56,043 research outputs found

    The local functors of points of Supermanifolds

    Get PDF
    We study the local functor of points (which we call the Weil-Berezin functor) for smooth supermanifolds, providing a characterization, representability theorems and applications to differential calculus

    Is there a Jordan geometry underlying quantum physics?

    Get PDF
    There have been several propositions for a geometric and essentially non-linear formulation of quantum mechanics. From a purely mathematical point of view, the point of view of Jordan algebra theory might give new strength to such approaches: there is a ``Jordan geometry'' belonging to the Jordan part of the algebra of observables, in the same way as Lie groups belong to the Lie part. Both the Lie geometry and the Jordan geometry are well-adapted to describe certain features of quantum theory. We concentrate here on the mathematical description of the Jordan geometry and raise some questions concerning possible relations with foundational issues of quantum theory.Comment: 30 page

    Loop Spaces and Connections

    Full text link
    We examine the geometry of loop spaces in derived algebraic geometry and extend in several directions the well known connection between rotation of loops and the de Rham differential. Our main result, a categorification of the geometric description of cyclic homology, relates S^1-equivariant quasicoherent sheaves on the loop space of a smooth scheme or geometric stack X in characteristic zero with sheaves on X with flat connection, or equivalently D_X-modules. By deducing the Hodge filtration on de Rham modules from the formality of cochains on the circle, we are able to recover D_X-modules precisely rather than a periodic version. More generally, we consider the rotated Hopf fibration Omega S^3 --> Omega S^2 --> S^1, and relate Omega S^2-equivariant sheaves on the loop space with sheaves on X with arbitrary connection, with curvature given by their Omega S^3-equivariance.Comment: Revised versio

    Can Computer Algebra be Liberated from its Algebraic Yoke ?

    Full text link
    So far, the scope of computer algebra has been needlessly restricted to exact algebraic methods. Its possible extension to approximate analytical methods is discussed. The entangled roles of functional analysis and symbolic programming, especially the functional and transformational paradigms, are put forward. In the future, algebraic algorithms could constitute the core of extended symbolic manipulation systems including primitives for symbolic approximations.Comment: 8 pages, 2-column presentation, 2 figure

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page

    Schwinger's Picture of Quantum Mechanics I: Groupoids

    Full text link
    A new picture of Quantum Mechanics based on the theory of groupoids is presented. This picture provides the mathematical background for Schwinger's algebra of selective measurements and helps to understand its scope and eventual applications. In this first paper, the kinematical background is described using elementary notions from category theory, in particular the notion of 2-groupoids as well as their representations. Some basic results are presented, and the relation with the standard Dirac-Schr\"odinger and Born-Jordan-Heisenberg pictures are succinctly discussed.Comment: 32 pages. Comments are welcome
    • …
    corecore