73 research outputs found

    1D-CNN based real-time fault detection system for power asset diagnostics

    Get PDF

    Diagnosis of multiple faults in rotating machinery using ensemble learning

    Get PDF
    Fault diagnosis of rotating machines is an important task to prevent machinery downtime, and provide verifiable support for condition-based maintenance (CBM) decision-making. Deep learning-enabled fault diagnosis operations have become increasingly popular because features are extracted and selected automatically. However, it is challenging for these models to give superior results with rotating machine components of different scales, single and multiple faults across different rotating components, diverse operating speeds, and diverse load conditions. To address these challenges, this paper proposes a comprehensive learning approach with optimized signal processing transforms for single as well as multiple faults diagnosis across dissimilar rotating machine components: gearbox, bearing, and shaft. The optimized bicoherence, spectral kurtosis and cyclic spectral coherence feature spaces, and deep blending ensemble learning are explored for multiple faults diagnosis of these components. The performance analysis of the proposed approach has been demonstrated through a single joint training of the entire framework on a compound dataset containing multiple faults derived from three public repositories. A comparison with the state-of-the-art approaches that used these datasets, shows that our method gives improved results with different components and faults with nominal retraining

    Predictive Maintenance of an External Gear Pump using Machine Learning Algorithms

    Get PDF
    The importance of Predictive Maintenance is critical for engineering industries, such as manufacturing, aerospace and energy. Unexpected failures cause unpredictable downtime, which can be disruptive and high costs due to reduced productivity. This forces industries to ensure the reliability of their equip-ment. In order to increase the reliability of equipment, maintenance actions, such as repairs, replacements, equipment updates, and corrective actions are employed. These actions affect the flexibility, quality of operation and manu-facturing time. It is therefore essential to plan maintenance before failure occurs.Traditional maintenance techniques rely on checks conducted routinely based on running hours of the machine. The drawback of this approach is that maintenance is sometimes performed before it is required. Therefore, conducting maintenance based on the actual condition of the equipment is the optimal solu-tion. This requires collecting real-time data on the condition of the equipment, using sensors (to detect events and send information to computer processor).Predictive Maintenance uses these types of techniques or analytics to inform about the current, and future state of the equipment. In the last decade, with the introduction of the Internet of Things (IoT), Machine Learning (ML), cloud computing and Big Data Analytics, manufacturing industry has moved forward towards implementing Predictive Maintenance, resulting in increased uptime and quality control, optimisation of maintenance routes, improved worker safety and greater productivity.The present thesis describes a novel computational strategy of Predictive Maintenance (fault diagnosis and fault prognosis) with ML and Deep Learning applications for an FG304 series external gear pump, also known as a domino pump. In the absence of a comprehensive set of experimental data, synthetic data generation techniques are implemented for Predictive Maintenance by perturbing the frequency content of time series generated using High-Fidelity computational techniques. In addition, various types of feature extraction methods considered to extract most discriminatory informations from the data. For fault diagnosis, three types of ML classification algorithms are employed, namely Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Naive Bayes (NB) algorithms. For prognosis, ML regression algorithms, such as MLP and SVM, are utilised. Although significant work has been reported by previous authors, it remains difficult to optimise the choice of hyper-parameters (important parameters whose value is used to control the learning process) for each specific ML algorithm. For instance, the type of SVM kernel function or the selection of the MLP activation function and the optimum number of hidden layers (and neurons).It is widely understood that the reliability of ML algorithms is strongly depen-dent upon the existence of a sufficiently large quantity of high-quality training data. In the present thesis, due to the unavailability of experimental data, a novel high-fidelity in-silico dataset is generated via a Computational Fluid Dynamic (CFD) model, which has been used for the training of the underlying ML metamodel. In addition, a large number of scenarios are recreated, ranging from healthy to faulty ones (e.g. clogging, radial gap variations, axial gap variations, viscosity variations, speed variations). Furthermore, the high-fidelity dataset is re-enacted by using degradation functions to predict the remaining useful life (fault prognosis) of an external gear pump.The thesis explores and compares the performance of MLP, SVM and NB algo-rithms for fault diagnosis and MLP and SVM for fault prognosis. In order to enable fast training and reliable testing of the MLP algorithm, some predefined network architectures, like 2n neurons per hidden layer, are used to speed up the identification of the precise number of neurons (shown to be useful when the sample data set is sufficiently large). Finally, a series of benchmark tests are presented, enabling to conclude that for fault diagnosis, the use of wavelet features and a MLP algorithm can provide the best accuracy, and the MLP al-gorithm provides the best prediction results for fault prognosis. In addition, benchmark examples are simulated to demonstrate the mesh convergence for the CFD model whereas, quantification analysis and noise influence on training data are performed for ML algorithms

    A Novel Ensemble Adaptive Sparse Bayesian Transfer Learning Machine for Nonlinear Large-Scale Process Monitoring.

    Full text link
    Process monitoring plays an important role in ensuring the safety and stable operation of equipment in a large-scale process. This paper proposes a novel data-driven process monitoring framework, termed the ensemble adaptive sparse Bayesian transfer learning machine (EAdspB-TLM), for nonlinear fault diagnosis. The proposed framework has the following advantages: Firstly, the probabilistic relevance vector machine (PrRVM) under Bayesian framework is re-derived so that it can be used to forecast the plant operating conditions. Secondly, we extend the PrRVM method and assimilate transfer learning into the sparse Bayesian learning framework to provide it with the transferring ability. Thirdly, the source domain (SD) data are re-enabled to alleviate the issue of insufficient training data. Finally, the proposed EAdspB-TLM framework was effectively applied to monitor a real wastewater treatment process (WWTP) and a Tennessee Eastman chemical process (TECP). The results further demonstrate that the proposed method is feasible

    Detection of abnormal cardiac response patterns in cardiac tissue using deep learning

    Get PDF
    This study reports a method for the detection of mechanical signaling anomalies in cardiac tissue through the use of deep learning and the design of two anomaly detectors. In contrast to anomaly classifiers, anomaly detectors allow accurate identification of the time position of the anomaly. The first detector used a recurrent neural network (RNN) of long short-term memory (LSTM) type, while the second used an autoencoder. Mechanical contraction data present several challanges, including high presence of noise due to the biological variability in the contraction response, noise introduced by the data acquisition chain and a wide variety of anomalies. Therefore, we present a robust deep-learning-based anomaly detection framework that addresses these main issues, which are difficult to address with standard unsupervised learning techniques. For the time series recording, an experimental model was designed in which signals of cardiac mechanical contraction (right and left atria) of a CD-1 mouse could be acquired in an automatic organ bath, reproducing the physiological conditions. In order to train the anomaly detection models and validate their performance, a database of synthetic signals was designed (n = 800 signals), including a wide range of anomalous events observed in the experimental recordings. The detector based on the LSTM neural network was the most accurate. The performance of this detector was assessed by means of experimental mechanical recordings of cardiac tissue of the right and left atria.Peer ReviewedPostprint (author's final draft

    Mathematical Modeling and Simulation in Mechanics and Dynamic Systems

    Get PDF
    The present book contains the 16 papers accepted and published in the Special Issue “Mathematical Modeling and Simulation in Mechanics and Dynamic Systems” of the MDPI “Mathematics” journal, which cover a wide range of topics connected to the theory and applications of Modeling and Simulation of Dynamic Systems in different field. These topics include, among others, methods to model and simulate mechanical system in real engineering. It is hopped that the book will find interest and be useful for those working in the area of Modeling and Simulation of the Dynamic Systems, as well as for those with the proper mathematical background and willing to become familiar with recent advances in Dynamic Systems, which has nowadays entered almost all sectors of human life and activity

    Combustion Feature Characterization using Computer Vision Diagnostics within Rotating Detonation Combustors

    Get PDF
    In recent years, the possibilities of higher thermodynamic efficiency and power output have led to increasing interest in the field of pressure gain combustion (PGC). Currently, a majority of PGC research is concerned with rotating detonation engines (RDEs), devices which may theoretically achieve pressure gain across the combustor. Within the RDE, detonation waves propagate continuously around a cylindrical annulus, consuming fresh fuel mixtures supplied from the base of the RDE annulus. Through constant-volume heat addition, pressure gain combustion devices theoretically achieve lower entropy generation compared to Brayton cycle combustors. RDEs are being studied for future implementation in gas turbines, where they would offer efficiency gains in both propulsion and power generation turbines. Much diagnostic work has been done to investigate the detonative behaviors within RDEs, including point measurements, optical diagnostics, thrust stands and other methods. However, to date, these analysis methods have been limited in either diagnostic sophistication or to post-processing due to the computationally expensive treatment of large data volumes. This is a result of the substantial data acquisition rates needed to study behavior on the incredibly short time scale of detonation interactions and propagation. As laboratory RDE operations become more reliable, industrial applications become more plausible. Real-time monitoring of combustion behavior within the RDE is a crucial step towards actively controlled RDE operation in the laboratory environment and eventual turbine integration. For these reasons, this study seeks to advance the efficiency of RDE diagnostic techniques from conventional post-processing efforts to lab-deployed real-time methods, achieving highly efficient detonation characterization through the application of convolutional neural networks (CNNs) to experimental RDE data. This goal is accomplished through the training of various CNNs, being image classification, object detection, and time series classification. Specifically, image classification aims to classify the number and direction of waves using a single image; object detection detects and classifies each detonation wave according to location and direction within individual images; and time series classification determines wave number and direction using a short window of sensor data. Each of these network outputs are used to develop unique RDE diagnostics, which are evaluated alongside conventional techniques with respect to real-time capabilities. Those real-time capable diagnostics are deployed and evaluated in the laboratory environment using an altered experimental setup via a live data acquisition environment. Completion of the research tasks results in overarching diagnostic capability developments of conventional methods, image classification, object detection, and timeseries classification applied to experimental RDE data. Each diagnostic is employed with varying strengths with respect to feasibility, long-term application, and performance, all of which are surveyed and compared extensively. Conventional methods, specifically detonation surface matrices, and object detection are found to offer diagnostic feedback rates of 0.017 and 9.50 Hz limited to post-processing, respectively. Image classification using high-speed chemiluminescence images, and timeseries classification using high-speed flame ionization and pressure measurements, achieve classification speeds enabling real-time diagnostic capabilities, averaging diagnostic feedback rates of 4 and 5 Hz when deployed in the laboratory environment, respectively. Among the CNN-based methods, object detection, while limited to post-processing usage, achieves the most refined diagnostic time-step resolution of 20 µsec compared to real-time-capable image and timeseries classification, which require the additional correlation of a sensor data window, extending their time-step resolutions to 80 msec. Through the application of machine learning to RDE data, methods and results presented offer beneficial advancement of diagnostic techniques from post-processing to real-time speeds. These methods are uniquely developed for various RDE data types commonly used in the PGC community and are successfully deployed in an altered laboratory environment. Feedback rates reported are expected to be satisfactory to the future development of an RDE active-control framework. This portfolio of diagnostics will bring valuable insight and direction throughout RDE technological maturation as a collective early application of machine learning to PGC technology

    Modeling and identification of power electronic converters

    Get PDF
    Nowadays, many industries are moving towards more electrical systems and components. This is done with the purpose of enhancing the efficiency of their systems while being environmentally friendlier and sustainable. Therefore, the development of power electronic systems is one of the most important points of this transition. Many manufacturers have improved their equipment and processes in order to satisfy the new necessities of the industries (aircraft, automotive, aerospace, telecommunication, etc.). For the particular case of the More Electric Aircraft (MEA), there are several power converters, inverters and filters that are usually acquired from different manufacturers. These are switched mode power converters that feed multiple loads, being a critical element in the transmission systems. In some cases, these manufacturers do not provide the sufficient information regarding the functionality of the devices such as DC/DC power converters, rectifiers, inverters or filters. Consequently, there is the need to model and identify the performance of these components to allow the aforementioned industries to develop models for the design stage, for predictive maintenance, for detecting possible failures modes, and to have a better control over the electrical system. Thus, the main objective of this thesis is to develop models that are able to describe the behavior of power electronic converters, whose parameters and/or topology are unknown. The algorithms must be replicable and they should work in other types of converters that are used in the power electronics field. The thesis is divided in two main cores, which are the parameter identification for white-box models and the black-box modeling of power electronics devices. The proposed approaches are based on optimization algorithms and deep learning techniques that use non-intrusive measurements to obtain a set of parameters or generate a model, respectively. In both cases, the algorithms are trained and tested using real data gathered from converters used in aircrafts and electric vehicles. This thesis also presents how the proposed methodologies can be applied to more complex power systems and for prognostics tasks. Concluding, this thesis aims to provide algorithms that allow industries to obtain realistic and accurate models of the components that they are using in their electrical systems.En la actualidad, el uso de sistemas y componentes eléctricos complejos se extiende a múltiples sectores industriales. Esto se hace con el propósito de mejorar su eficiencia y, en consecuencia, ser más sostenibles y amigables con el medio ambiente. Por tanto, el desarrollo de sistemas electrónicos de potencia es uno de los puntos más importantes de esta transición. Muchos fabricantes han mejorado sus equipos y procesos para satisfacer las nuevas necesidades de las industrias (aeronáutica, automotriz, aeroespacial, telecomunicaciones, etc.). Para el caso particular de los aviones más eléctricos (MEA, por sus siglas en inglés), existen varios convertidores de potencia, inversores y filtros que suelen adquirirse a diferentes fabricantes. Se trata de convertidores de potencia de modo conmutado que alimentan múltiples cargas, siendo un elemento crítico en los sistemas de transmisión. En algunos casos, estos fabricantes no proporcionan la información suficiente sobre la funcionalidad de los dispositivos como convertidores de potencia DC-DC, rectificadores, inversores o filtros. En consecuencia, existe la necesidad de modelar e identificar el desempeño de estos componentes para permitir que las industrias mencionadas desarrollan modelos para la etapa de diseño, para el mantenimiento predictivo, para la detección de posibles modos de fallas y para tener un mejor control del sistema eléctrico. Así, el principal objetivo de esta tesis es desarrollar modelos que sean capaces de describir el comportamiento de un convertidor de potencia, cuyos parámetros y/o topología se desconocen. Los algoritmos deben ser replicables y deben funcionar en otro tipo de convertidores que se utilizan en el campo de la electrónica de potencia. La tesis se divide en dos núcleos principales, que son la identificación de parámetros de los convertidores y el modelado de caja negra (black-box) de dispositivos electrónicos de potencia. Los enfoques propuestos se basan en algoritmos de optimización y técnicas de aprendizaje profundo que utilizan mediciones no intrusivas de las tensiones y corrientes de los convertidores para obtener un conjunto de parámetros o generar un modelo, respectivamente. En ambos casos, los algoritmos se entrenan y prueban utilizando datos reales recopilados de convertidores utilizados en aviones y vehículos eléctricos. Esta tesis también presenta cómo las metodologías propuestas se pueden aplicar a sistemas eléctricos más complejos y para tareas de diagnóstico. En conclusión, esta tesis tiene como objetivo proporcionar algoritmos que permitan a las industrias obtener modelos realistas y precisos de los componentes que están utilizando en sus sistemas eléctricos.Postprint (published version

    Apprentissage profond pour l'aide à la détection d'anomalies dans l'industrie 4.0

    Get PDF
    L’industrie 4.0 (I4.0) correspond à une nouvelle façon de planifier, d’organiser, et d’optimiser les systèmes de production. Par conséquent, l’exploitation croissante de ces systèmes grâce à la présence de nombreux objets connectés, et la transformation digitale offrent de nouvelles opportunités pour rendre les usines intelligentes et faire du smart manufacturing. Cependant, ces technologies se heurtent à de nombre défis. Une façon de leurs d’appréhender consiste à automatiser les processus. Cela permet d’augmenter la disponibilité, la rentabilité, l’efficacité et de l’usine. Cette thèse porte donc sur l’automatisation de l’I4.0 via le développement des outils d’aide à la décision basés sur des modèles d’IA guidés par les données et par la physique. Au-delà des aspects théoriques, la contribution et l’originalité de notre étude consistent à implémenter des modèles hybrides, explicable et généralisables pour la Maintenance Prédictive (PdM). Pour ce motif, nous avons développé deux approches pour expliquer les modèles : En extrayant les connaissances locales et globales des processus d’apprentissage pour mettre en lumière les règles de prise de décision via la technique l’intelligence artificielle explicable (XAI) et en introduisant des connaissances ou des lois physiques pour informer ou guider le modèle. À cette fin, notre étude se concentrera sur trois principaux points : Premièrement, nous présenterons un état de l’art des techniques de détection d’anomalies et de PdM4.0. Nous exploiterons l’analyse bibliométrique pour extraire et analyser des informations pertinentes provenant de la base de données Web of Science. Ces analyses fournissent des lignes directrices utiles pouvant aider les chercheurs et les praticiens à comprendre les principaux défis et les questions scientifiques les plus pertinentes liées à l’IA et la PdM. Deuxièmement, nous avons développé deux Framework qui sont basés sur des réseaux de neurones profonds (DNN). Le premier est formé de deux modules à savoir un DNN et un Deep SHapley Additive exPlanations (DeepSHAP). Le module DNN est utilisé pour résoudre les tâches de classification multi-classes déséquilibrées des états du système hydraulique. Malgré leurs performances, certaines questions subsistent quant à la fiabilité et la transparence des DNNs en tant que modèle à "boîte noire". Pour répondre à cette question, nous avons développé un second module nommé DeepSHAP. Ce dernier montrant l’importance et la contribution de chaque variable dans la prise de décision de l’algorithme. En outre, elle favorise la compréhension du processus et guide les humains à mieux comprendre, interpréter et faire confiance aux modèles d’IA. Le deuxième Framework hybride est connu sous le nom de Physical-Informed Deep Neural Networks (PINN). Ce modèle est utilisé pour prédire les états du processus de soudage par friction malaxage. Le PINN consiste à introduire des connaissances explicites ou des contraintes physiques dans l’algorithme d’apprentissage. Cette contrainte fournit une meilleure connaissance et oblige le modèle à suivre la topologie du processus. Une fois formés, les PINNs peuvent remplacer les simulations numériques qui demandent beaucoup de temps de calcul. En résumé, ce travail ouvre des perspectives nouvelles et prometteuses domaine de l’explicabilité des modèles d’AI appliqués aux problématiques de PdM 4.0. En particulier, l’exploitation de ces Framework contribuent à une connaissance plus précise du système
    corecore