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Abstract: This study reports a method for the detection of mechanical signaling anomalies in cardiac
tissue through the use of deep learning and the design of two anomaly detectors. In contrast to
anomaly classifiers, anomaly detectors allow accurate identification of the time position of the
anomaly. The first detector used a recurrent neural network (RNN) of long short-term memory
(LSTM) type, while the second used an autoencoder. Mechanical contraction data present several
challanges, including high presence of noise due to the biological variability in the contraction
response, noise introduced by the data acquisition chain and a wide variety of anomalies. Therefore,
we present a robust deep-learning-based anomaly detection framework that addresses these main
issues, which are difficult to address with standard unsupervised learning techniques. For the
time series recording, an experimental model was designed in which signals of cardiac mechanical
contraction (right and left atria) of a CD-1 mouse could be acquired in an automatic organ bath,
reproducing the physiological conditions. In order to train the anomaly detection models and validate
their performance, a database of synthetic signals was designed (n = 800 signals), including a wide
range of anomalous events observed in the experimental recordings. The detector based on the LSTM
neural network was the most accurate. The performance of this detector was assessed by means of
experimental mechanical recordings of cardiac tissue of the right and left atria.

Keywords: deep learning; autoencoder; cardiac tissue; electrophysiology; electrostimulation; anomaly
detection; recurrent neural network; long short-term memory; CD-1 mouse model

MSC: 92; 68T07; 92C55

1. Introduction

Anomaly detection is a broad field of research focused on the detection of abnormal
patterns within a given dataset. Anomaly detectors have been traditionally used in the
industrial world for predictive maintenance to identify faults from sensor signals placed
on motors and machinery [1]. Anomaly detection is also important in other fields, such as
healthcare, structural health monitoring, security, surveillance and fraud detection, where
anomalies convey actionable and critical information. Apart from the use of temporal
signals, video sequences are also commonly used—for instance, in security surveillance
based on the detection of unusual movements in video surveillance footage [2]. Time series
anomalies can be classified into two categories: point anomalies and structural anoma-
lies [3]. Point anomalies have historically been the most widely studied and correspond to
sample values of the signal statistically different from other signal values [4]. In contrast,
structural anomalies are defined as patterns presenting a morphology that differs from the
behavior observed in the signal [5].

Mathematics 2022, 10, 2786. https://doi.org/10.3390/math10152786 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10152786
https://doi.org/10.3390/math10152786
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7653-6299
https://orcid.org/0000-0002-6602-7332
https://orcid.org/0000-0002-8782-9406
https://doi.org/10.3390/math10152786
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10152786?type=check_update&version=3


Mathematics 2022, 10, 2786 2 of 21

Currently, machine learning plays an important role in the study of structural anoma-
lies of time series [6]. When correctly labeled signals are available in normal and abnormal
classes, the features in the time domain (statistical or morphological features) and in the
frequency domain (spectral features) can be examined in order to better identify the fea-
tures that distinguish between regular and abnormal conditions. These attributes can then
be used to develop an anomaly classification algorithm based on labeled data through
supervised learning. When labeled data are not available, the standard approach is to use
unsupervised learning algorithms such as clustering to identify different behavior in the
recordings. The resulting clusters can then be identified as normal and abnormal situations
by an expert. This approximation allows for classifying correctly whether it is a normal
or abnormal signal but does not give temporal information on the position in which the
anomaly responsible for a deviation with respect to the normal signals has taken place.

In the contraction of the heart chambers, the sinus node, which acts as a pacemaker,
is responsible for generating an electrical stimulus that activates the two atria. Then, the
electrical stimulus propagates to the atrioventricular node through the Purkinje fibers to
contract the left and right ventricles [7]. A cardiac anomaly emerges when the conduction
pathway generated at the sinus node is interrupted [8]. Therefore, it is necessary to
monitor the electrical and mechanical activity of the heart to effectively identify indicative
patterns of heart disease to ensure an early diagnosis. For this reason, in the field of
translational cardiology, it is relevant to study the behavior of the heart at various scales and
under different domains: electrical, mechanical, fluid and chemical (molecular). Different
authors have used anomaly detectors in the electrical conduction system from the study of
electrocardiogram (ECG) signals [9–24]. However, little attention has been paid to assess
anomaly detection in the mechanical contractile signals at the tissue level. Therefore, the
present study is focused on the detection of mechanical anomalies in cardiac tissue.

Previous studies have used traditional machine learning methods to detect anomalies
in electrical conduction from an ECG signal [9]. Unsupervised learning algorithms used for
the detection of anomalies in the ECG signal include the dynamic time warping distance
(DTW) [10,11], the Euclidean distance from an adaptive window discord discovery (AWDD)
comparing the heartbeats to each other [12,13] and the k-means clustering algorithm [14]. In
relation to supervised learning algorithms, the most commonly used are k-nearest neighbor (k-
NN) [15], linear discriminant analysis (LDA) [16], quadratic discriminant analysis (QDA) [17],
support vector machine (SVM) [18–22] and neural networks (NNs) [23,24].

The rapid development of graphics processing units (GPUs) versus central processing
units (CPUs) has shown that deep learning can address artificial intelligence problems more
quickly and reliably. Moreover, compared to traditional machine learning algorithms, they
do not require cardiology experts to define the most relevant features to be extracted for
identifying an anomaly in a given signal as deep learning networks are also able to extract
features automatically. Thus, the characteristics extraction phase and the classification
phases are integrated into the same deep learning network. The drawback, however, is that
deep learning models require large training datasets to achieve high classification accuracy
and are difficult to interpret by humans.

Regarding deep learning algorithms, the most frequently used for the detection of ECG
signal anomalies is long short-term memory (LSTM) [25]. Convolutional neural networks
(CNNs) [25–29] can also be used after the conversion of the signal into a spectrogram image
using wavelet transform or short-time Fourier transform [30]. The good results obtained in
two-dimensional convolutional neural networks (2D CNNs) in computer vision applica-
tions, such as AlexNet, VGG16 or ResNet networks, together with the emergence of the
large datasets CIFAR100 and ImageNet have prompted the signal processing community
to have a renewed interest in 1D CNNs [31].

In the detection of anomalies in health sciences, there is not always a sufficiently large
pathological dataset to design an artificial intelligence algorithm to classify abnormalities
based on the features extracted from normal and pathological data. Therefore, the present
investigation focuses on studying anomalies by the construction of a model of the behavior
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under normal conditions. This approach is well suited for biomedical data as it requires
few or no abnormal data. Thus, this article presents a framework that uses the one-class
classification approach to construct a deep learning model based on normal data—i.e., a
model trained with data under normal conditions. The input of the model is a signal to
be analyzed, and the output is the reconstruction of the input signal based on the trained
model. The resulting model will present a small reconstruction error when the input is a
normal signal and a large reconstruction error when the input is a signal under abnormal
conditions. The reconstruction error, defined as the difference between the input and its
reconstruction, is indicative of the presence of an anomaly. The structure of this study is
described next. First, Section 2 describes the biological preparation of atrial tissue samples
(Section 2.1), the experimental setup for recording the mechanical contraction of cardiac
tissue (Section 2.2), the creation of the synthetic dataset based on anomalous contractions
observed in the experimental recordings (Section 2.3) and the theory and methodology
used for the detection of anomalies with deep learning (Section 2.4). Next, in Section 3,
the correct operation of the two anomaly detectors (LSTM and autoencoder) is validated
with synthetic data (Section 3.1), and then, different application examples with real data
are shown using the detector with the highest accuracy (LSTM detector). Finally, Section 4
is reserved for the critical discussion of the results.

2. Materials and Methods
2.1. Preparation of Atrial Tissue Samples

For the present study, tissue samples obtained from the left and right atria of outbred
albino CD-1 (Cluster of Differentiation 1) mice bred at the animal facility center of the
Universitat Autònoma de Barcelona (UAB) were used. The protocol was approved by
the Ethics Committee of the Autonomous University of Barcelona and complied with the
Helsinki declaration ethical principles of the World Medical Association (WMA).

2.1.1. Mouse Preparation

CD-1 mice aged between 15 and 18 weeks, weighing between 20 and 40 g, were
selected. Housing was under controlled conditions: constant temperature (22 ± 2 ◦C) and
humidity (55 ± 10%), a 12-h light/dark cycle and ad libitum access to water and food. The
animal was anesthetized by intraperitoneal injections of anesthetics, as shown in Table 1.

Table 1. Composition of anesthetic preparations.

Injection Composition Via

First 0.03 mL sodium heparin 50%
0.3 mL sodium chloride heparin 0.9% Intraperitoneal

Second 1 mg/kg medetomidine
75 mg/kg ketamine Intraperitoneal

After intraperitoneal injection, the correct effect of anesthesia was confirmed by abol-
ishment of the palpebral and swallowing reflexes. Animals were sacrificed by atlanto-
occipital dislocation.

2.1.2. Atria Isolation

Animals were placed in a supine decubitus position, and two thoracic incisions were
made to expose the heart and lungs. The heart was extracted from the thoracic cavity
and placed on a Sylgard-coated (Dow Corning. Midland, MI, USA) Petri dish containing
carboxygenated Krebs solution (Table 2).

Using a microscope, the left and right atria were identified and carefully dissected
from the remaining cardiac tissue. Once atria had been isolated and prior to embedding in
the bath, they were individually sutured to the force transductor using 3-0 silk sutures.
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Table 2. Composition of the carboxygenated Krebs–Ringer solution.

Solution Composition Bubbles pH Temperature

Carboxygenated Krebs

115.48 mM NaCl

5% CO2
95% O2

7.4 37.5 ◦C

4.61 mM KCl
1.16 mM MgSO4

21.90 mM NaHCO3
1.14 mM NaH2PO4

2.50 mM CaCl2
10.10 mM glucose

2.2. Mechanical Recordings

The mechanical activity of the CD-1 atria was assessed using an automatic organ
bath system (Letica Scientific Instruments, Barcelona, Spain). This organ bath system is
composed of four independent 20 mL chambers filled with carboxygenated Krebs solution
(5% CO2 and 95% O2), as shown in Figure 1.
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Figure 1. Experimental setup for the recording of mechanical contractions of cardiac tissue.

The temperature was regulated using a Letica 13206 thermostat (Letica Scientific
Instruments, Barcelona, Spain), keeping a constant temperature of 37.5 ◦C. Each atrium,
left or right, was placed individually inside a chamber and sutured to the isometric force
transducer. The force transducer, R = 360 Ω (Letica Scientific Instruments, Barcelona, Spain),
was adjusted to a mass of 0.2 g and allowed to stabilize for 15 min before starting the exper-
iment. Data were registered using an analog-to-digital converter (ADC) (PowerLab 800,
AD Instruments, Dunedin, New Zealand) with a sampling frequency of Fs = 1000 Hz.

Electrical Stimulation Protocol

Stimulation was performed using an analog stimulator (Grass S48, Astro-Med, Inc.,
West Warwick, RI, USA). Electrical stimulation of left atrial samples was applied using a
current pulse of 40 mA for 0.4 ms at different stimulation frequencies of 1, 2, 3, 5 and 10 Hz.
The frequency of electrical stimulation was related to the frequency with which the cardiac
tissue contracted. Right atrial samples were not stimulated as the right atrium has a natural
physiological pacemaker.
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2.3. Synthetic Dataset

The experiment was based on the creation of a synthetic dataset of mechanical con-
tractions of cardiac tissue. The synthetic dataset includes normal contraction and 7 types of
different anomalies and includes a total of 100 signals for each category (i.e., n = 800 signals
in total), every one with a signal length of 100,000 samples. For the creation of synthetic
anomaly signals, different phenomena of anomalous contractions observed in the experi-
mental recordings have been considered, including the presence of pulses with anomalous
amplitude, duration, morphology or timing. The types of anomalies in the synthetic dataset
are shown in Table 3. Normal signals were used to train the model and abnormal signals
were used to validate both the anomaly classifier and the anomaly detector. In order to
make the signals more realistic, noise was added to the signals following a normal dis-
tribution with zero mean and a standard deviation σ = 0.005, robustly estimated from
experimental signals.

Table 3. Types of signals in the synthetic dataset. The x means not used parameter.

Signal Type Signal Description Category Anomalies
Nanom

Repetitions
Nrep

1. Normal signal Normal contraction Normal 6 x

2. Lower amplitude Phenomena of low amplitude contraction Anomalous 6 x

3. Higher amplitude Phenomena of large amplitude
contractions Anomalous 6 x

4. Missing pulse Absence of contraction pulses Anomalous 1 x

5. Slow pulse decay Periods of contraction with dynamics of
slow decline Anomalous 1 x

6. Fast pulse decay Periods of contraction with dynamics of
fast decline Anomalous 1 x

7. Early or anticipated pulse Periods of anticipated contraction Anomalous 1 x

8. Pause/block Periods of absence of contraction pulses Anomalous 1 10

Different synthetic data generated at a stimulation frequency of 6 Hz, i.e., with the
application of a stimulation pulse at approximately every 167 samples, are shown in
Figure 2.

2.4. Architecture of Anomaly Detectors

In the framework of mechanical signaling of cardiac tissue contraction, we are inter-
ested in being able to localize the exact temporal position with a probability of having
an anomaly. For this purpose, two detectors based on deep learning were implemented
(Figure 3). As the first detector, a recurrent neural network (RNN) structure of LSTM
type was used, whereas an autoencoder neural network was used as the second detector.
The advantage of such anomaly detectors is that they can be trained with one-class data
obtained from normal behavior without pathological conditions—that is, anomaly data are
not necessary.
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Figure 3. Anomaly detectors based on deep learning. (A) Anomaly detector based on an LSTM
network. (B) Anomaly detector based on an autoencoder.

In the use of autoencoders and LSTM networks as anomaly detectors, when normal
data are introduced, the detector can reconstruct the input, and then the error between the
input signal and the output signal is small. Conversely, when data containing anomalies
are entered into the network, the network cannot reconstruct the input signal and the error
becomes larger. The MATLAB r2022a software (Mathworks, Boston, MA, USA) was used
to program the code for detecting anomalies, with which custom code was developed and
specific libraries were also used, such as Signal Processing Toolbox and Machine Learning
Toolbox. A computer with an 11th-generation Intel Core i9 processor (CPU), 32 GB of RAM
and an Nvidia GeForce GTX Titan X graphic card (GPU) was used in order to train the
deep learning models. The detailed steps necessary to develop the anomaly detector based
on an autoencoder (D.1) or an LSTM neural network (D.2) are described as follows (see
Supplementary Material S1 and S2):

(a) Organization of data
First of all, mechanical contraction data corresponding to normal and anomalous

categories were obtained.
(b) Normalization of data
Signals were then normalized; centered and standardized with the z-score transforma-

tion, defined as follows:

xc = z-score(x) =
x− µ(x)

σ(x)
(1)

where xc represents centered and standardized data, µ(x) is the mean of signal x and σ(x) is
the standard deviation of signal x.

(c) Construction of the subsequences matrix
Signals were arranged as a subsequences matrix, X, an LxK matrix obtained by arrang-

ing K signal windows of size L samples, as in Figure 4. The number of windows, K, was
defined as follows:

K = S− L (2)

where K is the number of windows, S is the stride between windows and L is the window size.
Subsequences were organized in an LxK subsequences matrix, X, as follows:

X =



xc(1) xc(1 + S) xc(1 + 2 · S) · · · xc(1 + K · S)
x(2) xc(2 + S) xc(2 + 2 · S) · · · xc(2 + K · S)
xc(3) xc(3 + S) xc(3 + 2 · S) . . . xc(3 + K · S)

...
...

...
...

xc(L) xc(L + S) xc(L + 2 · S) . . . xc(L + K · S)


(3)

where xc is the normalized signal with N samples; 1 × N.
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(d) Training with normal data
Then, the autoencoder or LSTM network was trained with the sequences of the training

data of the normal signal category.
(e) Reconstruction with test data
Then, validation or test data with the corresponding subsequences were taken, and

the model trained with normal signals was used to reconstruct the signal.
(f) Reconstruction error
The reconstruction error between the input signal, x, and the reconstructed signal, y

(LSTM output), was calculated:
Ei = |yi − xi| (4)

Then, the mean absolute error (MAE) was defined as follows:

MAE =
1
N
·

N

∑
i=1

Ei (5)

where xi is the input signal and yi is the reconstructed signal produced by the LSTM
network or the autoencoder.

(g) Fitting the reconstruction error to a Gaussian distribution
The reconstruction error was adjusted to a univariate normal distribution by means of

the maximum likelihood estimation (MLE):

Ei ∼ N(µ̂, σ̂) (6)

where µ̂ is the estimated mean and σ̂ is the estimated standard deviation.
According to [32], for simplicity, it is recommendable to fit a Gaussian distribution,

which is used to assess the likelihood of anomalous behavior. The maximum likelihood
estimation (MLE) was calculated as follows [33].

(h) Measure of error distance
When error is found at the tail of a normal distribution, it is probable that an anomaly

has occurred, so the rarity of the event can be measured according to how far the location of
the error Ei is from the normal distribution, N(µ̂, σ̂). For distance calculation, as proposed
by different authors [5,32], measurement of the Mahalanobis distance was used since it is a
measure of the distance between an error point, Ei, and a statistical distribution. Therefore,
in some way, the Mahalanobis distance is being used as an anomaly score. In this study,
the univariate Mahalanobis distance, dM, was calculated as follows:

dM= dist(E, N(µ̂, σ̂)) = (E− µ̂)2 · 1
σ̂2 (7)

(i) Envelope extraction



Mathematics 2022, 10, 2786 9 of 21

The signal envelope, ζn, was calculated by interpolating the Mahalanobis distance,
dM, with a spline function, where the local maxima separated by at least np = 30 samples
were selected.

(j) Calculation of the threshold of anomalous samples
Using the Kolmogorov–Smirnov one-sample normality test, it was confirmed that

the validation error signals did not follow a normal distribution. Therefore, the threshold,
Thr, for the detection of anomalous samples was defined as the upper quartile, Q3, of the
envelope of the validation error plus five-fold the interquartile range (IQR):

Thr = Q3(ζn) + 5 · IQR(ζn) (8)

(k) Temporal localization of the anomalous samples
An anomalous sample is considered when the value of the envelope of the Maha-

lanobis distance, ζn, is greater than the threshold, Thr:

ζn ≥ Thr (9)

The entire methodological framework described from sections (a) to (k) is represented
graphically in the Supplementary Materials.

2.4.1. Detector Based on an LSTM Network (D.1)

The neural network used in the study was based on simple long short-term memory
cells (vanilla LSTM), the output gate of which is described by the following recurrence
functions [34]:

ht = ot � tanh(ct)

ot = ft � ct−1 + it � c̃t
(10)

where ht and ht−1 are the new state and the previous state of the hidden layer, respectively;
ct is the current state of the cell and c̃t is the cell state candidate.

The symbol� in the previous equations refers to element-wise multiplication (Hadamard
product). LSTM cells use additional gates for controlling which information of the hidden
cell arrives to the input and to the following hidden state. This allows more efficient
network learning of the long-term relationship of data. The input gate, it, controls the
update level of the cell state, ct. The forget gate controls the extent of forgetfulness of the
cell state. Finally, the output gate controls the level of the cell state that has been added to
the hidden state, ht (see Figure 5). Moreover, the cell state candidate adds information to
the cell state. Additionally, LSTM cells are able to learn long-term dependencies.
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Table 4. Governance equations of an LSTM cell.

Part Equation

Hidden state ht = ot � tanh(ct)

Cell state (cell output)
Cell state candidate

ct = ft � ct−1 + it � c̃t

c̃t = tanh(Uc · xt + Wc · ht−1 + bc)

Input gate it = σ(Ui · xt + Wi · ht−1 + bi)

Forget gate ft = σ(U f · xt + W f · ht−1 + b f )

Output gate ot = σ(Uo · xt + Wo · ht−1 + bo)

In the table, xt is the current input gate; Ui, Uf and Uo are the weights of the hidden layer for the input gate, forget
gate and output gate, respectively; Wi, Wf and Wo are the weights of the hidden state for the input gate, forget
gate and output gate, respectively; bi, bf and bo represent the bias for the input gate, forget gate and output gate,
respectively; ht is the new state (hidden); ht−1 is the previous state (hidden); σ is the logistic sigmoid activation
function and tanh is the hyperbolic tangent function.

Sigma, σ, indicates that the gates’ activation function is defined as a logistic sigmoid
function (logsig) as follows:

f (xt) = σ(xt) =
1

1 + e−xt
(11)

In a vanilla LSTM, the sigmoid function is used as the main activation function for the
input gate, the output gate and the forget gate because it outputs a value between 0 and 1,
and it can either let complete information flow or not throughout the gates. Additionally,
to overcome the vanishing gradient problem caused by the derivative of the activation
function, which is very close to zero in the gradient descent methods, we needed a function
whose second derivative can be sustained for a long time before going to zero. Then, in
the cell state candidate recurrence formula, the hyperbolic tangent function (tanh) ensures
that the gate values are scaled between −1 and 1, thus increasing stability during gradient
descent. Bidirectional LSTM (BiLSTM), which is simply the union of two conventional
LSTM cells, allows cells to retrieve sequence information in both ways, either backward or
forward, to continue the information transmission [35]. Figure 6 compares a conventional
LSTM cell with a bidirectional LSTM cell.
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For the detector based on a LSTM network, a neuronal network with 9 layers and
8 connections was developed (see Figure 7).
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In addition to LSTM cells, rectified linear units (RELUs), fully connected (FC) layers
and one last regression layer (RL) were used. RELU activation functions are responsible
for setting the negative values between layer and layer to zero; they are not important for
learning as they do not have saturation regions and they avoid stagnation during some
phases of the network training, unlike other activation functions. The hyperparameters that
define the architecture of the LSTM network used for detecting anomalies in the signals of
the mechanical contraction of cardiac tissue are summarized in Table 5. The definition of
the best hyperparameters was achieved using an empirical study.

For the training of the LSTM network, as these are real values, the loss function has
been defined as a mean squared error (MSE) function, which calculates the error between
network predictions and target values for the regression task:

J(W) =
1
N
·

N

∑
t=1

(yt − ỹt)
2 (12)

where yt represents ground truth data and ỹt is the output value of the neural network.



Mathematics 2022, 10, 2786 12 of 21

Table 5. Hyperparameters defining the architecture of the LSTM network.

Layer Name Type Activations Learnables States

1. Input Sequence input 1 - -

2. BiLSTM 1 BiLSTM 520
Input weights: 2080 × 1
Recurrent weights: 2080 × 260
Bias: 2080 × 1

Hidden states: 520 × 1
Cell states: 520 × 1

3. RELU 1 RELU 520 - -

4. BiLSTM 2 BiLSTM 320
Input weights: 1280 × 520
Recurrent weights: 1280 × 160
Bias: 1280 × 1

Hidden states: 320 × 1
Cell states: 320 × 1

5. RELU 2 RELU 320 - -

6. BiLSTM 3 BiLSTM 520
Input weights: 2080 × 320
Recurrent weights: 2080 × 260
Bias: 2080 × 1

Hidden states: 520 × 1
Cell states: 520 × 1

7. RELU 3 RELU 520

8. Fully Connected FC 1 Weights: 1 × 520
Bias: 1 × 1 -

9. Regression Layer RL 1 Mean squared error -

Numerical optimization that minimizes the loss of function by means of successive
iterations, l, starting from a random initial value was used. In our case, for training the
LSTM-type neural network, the adaptative moment estimation (Adam) algorithm was
used; this is a stochastic gradient descent method based on adaptative estimation of the
learning rates of moments of first, ml, and second order, vl, to further improve convergence
time [36]. Computationally, it is a very efficient method as it uses little memory. Classical
gradient descent methods use a single learning rate for all parameters, whereas the Adam
method aims to improve network training by using adaptative training rates that can be
adapted automatically to the loss function that is being optimized. When updating an
iteration with the Adam method, a moving average is used such as the following:

Update formula : Wl+1 = Wl − α·m̂l√
v̂l+ε

m̂l =
ml

(1−β1
l)

ml = β1 ·ml−1 + (1− β1) · ∇J(Wl)

v̂l =
vl

(1−β2
l)

vl = β2 · vl−1 + (1− β2) · [∇J(Wl)]2

(13)

where ml and vl are first- and second-order moments of the current state, respectively; Wl,
Wl+1 and Wl−1 are the weight vectors of the current, previous and next states, respectively;
∇J is the gradient of the loss function and β1 and β2 are the exponential decay rates of the
first and second moments, respectively.

If gradients contain mostly noise, updating the weights with the moving average
allows the moving average of the gradient to become smaller, and therefore the weight
updates also become smaller. The moments indicated by the symbol (ˆ) are the moments
with correction of the bias that appears at the beginning of training. The use of a regularizer
allows for applying penalties on layer parameters during optimization. These penalties
add to the loss function that optimizes the network. In the present study, a regularization
penalty, L2, was used. Additionally, adding a regularization term to the loss function
weights, J(W), is one way to reduce overfitting [37,38]. Then, the loss function after L2
regularization was expressed as follows:

JL2(Wl) = J(Wl) + L2 ·W2 (14)

where JL2(W) is the loss function with L2 regularization, W is the weight vector of the
current state and L2 is the penalty of L2 regularization.
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All parameters used in the training options of the LSTM neural networks are sum-
marized in Table 6. Parameters related to the Adam optimization algorithm are based
on [36].

Table 6. Training parameters for the LSTM network.

Description Parameter Name Value

Optimization algorithm Solver name Adam
First moment rate Gradient decay factor β1 = 0.9
Second moment rate Squared gradient decay factor β2 = 0.999
Epsilon Epsilon ε = 10−8

Maximum number of epochs Max epochs 30
Mini-batch size Mini batch size 10
Shuffle the data Shuffle Once
Initial learning rate Initial learnrate α0 = 0.001
L2 regularization L2 regularization L2 = 0.0001

2.4.2. Autoencoder-Based Detector (D.2)

Autoencoders are unsupervised learning algorithms with unlabeled data that are
based on neural networks and consist of two parts: an encoder and a decoder. The function
of the encoder is to compress data. For given input data x = {x1, x2, x3, . . . , xN}, the encoder
compresses the N-dimensional input in a code h{h1, h2, h3, . . . , hM}, where M < N, named
latent representation, which includes most of the input information. The architecture of a
basic autoencoder is shown in Figure 8.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 22 
 

 

Table 6. Training parameters for the LSTM network. 

Description Parameter Name Value 
Optimization algorithm Solver name Adam 
First moment rate Gradient decay factor β1 = 0.9 
Second moment rate Squared gradient decay factor β2 = 0.999 
Epsilon Epsilon ε = 10−8 

Maximum number of epochs Max epochs 30 
Mini-batch size Mini batch size 10 
Shuffle the data Shuffle Once 
Initial learning rate Initial learnrate α0 = 0.001 
L2 regularization L2 regularization L2 = 0.0001 

2.4.2. Autoencoder-Based Detector (D.2) 
Autoencoders are unsupervised learning algorithms with unlabeled data that are 

based on neural networks and consist of two parts: an encoder and a decoder. The func-
tion of the encoder is to compress data. For given input data x = {x1, x2, x3, …, xN}, the 
encoder compresses the N-dimensional input in a code h{h1, h2, h3, …, hM}, where M < N, 
named latent representation, which includes most of the input information. The architec-
ture of a basic autoencoder is shown in Figure 8. 

 
Figure 8. Basic autoencoder structure. 

The network of the autoencoder can be mathematically represented by the corre-
sponding encoding and decoding equations (see Figure 8): 

= ⋅ +
= ⋅ +

( )
( )

e e
T T

d dx
h f W x b

f W h b
 (15)

where x and x  are the input and output signal vectors of the autoencoder N × 1, respec-
tively; h is the hidden state M × 1; We and Wd are the weight vectors of the encoder and 
decoder M × N, respectively; and be and bd are the bias of the encoder and the decoder M 
× 1, respectively. 

In order to avoid the vanishing gradient problem, the hyperbolic tangent function 
(tanh) and logistic sigmoid function (logsig) are commonly used. Both are s-shaped 
curves; the only difference is that logsig lies between 0 and 1 whereas tanh lies between 1 
and −1. In this study, the logistic sigmoid activation function (logsig) has been used for 
both the encoder and the decoder because it is commonly used for models where proba-
bilities have to be predicted. Since the probability of anything exists only between the 

Hidden

= ⋅ +( )
e e

h fW x b

e
b

e
W

h

= ⋅ + ( )T T

d d
fW h bx

+
+

Encoder

T

d
b

T

d
W

+
+

Decoder

x x()f ()f

Figure 8. Basic autoencoder structure.

The network of the autoencoder can be mathematically represented by the correspond-
ing encoding and decoding equations (see Figure 8):

h = f (We · x + be)

x̃ = f (Wd
T · h + bT

d )
(15)

where x and x̃ are the input and output signal vectors of the autoencoder N× 1, respectively;
h is the hidden state M × 1; We and Wd are the weight vectors of the encoder and decoder
M × N, respectively; and be and bd are the bias of the encoder and the decoder M × 1,
respectively.

In order to avoid the vanishing gradient problem, the hyperbolic tangent function
(tanh) and logistic sigmoid function (logsig) are commonly used. Both are s-shaped curves;
the only difference is that logsig lies between 0 and 1 whereas tanh lies between 1 and −1.
In this study, the logistic sigmoid activation function (logsig) has been used for both the
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encoder and the decoder because it is commonly used for models where probabilities have
to be predicted. Since the probability of anything exists only between the range of 0 and 1,
the tanh function does not have a clear relationship to modeling probability.

For the definition of the loss function of the autoencoder, since the input, x, has a real
value, a mean squared error sparse (msesparse) function was used. This function calculates
the error between the input and the output value of the autoencoder as well as adding two
terms of regularization:

J(W) =
1
N
·

N

∑
i=1

(xi − x̃i)
2 + ΩL2 + ΩKL (16)

where N is the number of samples of the input signal vector; xi and x̃i are the values of the
sample at the input and output of the autoencoder, respectively; ΩL2 is the regularization
term L2 and ΩKL is the sparsity regularization term.

In Equation (11), it can be observed that two regularization terms are used with the
objective of avoiding overfitting. L2 regularization affects weights, whereas dispersion
regularization, W, affects the activity of the hidden layers, h. To minimize loss function,
the stochastic gradient descent (SGD) was used. The regularization term L2 or ridge
regularization is expressed as the i-th sum of the squares of the weights, W, multiplied
by the weight decay parameter, λ, which tends to decrease the magnitude of weights and
helps to avoid overfitting [39,40]:

ΩL2 = λ · 1
2
·

L

∑
l=1

sl

∑
i=1

sl+1

∑
j=1

(W l
ji)

2
(17)

where λ is the weight decay parameter, L is the number of layers, sl is the number of units
in the layer l and Wji is the weight between unit j of layer l and unit i of layer l + 1.

It is interesting to be able to achieve a mean activation, ρ, of each hidden neuron, j,
close to the dispersion parameter; that is, ρ̂j = ρ. Typically, the dispersion parameter, ρ,
takes a small value close to zero. In the present study, ρ = 0.1 was selected. In order to meet
this restriction, activations of the hidden unit should be mostly close to 0. To achieve this,
the dispersion regularization term, ΩKL, penalizes when ρ̂j is significantly deviated from ρ
on the basis of the Kullback–Leibler divergence (KL) concept [41]:

ΩKL = β ·
M

∑
j=1

DKL(ρ ‖ ρ̂j) (18)

where M is the number of hidden neurons; β is the dispersion regularization parameter; ρ̂
is the vector of the mean activity of the hidden layer, h; and ρ is the sparsity proportion
parameter.

The Kullback–Leibler divergence (KL) is a measure between two statistical distributions—
specifically the distance between two distributions of Bernoulli random variables, one with a
mean ρ and the other with a mean ρ̂. The dispersion regularization parameter, β, regulates
the weight of the dispersion term, ΩKL.

The parameters used in the training options of the autoencoder are summarized in
Table 7. The values of the regularization parameters and loss function selection are based
on [39].
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Table 7. Training parameters for the autoencoder detector.

Description Parameter Name Value

Number of hidden nodes Hidden size 200
L2 regularization L2 weight regularization λ = 0.0001
Regularization of dispersion Sparsity regularization β = 0.0001
Sparsity proportion Sparsity proportion ρ = 0.1
Maximum number of epochs Max epochs 200
Loss function Loss function msesparse
Activation function (encoder) Encoder transfer function logsig
Activation function (decoder) Decoder transfer function logsig

3. Results
3.1. Synthetic Data

The intersection over union (IOU) and Sørensen–Dice index (SDI) criteria are com-
monly used to calculate the accuracy of an anomaly detector in synthetic data.

IOU =
intersection

union
=

ROID ∩ ROIGT
ROID ∪ ROIGT

· ∈ [0, 1] (19)

where ROID is the anomalous region detected by the anomaly detector and ROIGT is the
ground truth anomaly region.

The region of interest (ROI) corresponds to the cardinalities of the two regions (i.e., the
number of samples in each set). Figure 9 shows the practical calculation of the intersection
over union (IOU) when the region of interest of the ground truth (ROIGT) and the region of
interest detected by the anomaly detector (ROID) are known.
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Alternatively, the IOU can be written using the definition of true positive (TP), false
positive (FP) and false negative (FN), as follows:

IOU =
intersection

union
=

TP
TP + FP + FN

∈ [0, 1] (20)

This index is known by several other names, especially F1 score. In a similar way, the
Sørensen–Dice index (SDI) or F1 score is defined as follows:

SDI =
2 · TP

2 · TP + FP + FN
∈ [0, 1] (21)
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It differs from the IOU index which only counts true positives once in both the
numerator and the denominator. Both indices, IOU and Sørensen–Dice, range in the closed
interval between 0 and 1. They can be interpreted as a similarity measure over sets.

Figure 10 shows the detection accuracy using the anomaly detectors based on the
autoencoder and LSTM for one particular case of a synthetic signal: higher amplitude.
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based detector. (B) LSTM-based detector.

Table 8 shows the accuracy obtained by the classifiers based on the autoencoder
and the LSTM-type neural network; we decided to use the SDI to evaluate the accuracy.
Synthetic data which model seven types of anomalies representative of the contractile
signals of heart tissue, excluding normal signals, were used for evaluation (see Table 5).

Table 8. Anomaly detectors’ accuracy.

Signal Type
Sørensen–Dice Index (SDI)

Autoencoder LSTM

2. Lower amplitude 0.55 0.83
3. Higher amplitude 0.71 0.99
4. Missing pulse 0.63 0.91
5. Slow pulse decay 0.67 0.95
6. Fast pulse decay 0.61 0.88
7. Early or anticipated pulse 0.51 0.77
8. Pause/block 0.61 0.9

The LSTM neural-network-based framework presented the best accuracy. It is also
noted that the early pulse signal was the most difficult signal to detect in both approaches.

3.2. Experimental Data

This section describes the application of the anomaly detection framework based on
deep learning to experimental data. In the previous section, it was validated with synthetic
data that LSTM offers better accuracy in detecting anomalies (see Section 3.1). Therefore,
the LSTM-type anomaly detector was tested on experimental signals of mechanical contrac-
tion of left atrium cardiac tissue (AE) stimulated at successive frequencies of 1, 2, 4, 6, 8
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and 10 Hz and also on experimental data from the unstimulated right atrium, since it is
controlled by pacemaker cells. For stimulated left atria recordings, normal experimental
recordings were used for network training, while for right atria recordings, normal experi-
mental signals stimulated at a frequency of 5 Hz were used, as the observed contraction
in the heart tissue of the left atrium is approximately 5 Hz. Specifically, 16 records were
selected from 12 mice where representative anomalies were observed.

Figure 11 shows the experimental signals of the normal category used for the training
of the fault detector used in the experimental signals.
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Experimental data

Time (samples)

Figure 11. Normal experimental signals with different stimulation frequencies (1 to 10 Hz). These
signals were used for training the anomaly detector that was applied to experimental signals.

Figure 12 shows the LSTM-type anomaly detector applied to experimental mechanical
signals from the cardiac tissue of the left and right atria of CD-1 mice. It visually confirms
that the detector is able to satisfactorily identify the anomalies present in the signal.

Figure 12A shows an anomaly that appeared in a left atrium when stimulated at 5 Hz.
Figure 12B shows anomalies detected in a right atrium, which remained unstimulated as it
has a natural physiological pacemaker. These atria that did not follow a stimulation pattern
were more prone to the genesis of anomalies. Specifically, two cardiac arrest phenomena
appeared, which were correctly identified by the anomaly detector.
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4. Discussion

We have reported a method for the detection of anomalies in cardiac tissue based on
deep learning, in which two anomaly detectors have been evaluated. The first detector
used a recurrent neural network (RNN) of long short-term memory (LSTM) type, while
the second used an autoencoder. The proposed methodology is “normal-only” because
training of the algorithm does not require labeling of the whole dataset, but only of normal
data. This is an approach that uses the power of deep learning representation without
usual a labeling constraint, just normal data. No previous studies have been found in
the literature where the methodology of detecting anomalies is applied to mechanical
contractions in cardiac tissue. Nevertheless, we can compare it with the accuracy achieved
by deep-learning-based anomaly detectors in cardiac electrical signals, which is in the
range between 0.75 and 0.1 (Zhao et al., 2021) [42]. In our study, despite dealing with a
signal with a high signal-to-noise ratio and a lot of biological variability, when we used the
LSTM-based anomaly detector, we achieved a maximum accuracy of 0.99 and an accuracy
of 0.88 in the worst case.

A set of synthetic data was constructed, which allowed for accurately describing the
different anomalies observed in the experimental recordings of the mouse cardiac atria.
These artificial data were used to validate the correct performance of the anomaly detection
methodology that was subsequently applied to real experimental data.

The results of the anomaly detector framework presented in this study have been
exported to an html file with interactive graphics where the anomalous regions are high-
lighted. In addition, this file incorporates basic visualization tools that allow the researcher
or clinician to perform actions such as zooming in, zooming out, scaling and downloading
the results as an image file (png file). This whole set of interactive tools allows to delve
deeper into the analysis or explanation of anomalies which are associated with the gen-
eration of cardiac arrhythmias and to easily gain actionable insights. Files with an html
extension can be used in any operating system (OS), do not require computer resources and
can be used in offline mode (without Internet connection). All html interactive graphics
files are freely accessible on a Git repository page (Github) under the MIT Open software
license (See supplementary data section).

From a biological point of view, this methodology may be of interest in the fields of
heart physiology, pharmacology or pathology. Although the aim of this work was primarily
methodological, it is important to note that the high frequency of heartbeats occurring
physiologically in a mouse can make quantification difficult. The detection of abnormalities
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is a first step in the detection of different cardiac pathologies associated with changes
in contraction amplitude (inotropic), frequency (chronotropic) or rhythm (arrhythmias).
This type of experimental approach, together with traditional methods of calculating the
parameters associated with contractions (amplitude, duration, frequency, etc.), may be
useful in future studies where these alterations are studied.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/math10152786/s1, S1: Autoencoder-based anomaly de-
tector framework; S2: LSTM-based anomaly detector framework. Additionally, interactive graph-
ics files are freely accessible on a Git repository page under the MIT Open software license
(https://github.com/xavierMarimon/CardiacTissueAnomaly/).
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