230 research outputs found

    Integrated 2-D Optical Flow Sensor

    Get PDF
    I present a new focal-plane analog VLSI sensor that estimates optical flow in two visual dimensions. The chip significantly improves previous approaches both with respect to the applied model of optical flow estimation as well as the actual hardware implementation. Its distributed computational architecture consists of an array of locally connected motion units that collectively solve for the unique optimal optical flow estimate. The novel gradient-based motion model assumes visual motion to be translational, smooth and biased. The model guarantees that the estimation problem is computationally well-posed regardless of the visual input. Model parameters can be globally adjusted, leading to a rich output behavior. Varying the smoothness strength, for example, can provide a continuous spectrum of motion estimates, ranging from normal to global optical flow. Unlike approaches that rely on the explicit matching of brightness edges in space or time, the applied gradient-based model assures spatiotemporal continuity on visual information. The non-linear coupling of the individual motion units improves the resulting optical flow estimate because it reduces spatial smoothing across large velocity differences. Extended measurements of a 30x30 array prototype sensor under real-world conditions demonstrate the validity of the model and the robustness and functionality of the implementation

    Analogue VLSI for temporal frequency analysis of visual data

    Get PDF

    Single-chip CMOS tracking image sensor for a complex target

    Get PDF

    VLSI analogs of neuronal visual processing: a synthesis of form and function

    Get PDF
    This thesis describes the development and testing of a simple visual system fabricated using complementary metal-oxide-semiconductor (CMOS) very large scale integration (VLSI) technology. This visual system is composed of three subsystems. A silicon retina, fabricated on a single chip, transduces light and performs signal processing in a manner similar to a simple vertebrate retina. A stereocorrespondence chip uses bilateral retinal input to estimate the location of objects in depth. A silicon optic nerve allows communication between chips by a method that preserves the idiom of action potential transmission in the nervous system. Each of these subsystems illuminates various aspects of the relationship between VLSI analogs and their neurobiological counterparts. The overall synthetic visual system demonstrates that analog VLSI can capture a significant portion of the function of neural structures at a systems level, and concomitantly, that incorporating neural architectures leads to new engineering approaches to computation in VLSI. The relationship between neural systems and VLSI is rooted in the shared limitations imposed by computing in similar physical media. The systems discussed in this text support the belief that the physical limitations imposed by the computational medium significantly affect the evolving algorithm. Since circuits are essentially physical structures, I advocate the use of analog VLSI as powerful medium of abstraction, suitable for understanding and expressing the function of real neural systems. The working chip elevates the circuit description to a kind of synthetic formalism. The behaving physical circuit provides a formal test of theories of function that can be expressed in the language of circuits

    Ultra-Low Power IoT Smart Visual Sensing Devices for Always-ON Applications

    Get PDF
    This work presents the design of a Smart Ultra-Low Power visual sensor architecture that couples together an ultra-low power event-based image sensor with a parallel and power-optimized digital architecture for data processing. By means of mixed-signal circuits, the imager generates a stream of address events after the extraction and binarization of spatial gradients. When targeting monitoring applications, the sensing and processing energy costs can be reduced by two orders of magnitude thanks to either the mixed-signal imaging technology, the event-based data compression and the use of event-driven computing approaches. From a system-level point of view, a context-aware power management scheme is enabled by means of a power-optimized sensor peripheral block, that requests the processor activation only when a relevant information is detected within the focal plane of the imager. When targeting a smart visual node for triggering purpose, the event-driven approach brings a 10x power reduction with respect to other presented visual systems, while leading to comparable results in terms of detection accuracy. To further enhance the recognition capabilities of the smart camera system, this work introduces the concept of event-based binarized neural networks. By coupling together the theory of binarized neural networks and focal-plane processing, a 17.8% energy reduction is demonstrated on a real-world data classification with a performance drop of 3% with respect to a baseline system featuring commercial visual sensors and a Binary Neural Network engine. Moreover, if coupling the BNN engine with the event-driven triggering detection flow, the average power consumption can be as low as the sleep power of 0.3mW in case of infrequent events, which is 8x lower than a smart camera system featuring a commercial RGB imager

    A FPGA-based architecture for real-time cluster finding in the LHCb silicon pixel detector

    Get PDF
    The data acquisition system of the LHCb experiment has been substantially upgraded for the LHC Run 3, with the unprecedented capability of reading out and fully reconstructing all proton–proton collisions in real time, occurring with an average rate of 30 MHz, for a total data flow of approximately 32 Tb/s. The high demand of computing power required by this task has motivated a transition to a hybrid heterogeneous computing architecture, where a farm of graphics cores, GPUs, is used in addition to general–purpose processors, CPUs, to speed up the execution of reconstruction algorithms. In a continuing effort to improve real–time processing capabilities of this new DAQ system, also with a view to further luminosity increases in the future, low–level, highly–parallelizable tasks are increasingly being addressed at the earliest stages of the data acquisition chain, using special–purpose computing accelerators. A promising solution is offered by custom–programmable FPGA devices, that are well suited to perform high–volume computations with high throughput and degree of parallelism, limited power consumption and latency. In this context, a two–dimensional FPGA–friendly cluster–finder algorithm has been developed to reconstruct hit positions in the new vertex pixel detector (VELO) of the LHCb Upgrade experiment. The associated firmware architecture, implemented in VHDL language, has been integrated within the VELO readout, without the need for extra cards, as a further enhancement of the DAQ system. This pre–processing allows the first level of the software trigger to accept a 11% higher rate of events, as the ready– made hit coordinates accelerate the track reconstruction, while leading to a drop in electrical power consumption, as the FPGA implementation requires O(50x) less power than the GPU one. The tracking performance of this novel system, being indistinguishable from a full–fledged software implementation, allows the raw pixel data to be dropped immediately at the readout level, yielding the additional benefit of a 14% reduction in data flow. The clustering architecture has been commissioned during the start of LHCb Run 3 and it currently runs in real time during physics data taking, reconstructing VELO hit coordinates on–the–fly at the LHC collision rate

    Synaptic Learning for Neuromorphic Vision - Processing Address Events with Spiking Neural Networks

    Get PDF
    Das Gehirn ĂŒbertrifft herkömmliche Computerarchitekturen in Bezug auf Energieeffizienz, Robustheit und AnpassungsfĂ€higkeit. Diese Aspekte sind auch fĂŒr neue Technologien wichtig. Es lohnt sich daher, zu untersuchen, welche biologischen Prozesse das Gehirn zu Berechnungen befĂ€higen und wie sie in Silizium umgesetzt werden können. Um sich davon inspirieren zu lassen, wie das Gehirn Berechnungen durchfĂŒhrt, ist ein Paradigmenwechsel im Vergleich zu herkömmlichen Computerarchitekturen erforderlich. TatsĂ€chlich besteht das Gehirn aus Nervenzellen, Neuronen genannt, die ĂŒber Synapsen miteinander verbunden sind und selbstorganisierte Netzwerke bilden. Neuronen und Synapsen sind komplexe dynamische Systeme, die durch biochemische und elektrische Reaktionen gesteuert werden. Infolgedessen können sie ihre Berechnungen nur auf lokale Informationen stĂŒtzen. ZusĂ€tzlich kommunizieren Neuronen untereinander mit kurzen elektrischen Impulsen, den so genannten Spikes, die sich ĂŒber Synapsen bewegen. Computational Neuroscientists versuchen, diese Berechnungen mit spikenden neuronalen Netzen zu modellieren. Wenn sie auf dedizierter neuromorpher Hardware implementiert werden, können spikende neuronale Netze wie das Gehirn schnelle, energieeffiziente Berechnungen durchfĂŒhren. Bis vor kurzem waren die Vorteile dieser Technologie aufgrund des Mangels an funktionellen Methoden zur Programmierung von spikenden neuronalen Netzen begrenzt. Lernen ist ein Paradigma fĂŒr die Programmierung von spikenden neuronalen Netzen, bei dem sich Neuronen selbst zu funktionalen Netzen organisieren. Wie im Gehirn basiert das Lernen in neuromorpher Hardware auf synaptischer PlastizitĂ€t. Synaptische PlastizitĂ€tsregeln charakterisieren Gewichtsaktualisierungen im Hinblick auf Informationen, die lokal an der Synapse anliegen. Das Lernen geschieht also kontinuierlich und online, wĂ€hrend sensorischer Input in das Netzwerk gestreamt wird. Herkömmliche tiefe neuronale Netze werden ĂŒblicherweise durch Gradientenabstieg trainiert. Die durch die biologische Lerndynamik auferlegten EinschrĂ€nkungen verhindern jedoch die Verwendung der konventionellen Backpropagation zur Berechnung der Gradienten. Beispielsweise behindern kontinuierliche Aktualisierungen den synchronen Wechsel zwischen VorwĂ€rts- und RĂŒckwĂ€rtsphasen. DarĂŒber hinaus verhindern GedĂ€chtnisbeschrĂ€nkungen, dass die Geschichte der neuronalen AktivitĂ€t im Neuron gespeichert wird, so dass Verfahren wie Backpropagation-Through-Time nicht möglich sind. Neuartige Lösungen fĂŒr diese Probleme wurden von Computational Neuroscientists innerhalb des Zeitrahmens dieser Arbeit vorgeschlagen. In dieser Arbeit werden spikende neuronaler Netzwerke entwickelt, um Aufgaben der visuomotorischen Neurorobotik zu lösen. In der Tat entwickelten sich biologische neuronale Netze ursprĂŒnglich zur Steuerung des Körpers. Die Robotik stellt also den kĂŒnstlichen Körper fĂŒr das kĂŒnstliche Gehirn zur VerfĂŒgung. Auf der einen Seite trĂ€gt diese Arbeit zu den gegenwĂ€rtigen BemĂŒhungen um das VerstĂ€ndnis des Gehirns bei, indem sie schwierige Closed-Loop-Benchmarks liefert, Ă€hnlich dem, was dem biologischen Gehirn widerfĂ€hrt. Auf der anderen Seite werden neue Wege zur Lösung traditioneller Robotik Probleme vorgestellt, die auf vom Gehirn inspirierten Paradigmen basieren. Die Forschung wird in zwei Schritten durchgefĂŒhrt. ZunĂ€chst werden vielversprechende synaptische PlastizitĂ€tsregeln identifiziert und mit ereignisbasierten Vision-Benchmarks aus der realen Welt verglichen. Zweitens werden neuartige Methoden zur Abbildung visueller ReprĂ€sentationen auf motorische Befehle vorgestellt. Neuromorphe visuelle Sensoren stellen einen wichtigen Schritt auf dem Weg zu hirninspirierten Paradigmen dar. Im Gegensatz zu herkömmlichen Kameras senden diese Sensoren Adressereignisse aus, die lokalen Änderungen der LichtintensitĂ€t entsprechen. Das ereignisbasierte Paradigma ermöglicht eine energieeffiziente und schnelle Bildverarbeitung, erfordert aber die Ableitung neuer asynchroner Algorithmen. Spikende neuronale Netze stellen eine Untergruppe von asynchronen Algorithmen dar, die vom Gehirn inspiriert und fĂŒr neuromorphe Hardwaretechnologie geeignet sind. In enger Zusammenarbeit mit Computational Neuroscientists werden erfolgreiche Methoden zum Erlernen rĂ€umlich-zeitlicher Abstraktionen aus der Adressereignisdarstellung berichtet. Es wird gezeigt, dass Top-Down-Regeln der synaptischen PlastizitĂ€t, die zur Optimierung einer objektiven Funktion abgeleitet wurden, die Bottom-Up-Regeln ĂŒbertreffen, die allein auf Beobachtungen im Gehirn basieren. Mit dieser Einsicht wird eine neue synaptische PlastizitĂ€tsregel namens "Deep Continuous Local Learning" eingefĂŒhrt, die derzeit den neuesten Stand der Technik bei ereignisbasierten Vision-Benchmarks erreicht. Diese Regel wurde wĂ€hrend eines Aufenthalts an der UniversitĂ€t von Kalifornien, Irvine, gemeinsam abgeleitet, implementiert und evaluiert. Im zweiten Teil dieser Arbeit wird der visuomotorische Kreis geschlossen, indem die gelernten visuellen ReprĂ€sentationen auf motorische Befehle abgebildet werden. Drei AnsĂ€tze werden diskutiert, um ein visuomotorisches Mapping zu erhalten: manuelle Kopplung, Belohnungs-Kopplung und Minimierung des Vorhersagefehlers. Es wird gezeigt, wie diese AnsĂ€tze, welche als synaptische PlastizitĂ€tsregeln implementiert sind, verwendet werden können, um einfache Strategien und Bewegungen zu lernen. Diese Arbeit ebnet den Weg zur Integration von hirninspirierten Berechnungsparadigmen in das Gebiet der Robotik. Es wird sogar prognostiziert, dass Fortschritte in den neuromorphen Technologien und bei den PlastizitĂ€tsregeln die Entwicklung von Hochleistungs-Lernrobotern mit geringem Energieverbrauch ermöglicht

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community
    • 

    corecore