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1. Introduction

Since the 1970s the foundations of supergeometry have been investigated by several physicists
and mathematicians. Most of the treatments (e.g. [4,12,3,14,16,8,23,5]) present supermanifolds as
classical manifolds where the structure sheaf is modified so that the sections are allowed to take
values in Z2-graded commutative algebras and the sheaf itself is assumed to be locally of the form

C1ðRp
Þ � Lq, with Lq denoting the Grassmann algebra in q generators. This approach is very much in

the spirit of classical algebraic geometry and dates back to the seminal works of Berezin and Leı̆tes
[4] and Kostant [12].

It is nevertheless only later in [16,8], that the parallelism with classical algebraic geometry is fully
worked out and the functorial language starts to be used systematically. In particular the functor of
points approach becomes a powerful device allowing, among other things, one to recover some
geometric intuition by giving a rigorous meaning to otherwise just formal expressions. In this
approach, a supermanifold M is fully recovered by the knowledge of its functor of points,
S/MðSÞ :¼ HomðS;MÞ, which associates to a supermanifold M, the set of its S-points for every
supermanifold S. The crucial result in this context is Yoneda’s lemma which establishes a bijective
evier GmbH. All rights reserved.
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correspondence between morphisms of supermanifolds and natural transformations between their
corresponding functors of points.

Other approaches to the theory of supermanifolds involving new local models and possibly non-
Hausdorff topologies were developed later [1,18,6,22,17,20]. For a detailed review of some of these
approaches, that we do not pursue here, we refer the reader to [2,19].

This paper is devoted to understanding the approach to supermanifolds theory via the local

functor of points, which associates to each smooth supermanifold M the set of its A-points for all
super-Weil algebras A. These are finite dimensional commutative superalgebras of the form A ¼

R� A
3

with A
3

a nilpotent ideal. The set of the A-points of the smooth supermanifold M is defined as
MA ¼ HomSAlgðOðMÞ;AÞ, in striking analogy with the functor of points previously described. In fact,
when A is a finite dimensional Grassmann algebra, MA is indeed the set of the R0jq-points of the
supermanifold M in the sense specified above, for suitable q. As we have defined it, the local functor
of points does not determine the supermanifold, unless we put an extra structure on MA, in other
words, unless we carefully define the image category for the functor A/MA.

Our approach is a slight modification of the one in [22,24], by Schwarz and Voronov, the main
difference being that they consider Grassmann algebras instead of super-Weil algebras. In this sense
our work is mainly providing additional insight into well known results and clarifies the
representability issues often overlooked in most of the literature. Moreover the local functor of
points that we examine in our work (Weil–Berezin functor) has the advantage of being able to bring
differential calculus naturally into the picture. Classically the importance of Weil algebras in the
study of jet structures over manifolds was first pointed out by Weil [25] and in the supersetting by
Koszul [13].

The paper is organized as follows.
In Section 2 we review some basic definitions of supergeometry like the definition of superspace,

supermanifold and its associated functor of points.
In Section 3 we introduce super-Weil algebras with their basic properties and we define the

functor of the A-points of a supermanifold M, A/MA from the category of super-Weil algebras to the
category of sets. We show this functor does not characterize the supermanifold M. In order to obtain
this, the image category needs to be suitably specialized by giving to each set MA an extra structure.

In Section 4, we obtain a bijective correspondence between supermanifold morphisms and
natural transformations between the functors of A-points, by endowing the set MA with the structure
of an A0-smooth manifold. For this new functor, called the Weil–Berezin functor of M the analogue of
Yoneda’s lemma holds and, as a consequence, supermanifolds embed in a full and faithful way into
the category of Weil–Berezin functors (Schwarz embedding) and we can prove a representability
theorem. We end the section by giving a brief account of the functor of L-points originally described
by Schwarz, which is the restriction of the Weil–Berezin functor to Grassmann algebras.

In Section 5 we examine some aspects of superdifferential calculus on supermanifolds in the
language of the Weil–Berezin functor, establishing a connection between our treatment and
Kostant’s seminal approach to supergeometry and proving the Weil transitivity theorem.
2. Basic definitions of supergeometry

In this section we recall few basic definitions in supergeometry. Our main references are
[12,16,8,23].

Let R be our ground field.
A super vector space is a Z2-graded vector space, i.e. V ¼ V0 � V1; the elements in V0 are called

even, those in V1 odd. An element v 6¼ 0 in V0 [ V1 is said homogeneous and pðvÞ denotes its parity:
pðvÞ ¼ 0 if v 2 V0, pðvÞ ¼ 1 if v 2 V1. Rpjq denotes the supervector space Rp

�Rq. A superalgebra A is an
algebra that is also a supervector space, A ¼ A0 � A1, and such that AiAjDAiþj ðmod 2Þ. A0 is an algebra,
while A1 is an A0-module. A is said to be commutative if for any two homogeneous elements x and y,
xy ¼ ð�1ÞpðxÞpðyÞyx. The category of real commutative superalgebras is denoted by SAlg and all our
superalgebras are assumed to be in SAlg.
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Definition 2.1. A superspace S ¼ ðjSj;OSÞ is a topological space jSj, endowed with a sheaf of
superalgebras OS such that the stalk at each point x 2 jSj, denoted by OS;x, is a local superalgebra (i.e.
it has a unique graded maximal ideal). A morphism j: S-T of superspaces is a pair ðjjj;j�Þ, where
jjj: jSj-jTj is a continuous map of topological spaces and j�:OT-jjj�OS, called pullback, is such that
j�xðMjjjðxÞÞDMx where MjjjðxÞ and Mx denote the maximal ideals in the stalks OT ;jjjðxÞ and OS;x,
respectively.

Example 2.2 (The smooth local model). The superspace Rpjq is the topological space Rp endowed
with the following sheaf of superalgebras. For any open set UDRp define ORpjq ðUÞ :¼
C1Rp ðUÞ � LðW1; . . . ; WqÞ, where LðW1; . . . ; WqÞ is the real exterior algebra (or Grassmann algebra)
generated by the q variables W1; . . . ; Wq and C1Rp denotes the C1 sheaf on Rp.

Definition 2.3. A (smooth) supermanifold of dimension pjq is a superspace M ¼ ðjMj;OMÞ which is
locally isomorphic to Rpjq, i.e. for all x 2 jMj there exist open sets x 2 VxDjMj and UDRp such that:
OM jVx

ffi ORpjq
jU . In particular supermanifolds of the form ðU;ORpjq

jUÞ are called superdomains. A
morphism of supermanifolds is simply a morphism of superspaces. SMan denotes the category of
supermanifolds. We shall denote with OðMÞ the superalgebra OMðjMjÞ of global sections on the
supermanifold M.

If U is open in jMj, ðU;OM jUÞ is also a supermanifold and it is called the open supermanifold

associated with U. We shall often refer to it just by U, whenever no confusion is possible.
Suppose M is a supermanifold and U is an open subset of jMj. Let JMðUÞ be the ideal of the

nilpotent elements of OMðUÞ. OM=JM defines a sheaf of purely even algebras over jMj locally

isomorphic to C1ðRp
Þ. Therefore eM :¼ ðjMj;OM=JMÞ defines a classical smooth manifold, called the

reduced manifold associated with M. The projection s/es :¼ sþ JMðUÞ, with s 2 OMðUÞ, is the pullback

of the embedding eM-M. If j is a supermanifold morphism, since jjj�ðesÞ ¼ gj�ðsÞ, the morphism jjj is
automatically smooth.

There are several equivalent ways to assign a morphism between two supermanifolds. The
following result can be found in [16, Chapter 4].

Theorem 2.4 (Chart theorem). Let U and V be two smooth superdomains, i.e. two open subsupermani-

folds of Rpjq and Rmjn, respectively. There is a bijective correspondence between
1.
 superspace morphisms U-V;

2.
 superalgebra morphisms OðVÞ-OðUÞ;

3.
 the set of pullbacks of a fixed coordinate system on V, i.e. ðmjnÞ-uples

ðs1; . . . ; sm; t1; . . . ; tnÞ 2 OðUÞm0 �OðUÞ
n
1

such that ðes1ðxÞ; . . . ;esmðxÞÞ 2 jV j for each x 2 jUj.
Any supermanifold morphism M-N is then uniquely determined by a collection of local maps,
once atlases on M and N have been fixed. A morphism can hence be given by describing it in local
coordinates.

Since we are considering the smooth category a further simplification occurs: we can assign a
morphism between supermanifolds by assigning the pullbacks of the global sections (see [12, Section
2.15]), i.e.

HomSManðM;NÞ ffi HomSAlgðOðNÞ;OðMÞÞ: ð2:1Þ

The theory of supermanifolds resembles very closely the classical theory. One can, for example,
define tangent bundles, vector fields and the differential of a morphism similarly to the classical case.
For more details see [12,14,16,8,23].

Due to the presence of nilpotent elements in the structure sheaf of a supermanifold,
supergeometry can also be equivalently and very effectively studied using the language of functor

of points, a very useful tool in algebraic geometry.
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Let us first fix some notation we will use throughout the paper. If A and B are two categories,
½A;B� denotes the category of functors between A and B (notice that in general ½A;B� will not have
small hom-sets). Clearly, the morphisms in ½A;B� are the natural transformations. Moreover we
denote by Aop the opposite category of A, so that the category of contravariant functors between A and
B is identified with ½Aop;B� (see [15]).

Definition 2.5. Given a supermanifold M, we define its functor of points

Mð	Þ:SManop
�!Set; S/MðSÞ :¼ HomðS;MÞ

as the functor from the opposite category of supermanifolds to the category of sets defined on the
morphisms as usual: MðjÞf ¼ f 3j, where j: T-S, f 2 MðSÞ. The elements in MðSÞ are also called the
S-points of M.

Given two supermanifolds M and N, Yoneda’s lemma (a general result valid for all categories with
small hom-sets) establishes a bijective correspondence

HomSManðM;NÞ !Hom½SManop ;Set�ðMð	Þ;Nð	ÞÞ

between the morphisms M-N and the natural transformations Mð	Þ-Nð	Þ (see [15, Chapter 3] or [9,
Chapter 6]). This allows us to view a morphism of supermanifolds as a family of morphisms
MðSÞ-NðSÞ depending functorially on the supermanifold S. In other words, Yoneda’s lemma provides
a full and faithful immersion

Y:SMan�! SManop;Set
� �

:

There are, however, objects in ½SManop;Set� that do not arise as the functors of points of a
supermanifold. We say that a functor F 2 ½SManop;Set� is representable if it is isomorphic to the
functor of points of a supermanifold.

We now want to recall a representability criterion, which allows to single out, among all the
functors from the category of supermanifolds to sets, those that are representable (see [7, Chapter 1],
[10, A.13] for more details).

Theorem 2.6 (Representability criterion). A functor F :SManop-Set is representable if and only if:
1.
 F is a sheaf, i.e. it has the sheaf property;

2.
 F is covered by open supermanifold subfunctors fU ig.
3. Super-Weil algebras and A-points

In this section we introduce the category SWA of super-Weil algebras. These are finite
dimensional commutative superalgebras with a nilpotent graded ideal of codimension one. Super-
Weil algebras are the basic ingredient in the definition of the Weil–Berezin functor and the Schwarz
embedding. The simplest examples of super-Weil algebras are finite dimensional Grassmann
algebras. These are the only super-Weil algebras that can be interpreted as algebras of global sections
of supermanifolds, namely R0jq.

We now define the category of super-Weil algebras. The treatment follows closely that contained in
[11, Section 35] for the classical case.

Definition 3.1. We say that A is a (real) super-Weil algebra if it is a commutative unital superalgebra
over R and
1.
 dim Ao1,
3 3 3 3
2.
 A ¼ R� A, where A ¼ A0 � A1 is a graded nilpotent ideal.
The category of super-Weil algebras is denoted by SWA. The height of A is the lowest r such that

A
3 rþ1

¼ 0 and the width of A is the dimension of A
3

=A
3 2

. Notice that super-Weil algebras are local

superalgebras, i.e. they contain a unique maximal graded ideal.
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Remark 3.2. As a direct consequence of the definition, each super-Weil algebra has an associated
short exact sequence:

0�!R�!
jA

A ¼ R� A
3

�!
prA

A=A
3

ffi R�!0:

Clearly the sequence splits and each a 2 A can be written uniquely as a ¼ ea þ a
3

with ea 2 R and a
3

2 A
3

.

Example 3.3 (Dual numbers and superdual numbers). The simplest example of super-Weil algebra in
the classical setting is RðxÞ ¼ R½x�=/x2S the algebra of dual numbers. Here x is an even
indeterminate. Similarly we have the superdual numbers: Rðx; WÞ ¼ R½x; W�=/x2; xW; W2S where x

and W are, respectively, even and odd indeterminates.

Example 3.4 (Grassmann algebras). The polynomial algebra in q odd variables LðW1; . . . ; WqÞ is
another example of super-Weil algebra. Finite dimensional Grassmann algebras are actually a full
subcategory of SWA.

Lemma 3.5. Let R½kjl� :¼ R½x1; . . . ; xk� � LðW1; . . . ; WlÞ denote the superalgebra of real polynomials in k

even and l odd variables. The following are equivalent:
1.
 A is a super-Weil algebra;

2.
 Affi ORpjq ;0=J for suitable p;q and J graded ideal containing a power of the maximal ideal M0 in the

stalk ORpjq ;0;

3.
 Affi R½kjl�=I for a suitable graded ideal I+/x1; . . . ; xk; W1; . . . ; WlS

k.

Proof. We leave this to the reader as an exercise. &

Definition 3.6. Let M be a supermanifold and A a super-Weil algebra. We define the set of A-points

of M,

MA :¼ HomSAlgðOðMÞ;AÞ:

We can define the functor Mð	Þ:SWA-Set, on the objects as A/MA and on morphisms as r/r
with r 2 HomSAlgðA;BÞ and r: xA/r 3 xA.

Remark 3.7. Observe that the only super-Weil algebras which are equal to OðMÞ for some
supermanifold M are those of the form LðW1; . . . ; WqÞ ¼ OðR0jq

Þ. In fact as soon as M has a nontrivial
even part, the algebra OðMÞ becomes infinite dimensional. For this reason this functor is quite
different from the functor of points introduced previously.

Let us recall a well known classical result.

Lemma 3.8 (‘‘Super’’-Milnor’s exercise). Denote by M a smooth supermanifold. The superalgebra maps

OðMÞ-R are exactly the evaluations evx: s/esðxÞ at the points x 2 jMj. In other words there is a bijective

correspondence between MR ¼ HomSAlgðOðMÞ;RÞ and jMj.

Proof. This is a simple consequence of the chart Theorem 2.4 and Eq. (2.1), considering that
OðR0j0

Þ ¼ R and the pullback of a morphism j:R0j0-M is the evaluation at jjjðR0
Þ. &

Let xA 2 MA. Due to the previous lemma, there exists a unique point of jMj, that we denote by exA,
such that prA 3 xA ¼ evexA

, where prA is the projection A-R. We thus have a map

HomSAlgðOðMÞ;AÞ�!HomSAlgðOðMÞ;RÞ ffi jMj;
xA/prA 3 xA ¼ ev ~xA

: ð3:1Þ

We say that exA is the base point of xA or that xA is an A-point near exA. We denote with MA;x the set of
A-points near x 2 jMj.

The next proposition asserts the local nature of the functor of the A-points.
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Proposition 3.9. Let M be a smooth supermanifold. Let s 2 OðMÞ and let xA 2 HomSAlgðOðMÞ;AÞ. Assume

that s is zero when restricted to a certain neighborhood of exA (see Eq. (3.1)). Then xAðsÞ ¼ 0.

Proof. Suppose U 3 exA is such that sjU ¼ 0. Let t 2 OMðUÞ be such that suppðtÞ 
 U and tjV ¼ 1, where
the closure of V is contained in U. Then 0 ¼ xAðstÞ ¼ xAðsÞxAðtÞ. So xAðsÞ ¼ 0, since xAðtÞ is invertible
because of evexA

ðtÞ ¼ 1, where evexA
denotes the evaluation at exA. &

Observation 3.10. The above proposition shows that xAðsÞ depends only on the germ of s at exA, i.e. xA

is also a superalgebra map from the stalk O
M;exA

of OM in exA to A. Therefore it is possible to give a
meaning to xAð½s�Þ for a germ ½s� in O

M;exA
. It is not hard to show that MA ffiTx2jMjHomSAlgðOM;x;AÞ.

This identification allows to extend the definition of the local functor of points to the category of
holomorphic or real analytic supermanifolds. Many of the results we prove extend relatively easily to
the holomorphic (or real analytic) category, but we shall not pursue this point of view in the present
paper.

Notation 3.11. Here we introduce a multi-index notation that we will use in the following. Let
fx1; . . . ; xp; W1; . . . ; Wqg be a system of coordinates. If n ¼ ðn1; . . . ; npÞ 2N

p, J ¼ fj1; . . . ; jrgDf1; . . . ; qg, with
1 � j1o 	 	 	ojr � q, we define xn :¼ xn1

1 xn2

2 	 	 	 x
np
p , WJ :¼ Wj1

Wj2 	 	 	Wjr
. Moreover we set n! :¼

Q
i ni!, jnj :¼P

i ni and jJj the cardinality of J.

In order to obtain further information about the structure of MA we need some preparation. Next
lemma gives some insight on the structure of the stalk at a given point (for the proof see [14, Section
2.1.8] or [23, Chapter 4]).

Lemma 3.12 (Hadamard’s lemma). Let M be supermanifold, x 2 jMj and fxi;Wjg is a system of

coordinates in a neighborhood U of x. Denote by MU;x the ideal of the sections in OMðUÞ whose value

at x is zero. For each s 2 OMðUÞ and k 2 N there exists a polynomial P in xi and Wj such that s� P 2Mk
U;x.

As a consequence we have the following proposition.

Proposition 3.13. Each element xA of MA is determined by the images of a system of local coordinates

around exA. Conversely, given x 2 jMj, a system of local coordinates fxig
p
i¼1, fWjg

q
j¼1 around x, and elements

fxig
p
i¼1, fyjg

q
j¼1, xi 2 A0, yj 2 A1,1 such that exi ¼ exiðxÞ, there exists a unique morphism xA 2

HomSAlgðOðMÞ;AÞ with xAðxiÞ ¼ xi, xAðWjÞ ¼ yj.

Proof. Suppose that xA is given. We want to show that xAðxiÞ, xAðWjÞ determine xA completely. This
follows noticing that
1.
 the image of a polynomial section under xA is determined,

2.
 there exists k 2 N such that the kernel of xA contains Mk

U;x (see Lemma 3.5), and using
previous lemma.
We now come to existence. Suppose that the images of the coordinates are fixed as in the
hypothesis and let s in OMðUÞ. We define xAðsÞ through a formal Taylor expansion. More
precisely let s ¼

P
JDf1;...;qg sJW

J where the sJ are smooth functions in x1; . . . ; xp. Define

xAðsÞ ¼
X
n2Np

JDf1;...;qg

1

n!
@jnjsJ

@xn

����
ðex1 ;...;expÞ

x
3 n
yJ : ð3:2Þ
This is the way in which the purely formal expression

sðxAÞ ¼ sðex1 þ x1
3

; . . . ; exp þ xp
3

; y1; . . . ; yqÞ

is usually understood. Eq. (3.2) has only a finite number of terms due to the nilpotency of the xi

3

and
yj. xA is a superalgebra morphism as one can readily check. &
1 The reader should notice the difference between fxi; Wjg and fxi ; yjg.
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Observation 3.14. Let U be a chart in a supermanifold M with local coordinates fxi; Wjg. We have an
injective map

UA�!Ap
0 � Aq

1; xA/ðx1; . . . ; xp; y1; . . . ; yqÞ :¼ ðxAðx1Þ; . . . ; xAðWqÞÞ:

We can think of it heuristically as the assignment of A-valued coordinates fxi; yjg on UA. As we are
going to see in Theorem 4.2 the components of the coordinates fxi; yjg, given by /a�k; xiS, /a�k; yjS
with respect to a basis fakg of A, are indeed the coordinates of a smooth manifold. The base pointexA 2 U has coordinates ðex1; . . . ; expÞ. In this language, if r:A-B is a super-Weil algebra morphism, the
corresponding morphism r:MA-MB is ‘‘locally’’ given by r� 	 	 	 � r:Ap

0 � Aq
1-Bp

0 � Bq
1. This is well

defined since r does not change the base point.

If M ¼ Rpjq we can also consider the slightly different identification

Rpjq
A �!ðA�Rpjq

Þ0; xA/
X

i

xAðe
�
i Þ � ei;

where fe1; . . . ; epþqg denotes a homogeneous basis of Rpjq and fe�1; . . . ; e
�
pþqg its dual basis. Here a little

care is needed. In the literature the name Rpjq is used for two different objects: it may indicate the

supervector space Rpjq
¼ Rp

�Rq or the superdomain ðRp; C1Rp � LqÞ. In the previous equation the

first Rpjq is viewed as a superdomain, while the last as a supervector space. Likewise the fe�i g are

interpreted both as vectors and sections of OðRpjq
Þ. As we shall see in Section 4, the functor A/ðA�

Rpjq
Þ0 recaptures all the information about the superdomain Rpjq, so that the two different ways of

looking at Rpjq become identified naturally. In such identification, the superdomain morphism

r:Rpjq
A -Rpjq

B corresponds to the supervector space morphism r� 1: ðA�Rpjq
Þ0-ðB�Rpjq

Þ0.

As we have seen, we can associate to each supermanifold M a functor Mð	Þ:SWA-Set, A/MA.
Hence we have a functor: B:SMan-½SWA;Set�. The natural question is whether B is a full and
faithful embedding or not. We are going to show that B is not full, in other words, there are many
more natural transformations between Mð	Þ and Nð	Þ than those coming from morphisms from M to N.

We first want to show that the natural transformations Mð	Þ-Nð	Þ arising from supermanifold
morphisms M-N have a very peculiar form. Indeed, a morphism j:M-N of supermanifolds induces
a natural transformation between the corresponding functors of A-points given by

jA:MA�!NA; xA/xA 3j�

for all super-Weil algebras A. Let M ¼ Rpjq and N ¼ Rmjn, and denote, respectively, by fxi;Wjg and
fxk
0 ;Wl

0 g two systems of canonical coordinates over them. With these assumptions, j is determined by
the pullbacks of the coordinates of N, while the A-point jAðxAÞ is determined by

ðx1
0 ; . . . ; xm

0 ; y1
0 ; . . . ; yn

0 Þ :¼ ðxA 3j�ðx1
0 Þ; . . . ; xA 3j�ðWn

0 ÞÞ 2 Am
0 � An

1:

If ðx1; . . . ; xp; y1; . . . ; yqÞ denote the images of the coordinates of M under xA (x1 ¼ xAðx1Þ, etc.) and
j�ðxk

0 Þ ¼
P

J sk;JW
J
2 OðRpjq

Þ0, where the sk;J are functions on Rp, then we have

xk
0 ¼ xA 3j�ðxk

0 Þ ¼
X
n2Np

JDf1;...;qg

1

n!
@jnjsk;J

@xn

����
ðex1 ;...;expÞ

x
3 n
yJ

ð3:3Þ

and similarly for the odd coordinates (see Proposition 3.13). Notice that if we pursue the point of
view of Observation 3.14, i.e. if we consider fxi; yjg as A-valued coordinates of Rpjq

A , this equation can
be read as a coordinate expression for jA.

Not all the natural transformations Mð	Þ-Nð	Þ arise in this way. This happens also for purely even
manifolds, as we see in the next example.

Example 3.15. Let M and N be two smooth manifolds and let j:M-N be a map (smooth or not). The
natural transformation að	Þ:Mð	Þ-Nð	Þ, aAðxAÞ ¼ ev

jðexAÞ
, is not of the form seen above, even if j is

assumed to be smooth, while we still have j ¼ aR.
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We end this section with a technical result, essentially due to Voronov (see [24]), characterizing all
possible natural transformations between the functors of A-points of two superdomains, hence also
those not arising from supermanifold morphisms.

Definition 3.16. Let U be an open subset of Rp. We denote by ApjqðUÞ the unital commutative
superalgebra of formal series with p even and q odd generators and coefficients in the algebra F ðU;RÞ
of arbitrary functions on U, i.e. ApjqðUÞ :¼ F ðU;RÞ1X1; . . . ;Xp;Y1; . . . ;YqU. An element F 2 ApjqðUÞ is of

the form F ¼
P

n2Np

JDf1;...;qg
fn;JX

nYJ , where fn;J 2 F ðU;RÞ and fXig and fYjg are even and odd generators.

ApjqðUÞ is a graded algebra: F is even (resp. odd) if jJj is even (resp. odd) for each term of the sum.

Let us introduce a partial order between super-Weil algebras by saying that A0%A if and only if A0 is
a quotient of A.

Lemma 3.17. The family of super-Weil algebras is directed, i.e. if A1 and A2 are super-Weil algebras, then

there exists A such that Ai%A.

Proof. In view of Lemma 3.5, choosing carefully k; l 2 N and J1 and J2 ideals of ORpjq ;0, we have

Ai ffi ORpjq ;0=Ji. If r is the maximum between the heights of A1 and A2, Mrþ1
0 D J1 \ J2. So Affi

ORpjq ;0=ðJ1 \ J2Þ and then it is a super-Weil algebra. &

Proposition 3.18. Let U and V be two superdomains in Rpjq and Rmjn, respectively. The set of natural

transformations in ½SWA;Set� between Uð	Þ and Vð	Þ is in bijective correspondence with the set of elements

of the form

F ¼ ðF1; . . . ; FmþnÞ 2 ðApjqðjUjÞÞ
m
0 � ðApjqðjUjÞÞ

n
1

such that, Fk ¼
P

n;J f k
n;JX

nYJ , ðf 1
0;ðxÞ; . . . ; f

m
0; ðxÞÞDjV j, 8x 2 jUj.

Proof. As above, Rpjq
A is identified with Ap

0 � Aq
1 and consequently a map Rpjq

A -Rmjn
A consists of a list

of m maps Ap
0 � Aq

1-A0 and n maps Ap
0 � Aq

1-A1. In the same way, UA is identified with jUj � A0

3 p

� Aq
1.

Let F ¼ ðF1; . . . ; FmþnÞ be as in the hypothesis. A formal series Fk determines a map jUj � A0

3 p

�

Aq
1D Ap

0 � Aq
1-A in a natural way, defining

Fkðx1; . . . ; xp; y1; . . . ; yqÞ :¼
X
n2Np

JDf1;...;qg

f k
n;Jðex1; . . . ; expÞx

3 n
yJ :

The parity of its image is the same as that of Fk. Then, in view of the restrictions imposed on the first

m, Fk given by the equation above, F determines a map UA-VA and, varying A 2 SWA, a natural

transformation Uð	Þ-Vð	Þ, as it is easily checked.

Let us now suppose that að	Þ:Uð	Þ-Vð	Þ is a natural transformation. We will see that it is determined

by an unique F in the way just explained.

Let A be a super-Weil algebra of height r and

xA ¼ ðex1 þ x1
3

; . . . ; exp þ xp
3

; y1; . . . ; yqÞ 2 Ap
0 � Aq

1 ffi Rpjq
A

with exA 2 jUj. Let us consider the super-Weil algebra

Â :¼ ðR½z1; . . . ; zp� � Lðz1; . . . ; zqÞÞ=Ms
ð3:4Þ

with s4r (M is as usual the maximal ideal of polynomials without constant term) and the Â-point

yexA
:¼ ðex1 þ z1; . . . ; ex1 þ zp; z1; . . . ; zqÞ 2 Â

p

0 � Â
q

1 ffi Rpjq

Â
.

A homomorphism between two super-Weil algebras is clearly fixed by the images of a set of

generators, but this assignment must be compatible with the relations between the generators. The

following assignment is possible due to the definition of Â. If rxA
: Â-A denotes the map rxA

ðziÞ ¼ xi

3

,

rxA
ðzjÞ ¼ yj, then clearly r

xA
ðyexA
Þ ¼ xA.
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Let ðaÂ Þk with 1 � k � mþ n be a component of aÂ , and let ðaÂ ÞkðyexA
Þ ¼

P
n;J ak

n;JðexAÞz
nzJ with ak

n;JðexAÞ 2

R and ða1
0;ðexAÞ; . . . ; a

m
0;ðexAÞÞ 2 jV j; the sum is on jJj even (resp. odd), if k � m (resp. k4m). Due to the

functoriality of að	Þ

ðaAÞkðxAÞ ¼ ðaAÞk 3 rxA
ðyexA
Þ ¼ rxA

3 ðaÂ ÞkðyexA
Þ ¼

X
n;J

ak
n;JðexAÞx

3 n
yJ ;

so that there exists a nonunique F such that FðxAÞ ¼ aAðxAÞ. Moreover FðxA0 Þ ¼ aA0 ðxA0 Þ for each A0%A

and xA0 2 UA0 (it is sufficient to use the projection A-A0). If F 0 is another list of formal series with

this property, there exists a super-Weil algebra A00 such that FðxA00 Þ 6¼ F 0ðxA00 Þ for some xA00 2 UA00 .

Indeed if a component Fk differs in f k
n;J , it is sufficient to consider A00 :¼ R½pjq�=Ms with

s4maxðjnj; qÞ. &

4. The Weil–Berezin functor and the Schwarz embedding

In the previous section we saw that the functor B:SMan-½SWA;Set�, BðMÞ:SWA-Set, A 7!MA

does not define a full and faithful embedding of SMan in ½SWA;Set�. Roughly speaking, the root of
such a difficulty can be traced to the fact that the functor BðMÞ:SWA-Set looks only to the local
structure of the supermanifold M, hence it loses all the global information. The following heuristic
argument gives a hint on how we can overcome such problem.

It is well known (see, for example, [8, Section 1.7]) that if V ¼ V0 � V1 and W ¼W0 �W1 are
supervector spaces, there is a bijective correspondence between linear maps V-W and functorial
families of L0-linear maps between ðL� VÞ0 and ðL�WÞ0, for each Grassmann algebra L. This result
goes under the name of even rule principle. Since vector spaces are local models for manifolds, the
even rule principle seems to suggest that each MA should be endowed with a local structure of
A0-module. This vague idea is made precise with the introduction of the category A0Man of
A0-smooth manifolds.

Definition 4.1. Fix an even commutative finite dimensional algebra A0 and let L be an A0�module,
finite dimensional as a real vector space. Let M be a manifold. An L-chart on M is a pair ðU;hÞwhere U

is open in M and h:U-L is a diffeomorphism onto its image. M is an A0-manifold if it admits an
L-atlas. By this we mean a family fðUi;hiÞgi2A where fUig is an open covering of M and each ðUi;hiÞ is an
L-chart, such that the differentials

dðhi 3 h�1
j ÞhjðxÞ

: ThjðxÞðLÞ ffi L�!Lffi ThiðxÞðLÞ

are isomorphisms of A0-modules for all i, j and x 2 Ui \ Uj.

If M and N are A0-manifolds, a morphism j:M-N is a smooth map whose differential is A0-linear at

each point. We also say that such morphism is A0-smooth. We denote by A0Man the category of A0-

manifolds.

We define also the category A0Man in the following way. The objects of A0Man are manifolds over

generic finite dimensional commutative algebras. The morphisms in the category are defined as

follows. Denote by A0 and B0 two commutative finite dimensional algebras, and let r:A0-B0 be an

algebra morphism. Suppose M and N are A0 and B0 manifolds, respectively, we say that a morphism

j:M-N is r-smooth if j is smooth and ðdjÞxðavÞ ¼ rðaÞðdjÞxðvÞ for each x 2 M, v 2 TxðMÞ, and a 2 A0

(see [21] for more details).

The above definition is motivated by the following theorems. In order to ease the exposition we
first give the statements of the results postponing their proofs to later.

Theorem 4.2. Let M be a smooth supermanifold, and let A 2 SWA.
1.
 MA can be endowed with a unique A0-manifold structure such that, for each open subsupermanifold U

of M and s 2 OMðUÞ the map defined by ŝ:UA-A, xA/xAðsÞ, is A0-smooth.

2.
 If j:M-N is a supermanifold morphism, then jA:MA-NA, xA/xA 3j� is an A0-smooth morphism.



ARTICLE IN PRESS
L. Balduzzi et al. / Expositiones Mathematicae 28 (2010) 201–217210
3.
 If B is another super-Weil algebra and r:A-B is an algebra morphism, then r:MA-MB, xA/r 3 xA is a

rjA0
-smooth map.

The above theorem says that supermanifold morphisms give rise to morphisms in the A0Man

category. From this point of view the next definition is quite natural.

Definition 4.3. We call 1SWA;A0ManU the subcategory of ½SWA;A0Man� whose objects are the
same and whose morphisms að	Þ are the natural transformations F-G, with F ;G:SWA-A0Man,
such that aA:F ðAÞ-GðAÞ is A0-smooth for each A 2 SWA.

Theorem 4.2 allows us to give more structure to the image category of the functor of A-points.
More precisely we have the following definition, which is the central definition in our treatment of
the local functor of points.

Definition 4.4. Let M be a supermanifold. We define the Weil–Berezin functor of M as

Mð	Þ:SWA�!A0Man; A/MA ð4:1Þ

and the Schwarz embedding as

S:SMan�! SWA;A0Man½ �½ �; M/Mð	Þ: ð4:2Þ

We can now state one of the main results in this paper.

Theorem 4.5. S is a full and faithful embedding, i.e. if M and N are two supermanifolds, and Mð	Þ and Nð	Þ
their Weil–Berezin functors, then

HomSManðM;NÞ ffi Hom SWA;A0Man½ �½ �ðMð	Þ;Nð	ÞÞ:

Observation 4.6. If we considered the bigger category ½SWA;A0Man� instead of 1SWA;A0ManU, the
above theorem is no longer true. In Example 3.15 we examined a natural transformation between
functors from SWA to Set, which does not come from a supermanifold morphism. If, in the same
example, j is chosen to be smooth, we obtain a morphism in ½SWA;A0Man� that is not in
1SWA;A0ManU. Indeed, it is not difficult to check that if pA:A-A is given by a/ea, then aA (in the
example) is pA0

-linear.

We now examine the proofs of Theorems 4.2 and 4.5. First we need to prove Theorem 4.5 in the

case of two superdomains U and V in Rpjq and Rmjn, respectively (Lemma 4.7). As usual, if A is a super-

Weil algebra, UA and VA are identified with jUj � A0

3 p

� Aq
1 and jV j � A0

3 m

� An
1 (see Observation 3.14).

Then they have a natural structure of open subsets of A0-modules. Next lemma is due to Voronov in
[24] and it is the local version of Theorem 4.5.

Lemma 4.7. A natural transformation að	Þ:Uð	Þ-Vð	Þ comes from a supermanifold morphism U-V if and

only if aA:UA-VA is A0-smooth for each A.

Proof. Due to Proposition 3.18 we know that að	Þ is determined by m even and n odd formal series of
the form Fk ¼

P
n;J f k

n;JX
nYJ with f k

n;J arbitrary functions in p variables satisfying suitable conditions.
Moreover as we have seen in the discussion before Example 3.15 a supermanifold morphism j:U-V

gives rise to a natural transformation jA:UA-VA whose components are of the form of Eq. (3.3). Let
us suppose that aA is A0-smooth. This clearly happens if and only if all its components are A0-smooth
and the smoothness request for all A forces all coefficients f k

n;J to be smooth. Let ðaAÞk be
the k-th component of aA and let i 2 f1; . . . ; pg. We want to study o:A0-Aj, oðxiÞ :¼ ðaAÞk

ðx1; . . . ; xi; . . . ; xp; y1; . . . ; yqÞ, supposing the other coordinates fixed (j ¼ 0 if 1 � k � p or j ¼ 1 if
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pok � pþ q). Since xi

3

2 A0 commutes with all elements of A,

oðxiÞ ¼
X
tZ0

atðexiÞxi

3 t
; atðexiÞ :¼

X
n;J
ni¼t

f k
n;Jðex1; . . . ; exi; . . . ; expÞx

3 ðn�tdiÞ

yJ
ð4:3Þ

(tdi is the element of Np with t at the i-th component and 0 elsewhere). If y ¼ ey þ y
3

2 A0 and o is A0-
smooth

oðxi þ yÞ � oðxiÞ ¼ doxi
ðyÞ þ oðyÞ ¼ ðey þ y

3

Þdoxi
ð1AÞ þ oðyÞ ð4:4Þ

(where 1A is the unit of A). On the other hand, from Eq. (4.3) and defining

at
0 ðexiÞ :¼

X
n;J
ni¼t

@if
k
n;Jðex1; . . . ; exi; . . . ; expÞx

3 ðn�tdiÞ

yJ
ð4:5Þ

(@i denotes the partial derivative with respect to the i-th variable), we have

oðxi þ yÞ � oðxiÞ ¼
X
tZ0

atðexi þ eyÞðxi

3

þ y
3

Þ
t
�
X
tZ0

atðexiÞxi

3 t
¼
X
tZ0

ðat
0 ðexiÞeyxi

3 t
þ atðex iÞtxi

3 t�1
y
3

þ oðyÞÞ

¼ eyX
tZ0

at
0 ðexiÞxi

3 t
þ y

3X
tZ0

ðt þ 1Þatþ1ðexiÞxi

3 t
þ oðyÞ: ð4:6Þ

Thus, comparing Eqs. (4.4) and (4.6), we get that the identity

ðey þ y
3

Þdoxi
ð1AÞ ¼ eyX

tZ0

at
0 ðex iÞxi

3 t
þ y

3X
tZ0

ðt þ 1Þatþ1ðex iÞxi

3 t

must hold and, consequently, also the following relations must be satisfied:X
tZ0

at
0 ðex iÞxi

3 t
¼
X
tZ0

ðt þ 1Þatþ1ðexiÞxi

3 t

and then, from Eqs. (4.3) and (4.5),X
n;J

@if
k
n;Jðex1; . . . ; expÞx

3 n
yJ
¼
X
n;J

ðni þ 1Þf k
nþdi ;J
ðex1; . . . ; expÞx

3 n
yJ :

Let us fix n 2 Np and JDf1; . . . ; qg. If A ¼ R½pjq�=Ms with s4maxðjnj þ 1; qÞ (M is as usual the

maximal ideal of polynomials without constant term), we note that necessarily, due to the

arbitrariness of ðx1; . . . ; yqÞ,

@if
k
n;J ¼ ðni þ 1Þf k

nþdi ;J

and, by recursion, ðaAÞk is of the form of (3.3) with sk;J ¼ f k
0;J .

Conversely, let ðaAÞk be of the form of Eq. (3.3). By linearity, it is A0-linear if and only if it is A0-linear

in each variable. It is A0-linear in the even variables for what has been said above and in the odd

variables since it is polynomial in them. &

In particular the above discussion shows also that any superdiffeomorphism U-U gives rise, for
each A, to an A0-smooth diffeomorphism UA-UA and then each UA admits a canonical structure of
A0-manifold.

We now use the results obtained for superdomains in order to prove Theorems 4.2 and 4.5 in the
general supermanifold case.

Proof of Theorem 4.2. Let fðUi;hiÞg be an atlas over M and pjq the dimension of M. Each chart ðUi;hiÞ

of such an atlas induces a chart ððUiÞA; ðhiÞAÞ, over MA given by ðhiÞA: ðUiÞA-Rpjq
A , xA/xA 3 h�i . The

coordinate changes are easily checked to be given, with some abuse of notation, by ðhi 3 h�1
j ÞA, which

are A0-smooth due to Lemma 4.7. The uniqueness of the A0-manifold structure is clear. This proves
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the first point. The other two points concern only the local behavior of the considered maps and are
clear in view of Lemma 4.7 and Observation 3.14. &

Proof of Theorem 4.5. Lemma 4.7 accounts for the case in which M and N are superdomains. For the
general case, let us suppose we have a 2 Hom1SWA;A0ManUðMð	Þ;Nð	ÞÞ. Fixing a suitable atlas of both
supermanifolds, we obtain, in view of Lemma 4.7, a family of local morphisms. Such a family will give
a morphism M-N if and only if they do not depend on the choice of the coordinates. Let us suppose
that U and V are open subsupermanifolds of M and N, respectively, U ffi Rpjq, V ffi Rmjn, such that
aRðjUjÞDjV j, and hi:U-Rpjq, ki:V-Rmjn, i ¼ 1;2 are two different choices of coordinates on U and V,
respectively. The natural transformations

ðĵ iÞð	Þ :¼ ðkiÞð	Þ 3 ðað	ÞÞjUð	Þ 3 ðh
�1
i Þð	Þ:R

pjq
ð	Þ
�!Rmjn

ð	Þ

give rise to two morphisms ĵi:R
pjq-Rmjn. If ji :¼ k�1

i
3 ĵi

3 hi:U-V
, we have j1 ¼ j2 since ðjiÞð	Þ ¼

ðað	ÞÞjUð	Þ and two morphisms that give rise to the same natural transformation on a superdomain are
clearly equal. &

Next proposition states that the Schwarz embedding preserves products and, in consequence,
group objects.

Proposition 4.8. For all supermanifolds M and N,

SðM � NÞ ffi SðMÞ � SðNÞ:

Moreover SðR0j0
Þ is a terminal object in the category 1SWA;A0ManU.

Proof. The fact that ðM � NÞA ffi MA � NA for all A can be checked easily. Indeed, let zA 2 ðM � NÞA
with ezA ¼ ðx; yÞ, we have that OðMÞ and OðNÞ naturally inject in OðM � NÞ. Hence zA defines, by
restriction, two A0-points xA 2 MA and yA 2 NA. Using Proposition 3.13 and rectangular coordinates
over M � N it is easy to check that such a correspondence is injective, and is also a natural
transformation. Conversely, if xA 2 MA is near x and yA 2 NA is near y (see Observation 3.10), they
define a map zA:OðM � NÞ-A through zAðs1 � s2Þ ¼ xAðs1Þ 	 yAðs2Þ. Using again Proposition 3.13, it is
not difficult to check that this requirement uniquely determines a superalgebra morphism OðM �
NÞ-A and that this correspondence defines an inverse for the morphism ðM � NÞð	Þ-Mð	Þ � Nð	Þ
defined above. Along the same lines we see that a similar condition for the morphisms holds. Finally
SðR0j0

Þ is a terminal object, since R0j0
A ¼ R0 for all A. &

Corollary 4.9. The Weil–Berezin functor of a super-Lie group (i.e. a group object in the category of

supermanifolds) takes values in the category of A0-smooth Lie groups.

We now turn to representability questions.

Definition 4.10. We say that a functor F :SWA-A0Man is representable if there exists a
supermanifold MF such that F ffi ðMF Þð	Þ in 1SWA;A0ManU.

Notice that we are abusing the category terminology, that considers a functor F to be
representable if and only if F is isomorphic to the Hom functor.

Due to Theorem 4.5, if a functor F is representable, then the supermanifold MF is unique up to
isomorphism.

Since F ðRÞ is a manifold, we can consider an open set UDF ðRÞ. If A is a super-Weil algebra and

pr
A
:¼ F ðprAÞ, where prA is the projection A-R, pr�1

A
ðUÞ is an open A0-submanifold of F ðAÞ.

Moreover, if r:A-B is a superalgebra map, since prB 3 r ¼ prA, r :¼ F ðrÞ can be restricted to

r
pr�1

A
ðUÞ
:pr�1

A
ðUÞ-pr�1

B
ðUÞ. We can hence define the functor FU :SWA-A0Man, A/pr�1

A
ðUÞ,

r/r
pr�1

A
ðUÞ

.

Proposition 4.11 (Representability). A functor F :SWA-A0Man is representable if and only if there

exists an open cover fUig of F ðRÞ such that FUi
ffi ðV

_

iÞð	Þ with V
_

i superdomains in a fixed Rpjq.



ARTICLE IN PRESS
L. Balduzzi et al. / Expositiones Mathematicae 28 (2010) 201–217 213
Proof. The necessity is clear due to the very definition of supermanifold. Let us prove sufficiency. We
have to build a supermanifold structure on the topological space jF ðRÞj. Let us denote by
ðhiÞð	Þ:FUi

-ðV
_

iÞð	Þ the natural isomorphisms in the hypothesis. On each Ui, we can put a
supermanifold structure U

_

i, defining the sheaf O
U
_

i

:¼ ½ðh�1
i ÞR��OV

_

i

. Let ki be the isomorphism
U
_

i-V
_

i and ðkiÞð	Þ the corresponding natural transformation. If Ui;j :¼ Ui \ Uj, consider the natural
transformation ðhi;jÞð	Þ defined by the composition

ðk�1
i Þð	Þ 3 ðhiÞð	Þ 3 ðh

�1
j Þð	Þ 3 ðkjÞð	Þ: ðUi;j;OU

_

j jUi;j

Þð	Þ�!ðUi;j;OU
_

i jUi;j

Þð	Þ;

where in order to avoid heavy notations we did not explicitly indicate the appropriate restrictions.

Each ðhi;jÞð	Þ is a natural isomorphism in 1SWA;A0ManU and, due to Lemma 4.7, it gives rise to a

supermanifold isomorphism hi;j: ðUi;j;OU
_

j jUi;j

Þ-ðUi;j;OU
_

i jUi;j

Þ. The hi;j satisfy the cocycle conditions hi;i ¼ 1

and hi;j 3 hj;k ¼ hi;k (restricted to Ui \ Uj \ Uk). This follows from the analogous conditions satisfied by

ðhi;jÞA for each A 2 SWA. The supermanifolds U
_

i can hence be glued (for more information about the

construction of a supermanifold by gluing see for example [8, Chapter 2] or [23, Section 4.2]). Denote
by MF the manifold thus obtained. Moreover it is clear that F is represented by the supermanifold

MF . Indeed, one can check that the various ðhiÞð	Þ glue together and give a natural isomorphism

hð	Þ:F-ðMF Þð	Þ. &

Remark 4.12. The supermanifold MF admits a more synthetic characterization. In fact it is easily
seen that jMF j :¼ jF ðRÞj and OMF ðUÞ :¼ Hom1SWA;A0ManUðFU ;R

1j1
ð	Þ
Þ.

We end this section giving a brief exposition of the original approach of Schwarz and Voronov (see
[22,24]). In their work they considered only Grassmann algebras instead of all super-Weil algebras.
There are some advantages in doing so: Grassmann algebras are fewer, moreover, as we noticed in
Remark 3.7, they are the sheaf of the superdomains R0jq and so the restriction to Grassmann algebras
of the local functors of points can be considered as a true restriction of the functor of points. Finally
the use of Grassmann algebras is also used by Schwarz to formalize the language commonly used in
physics.

On the other hand the use of super-Weil algebras has the advantage that we can perform
differential calculus on the Weil–Berezin functor as we shall see in Section 5. Indeed Proposition 5.3
is valid only for the Weil–Berezin functor approach, since not every point supported distribution can
be obtained using only Grassmann algebras. Also Theorem 5.5 and its consequences are valid only in
this approach, since purely even Weil algebras are considered.

If M is a supermanifold and K denotes the category of finite dimensional Grassmann algebras, we
can consider the two functors

K�!Set; L/ML and K�!A0Man; L/ML

in place of those already introduced in the context of A-points. As in the case of A-points, with a slight
abuse of notation we denote by ML the L-points for each of the two different functors. What we have
seen previously still remains valid in this setting, provided we substitute systematically SWA with K;
in particular Theorems 4.2 and 4.5 still hold true. They are based on Proposition 3.18 and Lemma 4.7
that we state here in their original formulation as it is contained in [24].

Proposition 4.13. The set of natural transformations between L/Rpjq
L and L/Rmjn

L is in bijective

correspondence with ðApjqðR
p
ÞÞ

m
0 � ðApjqðR

p
ÞÞ

n
1. A natural transformation comes from a supermanifold

morphism Rpjq-Rmjn if and only if it is L0-smooth for each Grassmann algebra L.

Proof. See proofs of Proposition 3.18 and Lemma 4.7. The only difference is in the first proof. Indeed
the algebra (3.4) is not a Grassmann algebra. So, if A ¼ Ln ¼ Lðe1; . . . ; enÞ, we have to consider Â :¼

L2pðn�1Þþq ¼ LðZi;a; xi;a; zjÞ (1 � i � p, 1 � j � q, 1 � a � n� 1). A Ln-point can be written as

xLn ¼

 
u1 þ

X
aob

eaebk1;a;b; . . . ;up þ
X
aob

eaebkp;a;b; k1; . . . ; kq

!
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with ui 2 R, ki;a;b 2 ðLnÞ0 and kj 2 ðLnÞ1. Its image under a natural transformation can be obtained
taking the image of the L2pðn�1Þþq-point

yexLn

:¼ u1 þ
Xn�1

a¼1

Z1;ax1;a; . . . ;up þ
Xn�1

a¼1

Zp;axp;a; z1; . . . ; zq

 !

and applying the map L2pðn�1Þþq-Ln, Zi;a/ea, xi;a/
P

b4aebki;a;b, zj/kj to each component. The
nilpotent part of each even component of yexLn

can be viewed as a formal scalar product

ðZi;1; . . . ; Zi;n�1Þ 	 ðxi;1; . . . ; xi;n�1Þ ¼
Pn�1

a¼1 Zi;axi;a. This is stable under formal rotations and the same

must be for its image. So Zi;a and xi;a can occur in the image only as a polynomial in
P

a Zi;axi;a. In other

words the image of yexLn
(and then of xLn ) is polynomial in the nilpotent part of the coordinates. &
5. Applications to differential calculus

In this section we discuss some aspects of superdifferential calculus on supermanifolds using the
language of the Weil–Berezin functor. In particular we establish a relation between the A-points of a
supermanifold M and the finite support distributions over it, which play a crucial role in Kostant’s
seminal approach to supergeometry. We also prove the superversion of the Weil transitivity theorem,
which is a key tool for the study of the infinitesimal aspects of supermanifolds.

Let ðjMj;OMÞ be a supermanifold of dimension pjq and x 2 jMj. As in [12, Section 2.11], let us
consider the distributions with support at x. In what follows we make a full use of Observation 3.10
which allows us to view any xA 2 MA as a map xA : OM;exA

�!A.

Definition 5.1. Let OðMÞ0 be the algebraic dual of the superalgebra of global sections of M. The
distributions with finite support over M are defined as

OðMÞ� :¼ fv 2 OðMÞ0jvðJÞ ¼ 0; with J ideal of finite codimensiong:

We define the distribution of order k, with support at x 2 eM and the distributions with support at x as follows:

Ok�
M;x :¼ fv 2 OðMÞ0jvðMk

M;xÞ ¼ 0g; O�M;x :¼
[1
k¼0

Ok�
M;x;

whereMM;x denotes the maximal ideal of sections whose evaluation at x is zero. Clearly Ok�
M;xDOkþ1�

M;x .

Observation 5.2. If x1; . . . ; xp; W1; . . . ; Wq are coordinates in a neighborhood of x, a distribution of order
k is of the form

v ¼
X
n2Np

JDf1;...;qg
jnjþjJj�k

an;Jevx
@jnj

@xn
@jJj

@WJ

with an;J 2 R. This is immediate since Ok�
M;x ffi C

1;�
M;x � LðW1; . . . ;WqÞ

� and C1;�M;x ¼
P

an;Jevx@jnj=@xn because
of the classical theory.

Moreover it is also possible to prove that for each element v 2 OðMÞ� there exists a finite number of

points xi in eM such that v ¼
P

i vxi
with vxi

denoting a nonzero distribution with support at xi.

Proposition 5.3. Let A be a super-Weil algebra and A� its dual. Let xA:OM;x-A be an A-point near x 2 jMj

(see Observation 3.10). If o 2 A�, then o 3 xA 2 O�M;x. Moreover each element ofOk�
M;x can be obtained in this

way with A ¼ OM;x=Mkþ1
x (see Lemma 3.5).

Proof. If A has height k, since xAðMxÞDA
3

, o 3 xA 2 Ok�
M;x. If vice versa v 2 Ok�

M;x, it factorizes through
OM;x-

prOM;x=Mkþ1
x -

o
R with a suitable o. &
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In the next observation we relate the finite support distributions and their interpretation via the
Weil–Berezin functor, to the tangent superspace.

Observation 5.4. Let us first recall that the tangent superspace to a smooth supermanifold M at a
point x is the supervector space consisting of all the evx-derivations of OðMÞ:

TxðMÞ :¼ fv:OM�!Rjvðf 	 gÞ ¼ vðf ÞevxðgÞ þ evxðf ÞvðgÞg:

As in the classical setting we can recover the tangent space by using the super-Weil algebra of

superdual numbers A ¼ Rðe; eÞ ¼ R½e; e�=/e2; ee; e2S (see Example 3.3). If xA 2 MA is near x and

s; t 2 OðMÞ, we have xAðstÞ ¼ evxðstÞ þ xeðstÞeþ xeðstÞe with xe; xe:OðMÞ-R. On the other hand

xAðstÞ ¼ xAðsÞxAðtÞ ¼ evxðsÞevxðtÞ þ ðxeðsÞevxðtÞ þ evxðsÞxeðtÞÞeþ ðxeðsÞevxðtÞ þ evxðsÞxeðsÞÞe:

Then xe (resp. xe) is a derivation that is zero on odd (resp. even) elements and so xe 2 TxðMÞ0 (resp.

xe 2 TxðMÞ1). The map

TðMÞ :¼ T
x2jMj

TxðMÞ�!MRðe;eÞ; v0 þ v1/evx þ v0eþ v1e

(with vi 2 TxðMÞi) is an isomorphism of vector bundles over eM ffi MR, where eM is the classical

manifold associated with M, as in Section 2 (see also [11, Chapter 8] for an exhaustive exposition in

the classical case). The reader should not confuse TðMÞ, which is the classical bundle obtained by the

union of all the tangent superspaces at the different points of jMj, with T M , which is the supervector

bundle of all the derivations of OM .

We now want to give a brief account on how we can perform differential calculus using the
language of A-points. The essential ingredient is the superversion of the transitivity theorem.

Theorem 5.5 (Weil transitivity theorem). Let M be a smooth supermanifold, A a super-Weil algebra and

B0 a purely even Weil algebra, both real. Then ðMAÞB0
ffi MA�B0

as ðA0 � B0Þ-manifolds.

Proof. Let OMA
and OA

MA
be the sheaves of smooth maps from the classical manifold MA to R and A,

respectively. Clearly OA
MA
ffi A�OMA

through the map f/
P

iai �/a�i ; fS, where faig is a
homogeneous basis of A.

Consider now the map t:OðMÞ-OðMAÞ
A
ffi A�OðMAÞ, tðsÞ ¼ ŝ, where, if s 2 OðMÞ, ŝ: yA/yAðsÞ for

all yA 2 MA.

Recalling that

ðMAÞB0
:¼ HomSAlgðOðMAÞ;B0Þ; MA�B0

:¼ HomSAlgðOðMÞ;A� B0Þ;

we can define a map x: ðMAÞB0
-MA�B0

, xðXÞ: s/ð1A � XÞtðsÞ. This definition is well-posed since xðXÞ is

a superalgebra map, as one can easily check. Fix now a chart ðU;hÞ, h:U-Rpjq, in M and denote by

ðUA;hAÞ, ððUAÞB0
; ðhAÞB0

Þ and ðUA�B0
;hA�B0

Þ the corresponding charts lifted to MA, ðMAÞB0
and MA�B0

,

respectively. If fe1; . . . ; epþqg is a homogeneous basis of Rpjq, we have (here, according to Observation

3.14, we tacitly use the identification Rpjq
A ffi ðA�Rpjq

Þ0):

ðhAÞB0
: ðUAÞB0

�!ðA� B0 �Rpjq
Þ0; X/

X
i;j

ai � Xðh�Aða
�
i � e�j ÞÞ � ej;

hA�B0
:UA�B0

�!ðA� B0 �Rpjq
Þ0; Y/

X
k

Yðh�ðe�kÞÞ � ek:

Then, since xðXÞðh�ðe�kÞÞ ¼ ð1� XÞð gh�ðe�kÞÞ ¼ ð1� XÞð
P

iai � h�Aða
�
i � e�kÞÞ, we have hA�B0

3 x 3 ðhAÞ
�1
B0
¼

1ðhAÞB0
ððUAÞB0

Þ. This entails in particular that x is a local ðA0 � B0Þ-diffeomorphism. The fact that it is a

global diffeomorphism follows noticing that it is fibered over the identity. &

We want to briefly explain some applications of the Weil transitivity theorem.
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Definition 5.6. If xA 2 MA, we define the space of xA-linear derivations of M (xA-derivations for short)
as the A-module

DerxA
ðOðMÞ;AÞ :¼ fX 2 HomðOðMÞ;AÞj8s; t 2 OðMÞ; XðstÞ ¼ XðsÞxAðtÞ þ ð�1ÞpðXÞpðsÞxAðsÞXðtÞg:

where Hom denotes the morphisms which are not necessarily preserving parity.

Proposition 5.7. The tangent superspace at xA in MA canonically identifies with DerxA
ðOðMÞ;AÞ0.

Proof. If RðeÞ is the algebra of dual number (see Example 3.3), ðMAÞRðeÞ is isomorphic, as a vector
bundle, to the tangent bundle TðMAÞ, as we have seen in Observation 5.4. Due to Theorem 5.5, we thus
have an isomorphism

x: TðMAÞ ffi ðMAÞRðeÞ�!MA�RðeÞ:

On the other hand, it is easy to see that xA�RðeÞ 2 MA�RðeÞ can be written as xA�RðeÞ ¼ xA � 1þ vxA
� e,

where xA 2 MA and vxA
:OðMÞ-A is a parity preserving map satisfying the following rule for all

s; t 2 OðMÞ:

vxA
ðstÞ ¼ vxA

ðsÞxAðtÞ þ xAðsÞvxA
ðtÞ:

Then each tangent vector on MA at xA canonically identifies a even xA-derivation and, vice versa, each
such derivation canonically identifies a tangent vector at xA. &

We conclude studying more closely the structure of DerxA
ðOðMÞ;AÞ. The following proposition

describes it explicitly.
Let K be a right A-module and let L be a left B-module for some algebras A and B. Suppose

moreover that an algebra morphism r:B-A is given. One defines the r-tensor product K�rL as the
quotient of the vector space K � L with respect to the equivalence relation k� b 	 l�k 	 rðbÞ � l, for all
k 2 K , l 2 L and b 2 B.

Moreover, if M is a supermanifold, we denote by T M the supertangent bundle of M, i.e. the sheaf
defined by T M :¼ DerðOMÞ.

Proposition 5.8. Let M be a smooth supermanifold and let x 2 jMj. Denote T M;x the germs of vector fields

at x. One has the identification of left A-modules

DerxA
ðOðMÞ;AÞ ffi A� TexA

ðMÞ ffi A�xA
T

M;exA
:

This result is clearly local so that it is enough to prove it in the case M is a superdomain. Next
lemma does this for the first identification. The second descends from Eq. (5.1), since
T

M;exA
¼ O

M;exA
� TexA

ðMÞ, where O
M;exA

denotes the stalk at exA.

Lemma 5.9. Let U be a superdomain in Rpjq with coordinate system fxi; Wjg, A a super-Weil algebra, and

xA 2 UA. To any list of elements

f ¼ ðf1; . . . ; fp; F1; . . . ; FqÞ; fi; Fj 2 A

there corresponds an xA-derivation Xf :OðUÞ-A given by

Xf ðsÞ ¼
X

i

fixA
@s

@xi

� �
þ
X

j

FjxA
@s

@Wj

� �
: ð5:1Þ

Xf is even (resp. odd) if and only if the fi are even (resp. odd) and the Fj are odd (resp. even). Moreover any

xA-derivation is of this form for a uniquely determined f .

Proof. That Xf is a xA-derivation is clear. That the family f is uniquely determined is also immediate
from the fact that they are the value of Xf on the coordinate functions.
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Let now X be a generic xA-derivation. Define fi ¼ XðxiÞ, Fj ¼ XðWjÞ, and

Xf ¼ fi xA 3
@

@xi
þ Fj xA 3

@

@Wj
:

Let D ¼ X � Xf . Clearly DðxiÞ ¼ DðWjÞ ¼ 0. We now show that this implies D ¼ 0. Let s 2 OðUÞ. Due to

Lemma 3.12, for each x 2 U and for each integer k 2 N there exists a polynomial P in the coordinates

such that s� P 2Mkþ1
U;x . Due to Leibniz rule Dðs� PÞ 2 A

3 k

and, since clearly DðPÞ ¼ 0, DðsÞ is in A
3 k

for

arbitrary k. So we are done. &

Corollary 5.10. We have: TxA
MA ffi ðA� TexA

ðMÞÞ0 ffi ðA�xA
T

M;exA
Þ0.
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