blocks, which automatically indicate that each is a straight Eulerian

tour. The remaining block, a cyclic block, happens to be monolinear. But what if

this cyclic block wasn’t monolinear? In the next section, Section 4.4, we provide ways

to edit a cyclic block so that the block will contain a straight Eulerian tour
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(a) SK(7, {(1, 2)Y , (1, 4)Y }) and the blocks. (b) IM(SK(7, {(1, 2)Y , (1, 4)Y })).

Figure 4.3.5: SK(7, {(1, 2)Y , (1, 4)Y }), its blocks, and the inverse medial graph.

4.4 Monolinear Cyclic Blocks

The first step in deciding whether a cyclic block is a straight Eulerian tour is iden-

tifying the number of cycles in the block. Although this may seem counterintuitive,

knowing this number can help to adjust the block from being composed of numer-

ous cycles to being a tour, all while still maintaining the block’s cyclic nature. We

first illustrate this using an example of a shadow graph which includes the pulli to

strengthen the connection to its kōlam.

Observe that Figure 4.4.1 depicts a block containing six straight Eulerian cycles

and its inverse medial graph. Note that this block will be unaffected by symmetry,

though we will address the necessity of symmetry later. While the proposed block in

Figure 4.4.1 can be traversed by straight Eulerian cycles, it is not a straight Eulerian

tour as it contains six cycles. Therefore, if the block appeared in the shadow graph of

kōlam the kōlam would not be monolinear. The question arises: How can we adjust

a block, like this example, to create a single straight Eulerian cycle?

Consider inserting a path in the inverse medial graph that connects two non-

adjacent vertices, say u, v ∈ V (IM(A))). This can be additionally viewed as removing
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L3

L2L1

L4

L5 L6

(a) An example block, A, with pulli from
respective kōlam.

u v

(b) IM(A), the inverse medial graph of A.

Figure 4.4.1: A block and its inverse medial graph.

the barrier between the corresponding pulli in the kōlam. We illustrate an example

of this in Figure 4.4.2. Upon a closer investigation, we see that two straight Eulerian

cycles from A, specifically L1 and L2, merged into the same cycle in the new block

A′; we call this new cycle L12 as the two distinct cycles combined. The process of

inserting an edge in the inverse medial to combine two distinct knots in the block is

called inserting an internal pulli path.

L3

L12

L4

L5 L6

(a) The new block, A′, after inserting path.

u v

(b) IM(A′), with inserted path in yellow.

Figure 4.4.2: A block and its inverse medial graph after adding new path.
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Definition 4.4.1. An internal pulli path is a path in IM(A) that merges two

distinct straight Eulerian cycles in a block A.

As mentioned, an internal pulli path inserts a path in the inverse medial graph to

connect two nonadjacent vertices. Each path will always be of odd length, to maintain

the direction of the new left-right walk of the inverse medial graph. Referring to the

previous A′, our internal pulli path was of length one, and this allowed L1 and L2

to become L12. Since we combined two cycles into one, the block in Figure 4.4.2a

contains five straight Eulerian cycles. We can repeat this process, hopefully using

internal pulli paths to combine the remaining five cycles, one at a time. Figure 4.4.3

shows how the block changes after two separate insertions, giving us a total of three

internal pulli path insertions. Let us try to insert a fourth internal pulli path in the

inverse medial graph and see how that affects the block.

When attempting to insert this fourth internal pulli path, we realize that L1234

actually broke apart and became two distinct cycles L14 and L23. Conjecture 4.3.5

hints that this fourth insertion would make the block comprised of multiple cycles, as

the largest cycle of IM(A(4)) is drawn as a 3 × 3 square.We see this in Figure 4.4.4.

This is a key idea of internal pulli paths; these paths cannot connect two pulli that

are in the same straight Eulerian cycle. So, if inserting paths increases the number

of cycles, what other operation can we do to instead decrease the number of cycles?

Unsurprisingly, we have another option, one that we have hinted towards in the

beginning of this chapter, the use of barriers. Reconsider Figure 4.4.3. In order to

make this block monolinear, we must place barriers between two distinct cycles that

the same vertex. Figure 4.4.5 shows how placing a single barrier impacts the overall

block. Correspondingly in the inverse medial graph, barriers can be interpreted as

removing an internal pulli path of length one. Similar to inserting internal pulli paths,

if a barrier is interrupts only one straight Eulerian cycle, the barrier forces the cycle

to become two distinct cycles. Thus, we must ensure that any barrier we place lies
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L34

L12

L5 L6

(a) The new block, A′′.
(b) IM(A′′), with inserted pulli path in yel-
low.

L1234

L5 L6

(c) The new block, A′′′, with a third internal
pulli path.

(d) IM(A′′′), with third internal pulli path
in yellow.

Figure 4.4.3: Two internal pulli paths and their effects on number of straight Eulerian
cycles.

on the intersection of two distinct cycles.

Inserting internal pulli paths and barriers is all we need to affect the number of

straight Eulerian cycles within a block. Thus, we can now turn any cyclic block with

more than one Eulerian cycle into a block comprised of a straight Eulerian tour. We

summarize the above process in the following algorithm.

Algorithm 4.4.2. Consider a block A that contains more than one straight Eulerian

cycle. In order to make A have only one such cycle,
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L23

L14

L5 L6

(a) The new block, A(4), with all possible
internal pulli paths.

(b) IM(A(4)), with fourth internal pulli path
in yellow.

Figure 4.4.4: Effects of internal pulli path that connects two vertices in the same
knot.

1. Count the number of straight Eulerian cycles of A.

2. Draw the inverse medial graph of A, IM(A).

3. Choose to insert a barrier or an internal pulli path.

• If a barrier is chosen, identify two adjacent vertices in IM(A) to place the

barrier between. Remove the corresponding edge.

• If an internal pulli path is to be added, choose two vertices in IM(A) that

are odd length apart and whose corresponding pulli are inside distinct

cycles in the shadow graph, drawing an internal pulli path between them.

4. Redraw the block.

5. Recount the number of straight Eulerian cycles in the block.

6. Repeat Steps 2-5 until there is only one cycle in the block, meaning A is a

straight Eulerian tour.
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L1234

L56

(a) Resulting block A(5) inserting blue bar-
rier.

(b) IM(A(5)), removing yellow internal pulli
path.

L123456

(c) Resulting block A(6) after inserting sec-
ond barrier.

(d) IM(A(6)), removing second yellow inter-
nal pulli path.

Figure 4.4.5: Inserting barriers in a block and its effects.

From this algorithm, the number of times we execute Steps 2-5 will be greater

than or equal to the number of knots minus one. We can see this by following the

way we made the block in Figure 4.4.1 monolinear. To combine the six knots into one,

we inserted three internal pulli paths and two barriers, a total of five steps. However,

even if each step did not combine two knots, we are not stuck. The algorithm allows

us to experiment, creating what we desire, and also helps guide our changes to make

our design monolinear. For non-square shaped blocks, this algorithm still works.



4.4. Monolinear Cyclic Blocks 65

Figure 4.4.6a shows a new block D with four straight Eulerian cycles. Note that even

though D is not a square, it still does not require internal symmetry. We see two

variations in making D a straight Eulerian tour in Figures 4.4.6 and 4.4.7 using the

aforementioned algorithm. Note that the choices can be made in any order, as long

as the choices are the same; the resulting block will look the same. It is possible to

create different blocks if the choices are varied from the original selections.

Up until this point, all blocks we have considered did not need to have internal

symmetry. Note that there may be a pair to this block, reflected on the other side of

the axis (axes) of symmetry. Thus, when we apply the algorithm to one of the blocks,

we must also apply the algorithm to the reflected block. However, not all blocks exist

away from the axis (axes) of symmetry. In the construction of some shadow graphs,

blocks may exist along or contain an axis (or axes) of symmetry. If a block exists

along an axis (or axes), then the block has a mirror adjacent to itself, creating a

larger block that contains the axis of symmetry. In either case, we must augment the

algorithm. Instead of inserting one internal pulli path or one barrier, we must place

their reflection as well. To help us understand the algorithm to these kinds of blocks,

consider Figure 4.4.8, which contains a block H that needs horizontal symmetry and

one way to make H a straight Eulerian tour.

From Figure 4.4.8, we can identify how the algorithm changes. For two straight

Eulerian cycles, if they span an the axis of symmetry, either operation—inserting a

barrier or internal pulli path— must occur on this axis. This is the case is because this

augmentation guarantees that the two cycles will combine; if there is an alteration

on one side of the axis, there must be another on the other side. This adjustment

away from the axis would not guarantee the two straight Eulerian cycles will become

one. However, if there is a cycle that doesn’t span the axis, this cycle will have a

mirror on the other side that will be adjusted at the same time. To see this in action,

consider Figures 4.4.8b and 4.4.8c. There are two cycles in Figure 4.4.8b that mirror
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each other that do not interact with the axis of symmetry. Thus, in Figure 4.4.8c

when we combine one of these cycles to the cycle that spans the axis (through the

insertion of a barrier), we mirror this action with the reflected cycle, combining three

straight Eulerian cycles into one. Regardless of the block composition and adjacency

to the axis of symmetry, making a block comprised of a straight Eulerian tour comes

down to the aforementioned algorithm. Thus, once all blocks are these tours, we may

utilize Theorem 4.3.7 tells us the shadow graph is a straight Eulerian tour, meaning

the respective kōlam is monolinear.

To create a monolinear kōlam of any size, we must go through all the content of

this chapter. Our first step is to identify the pulli pattern we want. Once we have

our desired size, we can consider pairs and quads of barriers that we want. This gives

us a natural indication as to how our blocks will be shaped, allowing us to draw each

block separately. Recall Theorem 4.3.7. In order to guarantee the kōlam we create

will be monolinear, we must ensure that each block is a straight Eulerian tour. If a

block is acyclic, Theorem 4.3.2 shows us that the block will be a straight Eulerian

tour. For any cyclic block, we follow the algorithm to find how to make the block

contain a straight Eulerian tour. Once each block is a straight Eulerian tour, we can

draw our monolinear kōlam, a latshanam design.

Graph theory as a mathematical field is often interpreted as a visual topic. We

can see interactions between different items or ideas using graph theory. Despite this,

the artistic designs of kōlams utilize many graph theoretic concepts. Using the ritual

art form, we have not only a physical way but also an artistic way of experiencing

mathematics. We have found these ties to be innate to both the designs as well as the

field of graph theory, which helps us discover ways to quickly determine whether or

not any kōlam will be monolinear. Dividing each design into its corresponding blocks

and analyzing its contents providing a faster approach to this deduction than tracing

a large figure. Finding these monolinear designs in and of itself is learning more about
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the idea of latshanam, allowing us to experience the natural beauty within not only

art but also mathematics itself.



4.4. Monolinear Cyclic Blocks 68

(a) Block D, with pulli inserted. (b) IM(D).

(c) Block D′
1, after one step of the algo-

rithm. (d) IM(D′
1) with yellow edge inserted.

(e) Block D′′
1 , after a second step of the al-

gorithm. (f) IM(D′′
1), with yellow edge removed.

(g) Block D′′′
1 , after a third step of the algo-

rithm. (h) IM(D′′′
1 ) with yellow edge removed.

Figure 4.4.6: Making a block D monolinear in one variation.
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(a) Block D′
2, inserting blue barrier. (b) IM(D′

2), removing yellow edge.

(c) Block D′′
2 , inserting blue barrier. (d) IM(D′′

2), removing yellow edge.

(e) Block D′′′
2 , inserting blue barrier. (f) IM(D′′′

2 ), inserting yellow edge.

Figure 4.4.7: Making a block D monolinear in a second variation.
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(a) A symmetric block H with pulli in-
serted.

(b) H ′, the result of inserting an internal
pulli path. (c) H ′′, the result of inserting barrier.

Figure 4.4.8: The algorithm on a block requiring symmetry.
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