
Service-oriented SCADA and MES Supporting Petri
nets based Orchestrated Automation Systems

Armando W. Colombo1,2, J. Marco Mendes1, Paulo Leitão3,4, Stamatis Karnouskos5
1 Schneider Electric Automation GmbH, Steinheimer Str. 117, D-63500 Seligenstadt, Germany

2 University of Applied Sciences Emden/Leer, Constantiaplatz 4, D-26723 Emden, Germany
3 Polytechnic Institute of Bragança, Quinta Sta Apolónia, Apartado 1134, 5301-857 Bragança, Portugal

4 Artificial Intelligence and Computer Science Laboratory, R. Campo Alegre 102, 4169-007 Porto, Portugal
5 SAP Research, Vincenz-Priessnitz-Strasse 1, D-76131, Karlsruhe, Germany

E-mails: {marco.joao, armando.colombo}@schneider-electric.com, pleitao@ipb.pt, stamatis.karnouskos@sap.com

Abstract— The fusion of mechatronics, communication, control
and information technologies has allowed the introduction of new
automation paradigms into the production environment. The
virtualization of the production environment facilitated by the
application of the service-oriented architecture paradigm is one
of major outcomes of that fusion. On one side, service-oriented
automation works based on exposition, subscription and use of
automation functions represented by e.g. web services. On the
other side, the evolution of traditional industrial systems,
particularly in the production area, as a response to architectural
and behavioural (functional) viewpoints of the ISA95 enterprise
architecture, where a close inter-relation between SCADA, DCS
and MES systems facilitate the management and control of the
production environment. Automation functions are increasingly
performed by the composition and orchestration of services.
Among other methods, the application of formal Petri net based
orchestration approaches is being industrially established. This
paper presents the major characteristics that such a Petri net
based orchestration presents when it is developed, implemented
and deployed in an industrial environment.

I. INTRODUCTION

Manufacturing Execution Systems (MES), following the
definitions from the MESA (www.mesa.org), offer a set of
functions dedicated to monitoring and control production
processes on the level 3 of the ISA95 enterprise architecture
[1]. Dynamic re-scheduling, production and maintenance
planning, production quality management, among other
functions, will be implemented having structural and functional
interfaces to the level 2, i.e. Supervisory Control and Data
Acquisition (SCADA), and level 4, i.e. Enterprise Resource
Planning (ERP). It is at these two levels, i.e. SCADA and
MES, where decision making processes, supporting the process
control and automation, have to be done and where the
contributions of this paper are focused.

During the last couple of years, MES and SCADA systems
have evolved from centralized components inside the ISA95 to
distributed and networked structures following the
technological evolution of computer architectures. In fact, they
started in the 60´s and 70´s with monolithic centralized
components, evolved during the 80´s to distributed structures

and in the 90´s and later to networked topologies. Nowadays,
such SCADA and MES functions start being provided as
services partially located in service clouds [2]. In the case of
MES and SCADA systems implemented in a service-oriented
manner, functions appear as results of direct exposition of
services or of orchestration and composition of services. In all
those cases, the orchestration approach, independent of the
tools and implementation technology, has to be supported by
methods covering runtime decision-making process.

One prominent methodology to specify and implement
service orchestration topologies is the use of formal tools
following the Petri net (PN) theory tailored for control and
automation purposes [3]. In this work, service functions, such
as service-exposition, service-call and service-composition, are
associated to marking of places, enabling and firing conditions
for transitions. This means, basic and fundamental structural
and behavioural properties associated to Petri net models, such
as deadlock-freeness, sequential and parallel mutual exclusion
relationships, cyclic and repetitive behaviours, liveness and
marking boundedness (see [4-7] and the references therein) are
then mapped into basic and fundamental properties of the
modelled orchestration topologies. As a matter of fact, the
analysis of the PN-models allows verifying model properties
that are then used to validate orchestration topologies.

The objective of this paper is to summarize the major
characteristics of a Petri net based methodology to specify,
develop and implement SCADA and MES functionalities as a
result of a service orchestration and composition in a service-
oriented based automation environment.

The rest of the paper is organized as follows: Section II
overviews the principles of service orchestration by using the
Petri nets formalism, and Section III introduces the proposed
approach for service-oriented SCADA and MES systems.
Section IV presents the mechanisms for the data acquisition
and Section V discusses the mechanisms for event processing.
Section VI illustrates the application of the proposed approach
for an industrial case study. Finally, Section VII concludes this
work and points out possible future related works.

978-1-4673-2420-5/12/$31.00 ©2012 IEEE 6148

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153409346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. PETRI NET BASED SERVICE ORCHESTRATION

Since services are not anymore isolated entities exposed by
the intervenient software components, new logic control
responsible for the interaction among them can be realized
using the generic services as building blocks. The model-
based orchestration engine should be able to interpret a given
work-plan made of services (an orchestration) and execute it.
The work-plan can be defined in Business Process Execution
Language (BPEL) [9], Petri nets formalism (see for example
[3], [10] and [11]), or even in adapted IEC 61131-3 languages,
beside others [12]. Another feature is to compose services, i.e.
the work-plan itself represents an exposed service.

The modelling language used in this work derives from
Petri net specifications, as described in [13]. The developed
Petri net orchestration engine has several features, including:

 Lightweight alternative to BPEL and similar to what
automation engineers are used to (low
learning/adjusting curve).

 Service invocation, exposition and eventing.
 Design time and run-time composition.
 Analysis possibilities of models at design time.
 Integrated decision support for conflict situations on

the Petri nets models.
 Interpretation of XML-based configurations (used in

dynamic deployment).
Following a Petri net, the orchestration engine needs to

know how and when to respond to services and to represent
them in the model. This is done by describing transitions in
the Petri net model. A transition willing of sending a
request/response or an event must be enabled, and the action is
done when it fires. In the other hand, a transition receiving a
message from a request, response or event, will only fire if it
is enabled and the message is there. Fig 1. represents these two
types of associations.

Fig 1. Two types of service association to transitions: transition outputs a
message/event (left), transition waits for a message/event (right).

Decision points, alternative paths in a control logic
topology, and other kind of sequential or parallel mutual
exclusion relationships [5] that appear in the system to be
orchestrated, are explicitly modelled by transitions in conflict
by the Petri nets, the same way that web services related
functions are able to figure out as transitions and places in
Petri nets. Such features require the intervention of decision
mechanisms. This is especially valid when considering that
automation systems are inherited dynamically and not fully
predictable; sometimes there are unexpected circumstances
that a simple executed Petri net cannot handle: operation's
delay and cancelling, synchronization among individual

workflows, unexpected situations, unaccomplished operations,
dynamically adding new operations, etc.

The following topics describe where additional help is
needed in terms of decision, to increase the power of Petri net-
based orchestration in automated systems:

 Selection of the firing transition between several ones
that are in conflict (resolution of conflicts).

 Petri nets analysis to support decision, including
behavioural and structural analysis, path finding and
simulation.

 Selection of the best service or operation to execute
when the associated transition is enabled or firing.

 Management of the Petri net to decide when to run,
stop and reset the system.

 Automatic composition and aggregation of Petri nets.
Fig 2. illustrates an example, described in [13], of using a

Petri net model to describe the relation between three
machines that are activated when the corresponding transition
fires. The machines have web services and when activated, a
message is sent to the corresponding machine. The logic here
is that only one machine can operate for one request at time.
The decision point is translated in the Petri net model as a
conflict, but requires that some component of the service-
oriented based architecture, basically located in the service
bus, resolves the conflict, i.e. choose one of the machines
depending on various criteria.

Fig 2. Example of a Petri net orchestration with conflicts.

More information can be consulted in [13].

III. INTEGRATION OF PETRI NET BASED ORCHESTRATION

ENGINES IN SERVICE-ORIENTED SCADA AND MES

Service-oriented (event based) paradigm seems to fit very
well with the next evolutionary step to empower the typical
SCADA systems [2], not only from the organizational point of
view in terms of services, but also concerning the flux and
processing of events. The preceding implementations of
SCADA and MES systems based on traditional service-
oriented systems (see for example [3]) demonstrated a service
landscape for devices and PC engineering tools with some
degree of flexibility for decisions and “plug & play”
capability, but events were only used to update the status of
devices and for monitoring in PC applications. With the new
service-oriented approach, it is intended to fully assess the
event-driven approach, i.e. use events as the basis to formulate

6149

actions, e.g., service exposition and service subscription.
Therefore, events play a very active role in the architecture
and their real-time acquisition and processing is fundamental
towards the increased dynamicity of the automation system,
which work now in an asynchronous mode.

Translating this to a typical SCADA/MES context, events
are generated by the different components in the system and
used by the SCADA for the purpose of monitoring,
supervision, diagnosis and recovery. These SCADA features
will require services that are part of the system to complete
their function and possibly generate also new composite
services provided by the MES and sometimes by SCADA.
This new SCADA differentiates from the typical one as using
an event-driven service-oriented manner to supervise
processes and resources.

Fig. 3 shows a typical service-oriented SCADA/MES
solution. The communication between different resources in
the architecture is only possible if common standards are
adopted that makes possible not only the share of information
(communication) but also the understanding of this
information (semantics).

Fig 3. System architecture for service-oriented SCADA and MES.

The service bus, illustrated in Fig. 3, a kind of
publisher/subscriber event infrastructure (e.g., Device Profile
for Web Services (DPWS) [14]), represents the transparent
layer 7 from the OSI model where the means of
communication is done in a service-oriented and event driven
way. It means that: 1) resources are shared in the network in a
form of services that can be requested and
orchestrated/composed, and 2) events produced by services
that circulate in the network are used to promote analysis and
reactions to the current behaviour of the system.

PLCs (Programmable Logic Controllers) and RTUs
(Remote Terminal Units) provide the information they acquire
as a service for others to consume. They include interfaces for
different fieldbus standards and I/O and map it to web
services. For example, a RTU interfacing a remote pump
station provides a service to control the pumping parameters
such as the frequency and pressure. It also generates events to
the service bus to indicate what actions are currently taken by
the pumping station and to alert of out of desired limit values.

Notably PLCs include the possibility to process logic to
coordinate not only sensors and actuators directly connected to
the PLC, but also external services, such as the one given in
the previous example of the pump station. In the typical
manner and using typical PLCs this would be programmed
and interpreted by the PLC using the IEC 61131 standard. But
the introduction of services also opens the horizon to use new
approaches, with distributed service-based control and
automation arrangement being referred as orchestration.
Therefore orchestration languages can be used and are
executed by orchestration engines that are hosted by smart
controllers to coordinate internal services and external ones
provides by other RTUs and e.g., PLCs.

In the case of having orchestration engines that run
deployed Petri nets, there is an exchange of information
between two or more smart controllers (e.g., a PLC or a smart
I/O) hosting the orchestration engines, performing distributed
control/orchestration, SCADA and MES functions (Fig. 4).

Fig 4. Interaction between PLCs with Petri net orchestration engines and
SCADA

Basically, distributed Petri nets running in different
orchestration engines require to synchronize their operation
using a mechanism like that described in [13]. Having the
orchestration engines working, each time that conflicts
between enabled transitions appear, representing e.g. decision
points in the orchestration logic, events are triggered and
forwarded to the SCADA, to inform the current state of
activity and to request support for solving those conflicts [8].

The SCADA will actively collect this information and if
necessary interact with the MES in order to react to it,
supporting a decision mechanism to solve the conflict, e.g.,
dynamic re-scheduling.

The supervisory and decision system is the kernel of the
SCADA / MES system and responsible to acquire events from
the service bus. A supervisory system includes an event
processing unit running a mechanism to classify and process
events that are the basis to formulate diagnostics. Actions are
selected and executed by the decision support tools. The
automatic processing and monitoring is supported indirectly

6150

by interaction with other systems, and also directly by the
system engineers through human-machine interface (HMI).

The main functions of the proposed service-oriented
SCADA system are:

 To interact and potentially cooperate with DCS by
using the information of events that it makes available.

 To support the DCS by generating new services and
pro-actively requesting services to configure, optimize
and recover the system.

 To provide information about the system to the users
and enable their interaction (via HMI). System
configuration can be done via HMI as well as decision-
making, if the automatic decision-making processes of
the supervisory system are not enough.

 To facilitate the integration and collaboration with
other systems, such as MES and potentially even ERP.

IV. DATA ACQUISITION

The acquisition of data in a service-oriented environment
means to be aware of the messages in the service bus that
circulate between endpoints. This can be done by explicitly
capturing them or interacting with the responsible party, e.g., a
historical service. The information parsed from messages can
then be stored locally into a local database to be used by
further processing and also for monitoring (see Fig. 5).

Fig 5. Service-oriented data acquisition from the service bus.

The messages in the service bus indicate events that are
happening in the system; also important is to capture messages
that are not only with destination to the supervisory system.
For this purpose, the promiscuous mode for the associated
network interface should be enabled to permit the capture of
all messages (even the ones with different destinations).

Concerning the technology side of the data acquisition, i.e.
which web service protocols should be used, there are several
choices for capturing messages in the service bus. To provide
a larger range of compatibility, the data acquisition
mechanism doesn’t need to be fixed to some profile, but
would benefit in being fixed to the basic communication
standards and open to profiles and protocols based on those.

If assumed that the data acquisition will capture messages
based on e.g. SOAP (Simple Object Access Protocol) (one of

the fundamental web services protocol for exchanging
information), then it is possible to get events of all profiles
that are using it. DPWS [14] and OPC-UA (web services
version) [15] are some good examples of profiles that include
SOAP for message exchanging. This approach is also
compatible with new emerging more lightweight approaches,
e.g. REST. In addition, the binary versions of both can also be
implemented when a binary capturing mechanism is included
in the data acquisition (here it is needed the correct logic for
understanding and mapping the binary information).

In the case of DPWS, besides the typical request and
response mechanism, it includes a specification concerning
eventing, namely WS-Eventing [16]. It can be used to make
subscriptions by the supervisory system to different services in
the system and get events e.g. about data values whenever
these are produced. Filtering of events is also possible, since
the Petri net formalism applied in this work considers the
association of events to the enabling-firing conditions of
transitions. Moreover, dynamic discovery is used whenever
devices are connected to the service bus and announce
themselves with “Hello” events and “Bye” events in case they
are removed. However, infrastructure support can also be
present for dynamic discovery and messaging exchange
support.

In any case, there are a lot of possibilities to capture event
messages from the service bus and their information can be
parsed in a very basic level to identify some useful parameters.
Depending on what profiles and protocols are used for
implementing the service-oriented approach, different
parameters are desirable, such us unique event identifier,
timestamp referring to the instance when it was generated and
when it was captured, and source and destination of the event.

In the case of a Petri net orchestration engine, events are
generated under the following circumstances:

 Transition is enabled.
 Transition has fired.
 Passive conflict: does not request a resolution but does

accept orders from the supervisory system.
 Active conflict: requests a resolution from the

supervisory system.
 Executed actions and services associated to transitions;
 Start/ Stop of the orchestration engine.

The captured information will be afterwards used by the
event processing and decision support mechanism. The stored
events can be manipulated in the database after processing and
used to take actions. Moreover, a HMI connected to the
supervisory system is possible to monitor the events registered
in the database that mirrors what is happening in the lower-
level of the control architecture.

V. EVENT PROCESSING

The event processing is used to take the registered events,
assess them and derive possible actions; additionally, it may
compose events that can be used for example, as a basis for
the decision support system (see Fig. 6).

6151

Fig 6. Event processing and interaction with the event database.

These advanced events can be a composition of simpler
events captured by the data acquisition or even completely
new generated events based on system analysis and
diagnostics. For example, based on the received events, it was
detected that the production capability of a product is suffering
further delays. Analysing the acquired “raw” events, the event
processing tool concludes that there is a bottleneck in the DCS
concerning the orchestration of different services provided by
RTUs. In consequence, the event processor generates a new
event to indicate that there is a situation to be improved.

For event processing, different methodologies are possible:
 Data mining: depending on how many events exist and

on the complexity of the system, data mining would
provide a first identification and classification of
events, e.g., grouping similar events into clusters.

 Composition: composing event information can be
done to “summarize” a set into one more meaningful
(in a larger context) event. For example, “heartbeat”
events that are periodically sent by on device can be
composed into one indicating that this device is online.

 Conflict resolution: some situations during the
orchestration of services will require that one of several
paths must be selected to move on with the
orchestration. This event is reported and can be further
processed to be handled to the decision support system
to make a decision upon.

 Optimization analysis: events also report information
about the status of different parameters. In this case, the
trend of a parameter can be evaluated and compared
with optimal or expected values. If the tendency is
below the threshold, optimization request events can be
generated to report an improvement for the parameter
(essential in case of energy management where energy
consumption values need to be optimized).

 Diagnostics: if something is reported to have an
undesired behaviour in the DCS, the reason and
consequent action can be sometimes found in reported
events by the system. The event processor, when
receiving a diagnostics event, needs to make a tracing
in the event database to find the source of the problem.
From the diagnostics, events can be generated with the
information of the diagnostics to be further processed
and actions taken based on the diagnostics data.

 Complex Event Processing (CEP): processing of large
sets of events that happen in an organization and taken

consequent actions in real-time may require
sophisticated analysis and assessment both of which
can be handled by CEP.

As with data acquisition, event processing can be as well
monitored and configured by local or remote HMIs that
provides the tools for user interaction and therefore enable the
interaction with human operators in the process. Assisted or
unassisted event processor creates a set of conditions for
making decisions in the DCS that will be handled by the
decision support system of the SCADA.

VI. INDUSTRIAL USE CASE

The scenario depicted in Fig. 7, and previously used in [3],
is used to demonstrate how the SCADA/MES features for
smart controllers with embedded Petri net orchestration
engines can be applied in an industrial environment. It
represents a flexible assembly system composed of a transport
system made of mechanical conveyor modules (C1-C11),
lifters (L1, L2) and workstations (W1, W2). The arrows
identify the transfer capability of a conveyor/lifter with its
neighbours. Pallets enter in the system via L1 and can leave it
via L2. In C2 and C8 pallets can be stopped to be operated by
a machine or similar workstation (W1 and W2).

Fig 7. Service-oriented infra-structure of the experimental cell.

For the identification of pallets, the cross units C4, C6 and
the workstation units C2, C8 are equipped with RFID (Radio-
Frequency IDentification) readers that are able to read/write
information from/to tags attached to the pallet. The identifier
will be used by the orchestration engine to “ask” an external
system for the next production step for a product. A next
generation would not ask at each crossing section, but would
store the production history directly on the tag.

A. Application of the Service-oriented Approach to the Use
Case

The service-oriented system behaviour is represented in the
orchestration topology, modelled by using the Petri nets
formalism and designed according to the available atomic
services (and their operations) and the pretended behaviour of
the devices, representing their control logic. Note that atomic
services are exposed by the transfer units, lifters and RFID
devices. In this work, 3 orchestration engines were developed:

6152

one running in controller #3 for the components C1-C3, other
running in controller #2 for the components C4-C5, L1, L2,
C10-C11, and another running in controller #1 for the
components C7-C9. The generated orchestration models
communicate with each other (for inter transfer operation of
pallets) using the service invocation (i.e. the
“TransferIn/TransferOut” mechanism).

Giving that the orchestration topology has been formally
specified by a Petri net model and that this model is being
running in the orchestrator/orchestration engine embedded into
a smart device or system within a service-oriented automation
architecture, the model contents a considerable amount of
information, which can be useful applied to support SCADA
and MES functions. Model-based monitoring indexes are
supplied by e.g., transition flows and place-flows. This means,
the complete set of results of a structural analysis of the PN-
models are inherent monitoring data of the orchestrated process
and implicitly rich contents of the service-oriented SCADA.

As a matter of fact, the transition flows are the basic
orchestration/composition topologies offered by the service-
oriented automation processes. Remark: as usually in linear
algebra and functional analysis, having the basis of the
vectorial space, the whole space can be generated by vector
composition. The decision-making system, as part of the
service-oriented MES, exposing scheduling functionalities, can
at any time select some of those transition-flows, a sequence of
them and also different composition of them, to decide the
most recommendable orchestration topology for a given state
of the service-oriented automation process.

One of the major outcomes of this approach is the capability
of the service-oriented automation system to use results of a
formal analysis and validation of the Petri net model-based
orchestration for enhancing the SCADA, MES and also DCS
functions. That is, the service-oriented automation process is
orchestrated by a Petri net model, which is not only exposing
and consuming control services, but also supporting SCADA
and MES functionalities like monitoring services, scheduling
and dispatching services and error-recovery services.

Another major outcome of the presented methodology is that
the orchestration modules deployed into smart automation
devices allow providing supervisory control services, such as
monitoring or other SCADA functions. These new services are
result of the orchestration running in those devices. Note that as
result of orchestration process, new services appear,
representing behaviours that were not exposed by the existing
components, i.e., emergent behaviours.

When the orchestration process is running and the models
are running the token-game, conflict situations formally
specified by set of transitions in conflict (in the Petri net
models) are reported and have to be solved in runtime
conditions. Fig. 8 illustrates the modelling of decision on the
workstations associated to conveyors C2 and C8, appearing
when the place “loaded” is marked.

[orch]
O:TransferStatus(4)

loaded

[osi]
O:GetID

(id>p”loaded”.conflict_id)

[osi]
I:GetID

[orch]
I:TransferOut(portout)

[next]
I:TransferIn(portnext)

ws1

default

Fig 8. Modeling decisions on workstations.

One important aspect of this approach is that the SCADA or
MES systems can be considered as central components like
the structures illustrated in Fig.3 and Fig. 4. Nevertheless, the
smart service-oriented compliant automation devices are
having SCADA and MES functionalities embedded inside. As
a major result, distributed SCADA/MES functions are also
exposed as services by devices and systems in a distributed
fashion. This implies that the conflicts can be remotely
handled by a centralized service-oriented based SCADA/MES
or by locally embedded SCADA/MES systems.

When a new SCADA/MES function is needed to solve a
conflict, and it is not exposed as service inside the existing
service-oriented compliant smart devices and systems, this new
function can dynamically be uploaded inside of some existing
smart devices. In this case, the service-oriented SCADA/MES
is presenting a very important characteristic, i.e. evolvability.
At any time, SCADA/MES functionalities exposed as services
and also orchestration services that are not necessary can be
deleted or brought into stand-by state (not
accessible/exposable), without changing the physical
architecture of the system.

B. Engineering Methodology and Tool-Chain to perform
Petri Net-based Orchestration

A SoA-compliant device, which is having WS-embedded
capabilities and is dedicated to compose or orchestrate services
exposed by itself and/or by other devices of the SoA-based
automation architecture, needs to have an Orchestration
Engine. In the approach presented in this paper, such an
orchestration engine consists, e.g. of a Petri Net Interpreter,
which is configured in such a way that it performs the token-
game of the PN and the evolution of the net corresponds to the
composition and orchestration topologies.

A complete methodology and engineering tool-chain called
"Continuum" (see [3]) has been developed, implemented and
deployed into an industrial prototype application. Fig. 9 depicts
the major characteristics of such an engineering system. As one
of the major outcomes of this development it is possible to
identify the existence of a "Petri Net Orchestration Tool and
Engine" which also can be used as "Source" of a Service
(Orchestration Service) to be exposed and also consumed by
devices and systems inside the SoA-automation architecture.

6153

Fig 9. Engineering Methodology and Tool-Chain for a PN-based
Orchestration.

VII. CONCLUSIONS AND FUTURE WORK

The proposed approach considers Petri Nets based
orchestration engines embedded in industrial controllers that
orchestrate the services offered by the physical devices to
support SCADA and MES systems.

An important aspect enabled by this approach is the multi-
layer collaboration based on service-oriented principles while
individual decision making processes (e.g. via Petri Nets) are
hidden from the overall interaction. Nevertheless the intriguing
part is that the respective decision making processes can now
consider the collaboration/interaction with other layers (e.g.
MES). Moreover, it can integrate knowledge or restrictions
from those other layers to their functionalities, in an event-
driven approach. For this to be possible, of course both a
communication infrastructure as well as semantic
understanding of the exchanged information in a specific
context is a must. As the next generation of SCADA/MES
systems considers that portions of their functionality may
reside in a cloud [2], such interactions are expected to be more
common (no communication barriers) but also more
challenging (in finding the right level of performance vs.
functionality vs. security etc.).

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union's Seventh Framework Programme
(FP7/2007-2013) under grant agreement 258682 (IMC-
AESOP: ArchitecturE for Service-Oriented Process -

Monitoring and Control) and 224053 (CONET: Cooperating
Objects NETwork of excellence).

REFERENCES
[1] http://www.isa-95.com

[2] S. Karnouskos, and A. W. Colombo, “Architecting the next generation
of service-based SCADA/DCS system of systems”, 37th Annual
Conference of the IEEE Industrial Electronics Society (IECON 2011),
Melbourne, Australia, 7-10 Nov 2011.

[3] J.M. Mendes, A. Bepperling, J. Pinto, P. Leitão, F. Restivo, A.W.
Colombo, “Software Methodologies for the Engineering of Service-
oriented Industrial Automation: The Continuum Project”, Proceedings of
the 33rd Annual IEEE International Conference on Computer Software
and Applications (COMPSAC’09), pp. 452-459, 2009.

[4] T. Murata, “Petri Nets: Properties, Analysis and Applications”, IEEE,
vol. 77, n. 4, pp. 541-580, 1989.

[5] M. Zhou, F. DiCesare, “Petri net synthesis for discrete event control of
manufacturing systems”, The International Series In Engineering and
Computer Science, Kluwer Academic Pub. (Boston), 1993.

[6] R. David, H. Alla, “Discrete, continuous and hybrid Petri nets”, Springer
Verlag, 2010.

[7] A.W. Colombo, R. Carelli, B. Kuchen, ”A temporized Petri net approach
for designing, modelling and analysis of flexible production systems”,
International Journal of Advanced Manufacturing Technology, vol. 13,
n. 3, Springer Verlag London, pp. 214-226, 1997.

[8] K. Feldmann, A.W. Colombo, ”Material flow and control sequence
specification of flexible production systems using coloured Petri nets”,
International Journal of Advanced Manufacturing Technology, vol. 14,
n. 10, Springer verlag London, pp. 760-774, 1998.

[9] NN, “Web Services Business Process Execution Language Version 2.0”,
OASIS Standard, April 2007.

[10] R. Hamadi, B. Benatallah, “A Petri net-based model for web service
composition”, Proceedings of the 14th Australasian database conference,
Darlinghurst, Australia, pp. 191-200, 2003.

[11] L. Bing, C. Huaping, “Web service composition and analysis: a Petri-net
based approach”, 1st International Conference on Semantics, Knowledge
and Grid (SKG '05), November 2005.

[12] K. Feldmann, A.W. Colombo, C. Schnur, T. Stoeckel, ”Specification,
design and implementation of logic controllers based on coloured Petri
net models and the standard IEC1131. Part I: specification and design”,
IEEE Trans. on Control Systems Technology, pp. 657-665, 1999.

[13] J. M. Mendes, P. Leitão, A.W. Colombo, F. Restivo, “High-Level Petri
Nets control modules for service-oriented devices: A case study”,
Proceedings of the 34th Annual Conference of IEEE Industrial
Electronics (IECON’08), pp. 1487-1492, 2008.

[14] http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01.

[15] W. Mahnke, S.-H. Leitner, M. Damm, “OPC Unified Architecture”,
Springer, 2009.

[16] D. Box, et al, Web Services Eventing (WS-Eventing),
http://www.w3.org/Submission/2006/SUBM-150 WS-Eventing-
20060315/, 15 March 2006.

6154

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

