2,931 research outputs found

    Distributed orchestration of user interfaces

    Get PDF
    Workflow management systems focus on the coordination of people and work items, service composition approaches on the coordination of service invocations, and, recently, web mashups have started focusing on the integration and coordination of pieces of user interfaces (UIs), e.g., a Google map, inside simple web pages. While these three approaches have evolved in a rather isolated fashion although they can be seen as evolution of the componentization and coordination idea from people to services to UIs in this paper we describe a component-based development paradigm that conciliates the core strengths of these three approaches inside a single model and language. We call this new paradigm distributed UI orchestration, so as to reflect the mashup-like and process-based nature of our target applications. In order to aid developers in implementing UI orchestrations, we equip the described model and language with suitable design, deployment, and runtime instruments, covering the whole life cycle of distributed UI orchestrations. © 2011 Elsevier Ltd. All rights reserved

    Using formal methods to develop WS-BPEL applications

    Get PDF
    In recent years, WS-BPEL has become a de facto standard language for orchestration of Web Services. However, there are still some well-known difficulties that make programming in WS-BPEL a tricky task. In this paper, we firstly point out major loose points of the WS-BPEL specification by means of many examples, some of which are also exploited to test and compare the behaviour of three of the most known freely available WS-BPEL engines. We show that, as a matter of fact, these engines implement different semantics, which undermines portability of WS-BPEL programs over different platforms. Then we introduce Blite, a prototypical orchestration language equipped with a formal operational semantics, which is closely inspired by, but simpler than, WS-BPEL. Indeed, Blite is designed around some of WS-BPEL distinctive features like partner links, process termination, message correlation, long-running business transactions and compensation handlers. Finally, we present BliteC, a software tool supporting a rapid and easy development of WS-BPEL applications via translation of service orchestrations written in Blite into executable WS-BPEL programs. We illustrate our approach by means of a running example borrowed from the official specification of WS-BPEL

    Semantically Resolving Type Mismatches in Scientific Workflows

    No full text
    Scientists are increasingly utilizing Grids to manage large data sets and execute scientific experiments on distributed resources. Scientific workflows are used as means for modeling and enacting scientific experiments. Windows Workflow Foundation (WF) is a major component of Microsoft’s .NET technology which offers lightweight support for long-running workflows. It provides a comfortable graphical and programmatic environment for the development of extended BPEL-style workflows. WF’s visual features ease the syntactic composition of Web services into scientific workflows but do nothing to assure that information passed between services has consistent semantic types or representations or that deviant flows, errors and compensations are handled meaningfully. In this paper we introduce SAWSDL-compliant annotations for WF and use them with a semantic reasoner to guarantee semantic type correctness in scientific workflows. Examples from bioinformatics are presented

    Service-oriented SCADA and MES supporting petri nets based orchestrated automation systems

    Get PDF
    The fusion of mechatronics, communication, control and information technologies has allowed the introduction of new automation paradigms into the production environment. The virtualization of the production environment facilitated by the application of the service-oriented architecture paradigm is one of major outcomes of that fusion. On one side, service-oriented automation works based on exposition, subscription and use of automation functions represented by e.g. web services. On the other side, the evolution of traditional industrial systems, particularly in the production area, as a response to architectural and behavioural (functional) viewpoints of the ISA95 enterprise architecture, where a close inter-relation between SCADA, DCS and MES systems facilitate the management and control of the production environment. Automation functions are increasingly performed by the composition and orchestration of services. Among other methods, the application of formal Petri net based orchestration approaches is being industrially established. This paper presents the major characteristics that such a Petri net based orchestration presents when it is developed, implemented and deployed in an industrial environmentThe research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 258682 (IMC-AESOP: ArchitecturE for Service-Oriented Process - Monitoring and Control) and 224053 (CONET: Cooperating Objects NETwork of excellence)

    Industrial agents in the era of service-oriented architectures and cloudbased industrial infrastructures

    Get PDF
    The umbrella paradigm underpinning novel collaborative industrial systems is to consider the set of intelligent system units as a conglomerate of distributed, autonomous, intelligent, proactive, fault-tolerant, and reusable units, which operate as a set of cooperating entities (Colombo and Karnouskos, 2009). These entities are forming an evolvable infrastructure, entering and/or going out (plug-in/plugout) in an asynchronous manner. Moreover, these entities, having each of them their own functionalities, data, and associated information are now connected and able to interact. They are capable of working in a proactive manner, initiating collaborative actions and dynamically interacting with each other in order to achieve both local and global objectives.info:eu-repo/semantics/publishedVersio
    corecore