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Abstract

The data acquisition system of the LHCb experiment has been substantially
upgraded for the LHC Run 3, with the unprecedented capability of reading out
and fully reconstructing all proton–proton collisions in real time, occurring
with an average rate of 30 MHz, for a total data flow of approximately
32 Tb/s. The high demand of computing power required by this task has
motivated a transition to a hybrid heterogeneous computing architecture,
where a farm of graphics cores, GPUs, is used in addition to general–purpose
processors, CPUs, to speed up the execution of reconstruction algorithms. In
a continuing effort to improve real–time processing capabilities of this new
DAQ system, also with a view to further luminosity increases in the future,
low–level, highly–parallelizable tasks are increasingly being addressed at the
earliest stages of the data acquisition chain, using special–purpose computing
accelerators. A promising solution is offered by custom–programmable FPGA
devices, that are well suited to perform high–volume computations with
high throughput and degree of parallelism, limited power consumption and
latency. In this context, a two–dimensional FPGA–friendly cluster–finder
algorithm has been developed to reconstruct hit positions in the new vertex
pixel detector (VELO) of the LHCb Upgrade experiment. The associated
firmware architecture, implemented in VHDL language, has been integrated
within the VELO readout, without the need for extra cards, as a further
enhancement of the DAQ system. This pre–processing allows the first level
of the software trigger to accept a 11% higher rate of events, as the ready–
made hit coordinates accelerate the track reconstruction, while leading to a
drop in electrical power consumption, as the FPGA implementation requires
O(50x) less power than the GPU one. The tracking performance of this novel
system, being indistinguishable from a full–fledged software implementation,
allows the raw pixel data to be dropped immediately at the readout level,
yielding the additional benefit of a 14% reduction in data flow. The clustering
architecture has been commissioned during the start of LHCb Run 3 and it
currently runs in real time during physics data taking, reconstructing VELO
hit coordinates on–the–fly at the LHC collision rate.
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Introduction

Cacambo, qui donnait toujours d’aussi bons conseils que la vieille, dit à
Candide: Nous n’en pouvons plus, nous avons assez marché; j’aperçois un
canot vide sur le rivage, emplissons–le de cocos, jetons–nous dans cette petite
barque, laissons–nous aller au courant; une rivière mène toujours à quelque
endroit habité. Si nous ne trouvons pas des choses agréables, nous trouverons
du moins des choses nouvelles.

— Voltaire, Candide

The Standard Model (SM) of particle physics has proven to be one of the most successful scientific
theories to date. Being completed in the seventies, it has been tested with high precision since,
establishing itself as a great success of the reductionist paradigm in describing particles and
fundamental interactions. Despite having passed all experimental tests, the SM is known to
be an incomplete theory, lacking the description of gravity, dark matter, and dark energy. In
this context, High Energy Physics (HEP) experiments aim at probing the SM to higher and
higher precision, exploiting the full predictive power of the theory. Two main research paths are
currently being followed, the direct search and the precision search. The direct search aims at
producing new particles or unveiling new types of interactions that can lead to direct signs of
physics beyond the SM. This approach led to the discovery of the Higgs boson in 2012 [1, 2],
produced in O(10) TeV proton-proton collisions at the Large Hadron Collider (LHC) accelerator
and observed by the ATLAS and CMS collaborations. However, the direct approach is limited
by the collision energy in a scenario where more powerful accelerators are not foreseen in the
near future and direct searches have yielded null results so far. For these reasons the precision
frontier might represent the best opportunity to reveal non-SM dynamics in the next decade.
On one hand this approach relies on comparing precise measurements with similarly precise
SM predictions to highlight deviations from the theory. On the other hand, even if observables
are characterized by relatively large theoretical uncertainties, performing measurements with
ever-increasing experimental precisions allows the parameters of the underlying theoretical
model to be over-constrained. The LHCb experiment installed at the LHC accelerator is one
of the leading players in precision searches. Since its operations started in 2010, LHCb has
been capable of collecting huge samples of charm– and bottom–hadron decays, providing key
contributions to the field such as the first single–experiment observation of D0 mixing in 2012 [3],
the first observation of CP violation in the decay of D0 mesons in 2019 [4], the measurement
of B0

s → µ+µ− decay properties [5], precise determination of the β angle [6] and of the B0
s

mixing frequency [7], first observations of penta– and tetra–quark states [8,9], the detailed study
of anomalies in b → sll transitions [10] and the world’s most precise measurements of the γ
angle [11].
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In order to improve its performance and keep up with the ambitious physics program, the
LHCb experiment is currently planning a series of incremental upgrades that will allow it
to collect a data sample consisting of 300 fb−1 by the end of Run 6, in 2038, sustaining an
unprecedented instantaneous luminosity of 1.5× 1034 cm−2s−1. The first step of this ambitious
upgrade path has been recently completed. In fact, LHCb has just undergone a fundamental
upgrade that involved both the detector and the trigger and data acquisition (DAQ) chain.
The new DAQ system is based on trigger–less back–end electronics, reading events at the full
30 MHz LHC inelastic event rate, with an instantaneous luminosity of 2 × 1033 cm−2s−1 at
Run 3, corresponding to a bandwidth of about 32 Tb/s. The subsequent event–building stage
and software high–level–trigger (HLT) processing lead to a final data storage bandwidth of
80 Gb/s. The LHCb triggering process is divided into two main stages, named HLT1 and HLT2,
where the first performs simpler and basic selections to reduce data rate by a factor of about 30,
and it is executed by means of a farm of approximately 170 graphics cores (GPUs)1 installed
in the event builder servers. The latter executes more sophisticated and complex algorithms
on a large farm of general–purpose CPU processors. The large amount of data that has to be
processed upfront in real time challenges the entire acquisition system, and data handling is
anticipated to be one of the key challenges for future runs with higher instantaneous luminosities.
Therefore, a common effort is being made to address low–level and high–parallelizable tasks at
early stages of the DAQ system, leveraging various highly specialized accelerator architectures.
This approach goes by the name of heterogeneous computing and it allows the bandwidth and
computing resource needs to be reduced, leaving more room for the higher–level data processing
and selections, while significantly reducing the overall power consumption. LHCb is at the
forefront of heterogeneous applications, having already deployed a grid of GPUs for triggering
purposes in Run 3.

One of the most time consuming tasks that is still addressable at early DAQ stages is track
reconstruction, where the information of multiple subdetector layers is processed to identify the
trajectories of particles within the detector acceptance. Within LHCb, the “Artificial Retina”
project is one of the most advanced R&D projects that aims at solving track reconstruction at the
pre–event–building stage. In order to accomplish this ambitious goal, Retina employs a parallel,
high–throughput, low–latency tracking architecture to be deployed on FPGA–based accelerators,
capable of sustaining a 30 MHz input event rate. The first step to enable track reconstruction
of the LHCb VErtex LOcator (VELO) pixel subdetector with the Retina algorithm consists in
grouping contiguous active pixels inside the silicon vertex detector. The clustering process is the
first key task to be performed before the actual tracking algorithms can go through the detector
clusters and reconstruct tracks. Clustering is both time consuming, due to the two–dimensional
geometry of the pixel detector, and highly parallelizable. In this context, this thesis reports the
development, testing, and commissioning of a real–time two–dimensional clustering algorithm
and the corresponding VHDL firmware that runs on the back–end FPGA–based boards of the
LHCb silicon pixel detector. The algorithm has been fully integrated with the LHCb DAQ chain,
allowing a significant improvement of the time needed to perform the online reconstruction for
trigger purposes, while reducing the bandwidth required to output the vertex detector data.
This is the first–ever implementation of a FPGA–based two–dimensional clustering algorithm
that runs in real time at the unprecedented speed of 30 MHz.

1The current plan is to double the number of graphics cores during 2023 to maximize the experiment capabilities.
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The thesis is structured as follows. Chapter 1 introduces the concept of heterogeneous computing,
explaining why it is one of the most promising solutions for data–taking architectures of future
envisioned HEP experiments. The key components of the LHCb upgrade are described in
Chap. 2 on both the detector and the data acquisition side. Chapter 3 details the clustering
algorithm, describing its functioning principles, parameters, and limitations, while its firmware
implementation is accurately illustrated in Chap. 4. Chapter 5 goes through the firmware and
software integration of the new algorithm within the LHCb infrastructure. Physics performances
of the algorithm are instead detailed and compared to a full–fledged CPU–based software
implementation of the clustering algorithm in Chap. 6. The key commissioning steps that led
to a properly functional firmware within the LHCb DAQ chain are described in Chap. 7. The
chapter also concludes the thesis by summarizing the achievements of this work, which is meant
to be a fist step towards building a FPGA–based tracking unit running in real time, in the
context of Future LHCb Upgrades.
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Chapter 1

Heterogeneous computing
in High Energy Physics

Starting from the Heavy Flavor Physics research case, this chapter introduces the concept of
trigger and data acquisition (DAQ) in modern High Energy Physics experiments. In particular,
as the High–Luminosity LHC (HL–LHC) era approaches, heterogeneous computing seems to
be one of the most promising and viable options to handle ever–increasing data complexity,
bandwidths, and power consumption. Example applications of the heterogeneous computing
paradigm are discussed with a specific focus on the LHCb Retina project, which led, as a first
stage of a more complex tracking unit, to the development and implementation of the FPGA–based
two–dimensional clustering algorithm, which is the main topic of this thesis.

1.1 Probing the Standard Model: Heavy Flavor Physics

Despite its numerous achievements in explaining a wide variety of phenomena at their most
fundamental level [1,2,12–15], the Standard Model (SM) of particle physics is far from being
considered a complete theory. Instead, it is usually described as a low–energy limit of a more
comprehensive model. Arguments typically used to motivate the fact that the SM might be
an effective theory with a limited validity range are the baryon asymmetry of the universe,
the lack of dark matter and dark energy descriptions and a coherent merging with General
Relativity. These and other observations motivate the search for New Physics (NP), aiming at a
high–energy completion of the SM. NP models, such as Supersymmetry and extra dimensions
models, can introduce additional forces, particles or sources of symmetry but they all need to
view the SM as a low–energy effective theory, given its success in explaining electromagnetic,
weak, and strong interactions. Two main paths are currently being explored when it comes
to NP research: the direct search that aims at revealing new particles by directly producing
them in high energy collisions and the precision search that looks into indirect evidence of NP
phenomena by measuring with extreme precision fundamental processes and comparing the
observations with SM predictions.

One of the most promising ways of probing the SM via precision searches consists of exploiting
its flavor structure. The term flavor is used to identify fields sharing the same spin and quantum
numbers. Interactions being able to distinguish between them are the main focus of flavor physics.
Within current understanding, quarks, leptons, and neutrinos are observed to be organized into
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three flavors each (families or generations). However, their flavor structure, which, unlike other
forces, is not determined by an invariance of the theory under symmetry transformations, might
be a clue to NP at higher energies. The existence of the three generations, together with the
unexplained pattern of masses of quarks and leptons, spanning several orders of magnitude, is
referred to as the SM flavor puzzle and is one of the central mysteries of particle physics. Both
quarks and leptons have flavor and mix between families, however the matrices describing the
couplings between different flavors, the Cabibbo–Kobayashi–Maskawa (CKM) [16,17] matrix for
quarks and the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) [18,19] for neutrinos, have different
structures. On one hand the CKM matrix is highly hierarchical, with diagonal elements having
magnitude close to unity, and progressively smaller off–diagonal elements. On the other hand, the
PMNS matrix has much larger off–diagonal elements. Moreover, flavor physics shows a wide and
diverse variety of phenomena, currently obeying the SM predictions, that can be measured to test
these predictions. Examples are mixing and CP violation in both the charm and bottom sectors
and b quark decays that allow transitions between all three quark families to be probed, while
being suppressed within the SM and hence representing potential sensitive channels for NP. This
plethora of observables allows very high mass scales to be probed, well beyond the center–of–mass
energy of any current or planned future collider [20]. This high mass–scale sensitivity is directly
related to the SM flavor structure, which strongly suppresses flavor–changing neutral–current
(FCNC) processes. In this respect flavor physics has two main objectives: understanding the
family structure and its properties and studying the wide variety of decays of different flavor
species to probe deviations from SM expectations with a multiplicity of approaches. The richness
of decays of different flavor species available to experimental observations allows deviations from
SM expectations to be probed with a multitude of approaches. Precise theoretical computations
and predictions are fundamental to determine the key parameters of the SM to be probed at the
experimental level. However, also observables characterized by bigger theoretical uncertainties
are key to over–constrain the couplings of possible new degrees of freedom within new models.

The previous considerations should suggest that flavor physics is a very powerful tool to search
for NP, also at energy scales much higher than those accessible through direct–type searches,
and it should motivate the design and operations of dedicated experiments such as Belle II at
SuperKEKB and the Large Hadron Collider beauty experiment (LHCb) at LHC. Belle II and
LHCb have the unique potential to unveil new physics by confirming hints of deviations from
the SM that have been recently observed in b→ sℓ+ℓ− and b→ cτν transitions or finding new
unexpected outcomes in the study of rare and forbidden decays such as b→ sνν or B(s) → ℓ+ℓ−.
While being described in Chap. 2, it is worth saying that LHCb has proven to be an ideal
laboratory for flavor physics in the past ten years of operations. LHCb main achievements
include the discovery of the ultra–rare decay B0

s → µ+µ− [21–24], the first single–experiment
observation of charm mixing [3], the world’s most precise measurements of the CKM angle
γ [11] and the first evidence of CP violation in c–hadron decays [4]. Over the past years, several
anomalies have emerged from flavor experiments that could potentially point to NP. The most
prominent among the anomalies are the hints for lepton flavor universality violation (LFUV) in
the charged current b→ cℓν transition, RD(∗) = B(B → D(∗)τν)/B(B → D(∗)ℓν), where ℓ = e, µ.
The RD(∗) measurement, together with updated observations in neutral current b → sℓ+ℓ−

transitions, RK(∗) = B(B → K(∗)µ+µ−)/B(B → K(∗)e+e−), which recently showed agreement
with the SM [25,26], clearly indicates the need for more data to better understand the origin of
anomalies. For this purpose, LHCb has just completed a major upgrade (Upgrade I) that allows
the experiment to operate at a luminosity of 2× 1033 cm−2s−1 during Run 3 and 4 data taking
periods (2022–2030), five times higher with respect to Run 1 and 2 operations (2010–2018). By
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the end of Run 4, a data sample of about 50 fb−1 is expected to be collected. Furthermore,
an Upgrade II is currently being planned and will allow LHCb to take data at a luminosity of
1.5× 1034 cm−2s−1, aiming at collecting 300 fb−1, by the end of Run 6. Figure 1.1 shows the
instantaneous and integrated luminosity projections for LHCb between Run 1 and Run 6. Jumps
in luminosity can be observed corresponding to the start of Run 3 and Run 5, when Upgrade I
and Upgrade II are planned to be installed, respectively. This upgrade path will greatly improve

Figure 1.1: Instantaneous (blue dots) and integrated (red line) luminosity projections for LHCb between
Run 1 and Run 6, referring to left and right vertical scales, respectively [27].

the sensitivity of many flavor studies, many of which are still statistically limited, and will allow
us to increase our knowledge on highly suppressed processes, while being able to distinguish
between different NP scenarios. Table 1.1 shows current and extrapolated uncertainties on some
key flavor observables in the current and future upgrades of LHCb, motivating its ambitious
physics program. On one hand weak decays of all the quarks and the CKM matrix are key
probes of deviations of SM expectations and already constrain reasonably well the number of
generations. On the other hand, rare decays seek to uncover new physics manifesting itself
through interference with SM diagrams. Searches for charged lepton flavor violation examine
the nature of lepton flavor. Whether in the B, D or K systems, comparisons of decay rates into
different lepton species challenge the notion of lepton universality, strongly implied by the SM.

1.2 Trigger and Data Acquisition towards the HL–LHC era

Fulfilling the ambitious LHCb flavor–physics program at a 1.5× 1034 cm−2s−1 peak luminosity
poses several challenges, both on the detector and on the data handling and triggering sides. A
direct consequence of the increase in luminosity is the higher number of interactions per event,
which is expected to be around 40 during Run 5 operations1. In order to maintain comparable
detector performance with respect to Run 3 at higher luminosities, the new detector should
have a higher granularity, while reducing the amount of material. With such a high pile–up,

1The average number of interactions during Run 3 is around 7.6.
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Observable Current LHCb Upgrade I Upgrade II
(up to 9 fb−1) (23 fb−1) (50 fb−1) (300 fb−1)

CKM tests
γ (B → DK, etc.) 4◦ 1.5◦ 1◦ 0.35◦

ϕs (B
0
s → J/ψϕ) 32 mrad 14 mrad 10 mrad 4 mrad

|Vub|/|Vcb| (Λ0
b → pµ−ν̄µ, etc.) 6% 3% 2% 1%

Rare Decays

B(B0 → µ+µ−)/B(B0
s → µ+µ−) 69% 41% 27% 11%

Sµµ (B
0
s → µ+µ−) — — — 0.2

A
(2)
T (B0 → K∗0e+e−) 0.10 0.060 0.043 0.016

Lepton Universality Tests

RK (B+ → K+ℓ+ℓ−) 0.044 0.025 0.017 0.007
RK∗ (B0 → K∗0ℓ+ℓ−) 0.12 0.034 0.022 0.009
R(D∗) (B0 → D∗−ℓ+νℓ) 0.026 0.007 0.005 0.002
Charm
∆ACP (D0 → K+K−, π+π−) 29×10−5 13×10−5 8×10−5 3.3×10−5

AΓ (D
0 → K+K−, π+π−) 11×10−5 5×10−5 3.2×10−5 1.2×10−5

∆x (D0 → K0
Sπ

+π−) 18×10−5 6.3×10−5 4.1×10−5 1.6×10−5

Table 1.1: Run 1/2 and extrapolated uncertainties on some key flavor observables at the current and
future LHCb upgrades [27].

the use of precision fast–timing information becomes essential to cope with the combinatorial
background. Furthermore, the detector and its front–end readout electronics should cope with
higher radiation damage throughout the entire data–taking period.

In addition to detector and front–end challenges, data handling and online processing
represent one of the main technical difficulties in successfully operating LHCb at ever increasing
luminosities, where the trend toward increasing bandwidth is a common theme among all major
HEP experiments, as shown in Fig. 1.2. Therefore careful R&D and appropriate choices on
Trigger and Data Acquisition (DAQ) systems are pivotal for the success of the LHCb physics
program. DAQ systems have always been part of the HEP field since the beginning, and their
importance is particularly clear nowadays, where detectors produce large amounts of data that
generally exceed the capabilities of any practical permanent storage system. As beam crossings
at the LHC occur at 30 MHz and for each beam crossing many pp collisions occur, thousands of
tracks traverse the detector. However, not all the collisions in a crossing and not all the tracks in
a collision event are interesting for physics studies. For these reasons, several methodologies are
applied to regulate and reduce the data flow to a manageable level, by deciding which parts of
the detector information should be acquired and saved. The trigger needs to be highly efficient
in selecting processes for physics analyses, while providing a large rate reduction from unwanted
high–rate processes. It also needs to be robust and highly flexible to react to changing conditions.

Modern DAQ systems make decisions to permanently record a particular collision event in
a sequence of stages, with progressively decreasing data flow, and increasing computational
cost and complexity. Usually, the lowest–level trigger decision is based on low–complexity
algorithms using a limited amount of event data, whereas the last level before permanent storage
is usually performed by CPU systems running high–level code, the performance and complexity
of which are close to the offline analysis. During the first LHC era, the overall DAQ bandwidth
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Figure 1.2: Evolution of the data bandwidth requirements over time of HEP experiments. The current
LHCb Run 3 conditions are highlighted [28].

has increased, taking advantage of telecommunication technology rapid developments driven
by fast internet growth, which allowed large data handling systems to be built at reasonable
prices, using commercial off–the–shelf technologies (COTS). As COTS were adopted, the use of
custom–developed electronics became limited to on–detector and front–end electronics, whereas
intermediate trigger levels have been absorbed in the High Level Trigger implemented on
commercial CPUs. However, as we move towards the High–Lumi LHC era, data handling and
availability of cost–effective computing resources are getting increasingly challenging. Moreover,
Moore’s law slowing down poses limits on the role played by consumer CPUs, which have
provided flexible computing power at low cost up to now. This is compounded by the fact
that data handling demands in HEP have been growing at an even faster rate than consumer
electronic technology. As a consequence, DAQ systems might represent a major cost item and
technical limitation to future HEP experiments performances [29].

Taking LHCb Run 5 as an example, at an instantaneous luminosity of 1.5× 1034 cm−2s−1,
the detector is expected to produce up to 400 Tb/s of data, which need to be processed in real
time and reduced by roughly four orders of magnitude before being saved to permanent storage.
As a first challenge, the resulting number of serial data links needed to read out the whole
detector would be prohibitively huge. Taking as a reference the GigaBit Transceivers (GBTs),
designed and built within CERN, which are capable of sustaining a 4.8 Gb/s transmission rate,
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the number of GBT links that would be required2 to read out the whole detector if running at
400 Tb/s would be of the order of 8× 104. Moreover, with heavy–flavor hadrons being present
in all bunch crossings, with around 40 interactions each, one of the challenges to face within
DAQ will be to move from a traditional trigger strategy of selecting bunch crossings based on
generally interesting signatures, like displaced vertices, which will be no more effective to a more
complex online event selection based on the complete information of the event.

In this context, there is the increasing need for more effective and specialized solutions that
can perform real–time reconstruction at early data acquisition stages. This will allow the amount
of data to be sent to general–purpose computing farms to be reduced more effectively than
simple hit zero–suppression, while being able to reconstruct the charged particle trajectories as
early as possible in the processing chain, so that triggering on specific heavy–flavor signatures
can be performed in an optimal way. Moreover, this will lead to a significant reduction in the
time needed to perform the reconstruction in subsequent processing stages, since part of the
reconstruction duties is offloaded to earlier stages, specialized in parallel and efficient processing.

1.3 Heterogeneous computing: concept and applications

Heterogeneous computing is one of the most promising solutions to tackle high–data–volume–
related issues, described in the previous section. Large farms of versatile and general–purpose
CPUs are coupled with specialized hardware like FPGAs and GPUs, usually referred to as
accelerators. Accelerators are very fast at executing heavily parallelizable tasks, leaving to
CPUs only the more complex ones. Architectural heterogeneity is currently one of the main
topics being developed and deployed in industry, from high–performance to cloud computing.
Deploying different types of accelerators suited for different types of workload improves both
performance and energy efficiency. High–throughput, low–latency interconnections between CPU
and accelerators allow the different elements to operate as a single unit, while maintaining a high
degree of scalability and flexibility. Accelerators are especially well suited for the development
of artificial intelligence through machine vision and deep learning, where vast amounts of data
need to be processed. When deploying a heterogeneous system, one of the main challenges
to face in order to exploit its full potential is to be able to leverage each compute unit with
user–friendly programming models that can be applied across different platforms. Another
challenge is related to the effective sharing of data between accelerators and an accelerator
and the host system. During recent years, several solutions have been proposed to tackle these
challenges when leveraging extremely heterogeneous systems [30–33].

The heterogeneous computing model is currently being applied in HEP experiments, following
the ongoing industry trend. Some implementation examples at the LHC include the following:

• ALICE deployed heterogeneous computing infrastructures already during Run 1 and 2
performing the tracking of the Time Projection Chamber (TPC) on GPUs at around 1 kHz
of Pb–Pb collisions. During Run 3, ALICE performs the full raw data processing in the
online computing farm in software at 50 kHz Pb–Pb interaction rate, where the dominant
part of the real–time processing, the TPC tracking, is run fully on GPUs [34];

• ATLAS has been investigating possible solutions to cope with the foreseen increase in the
collision rate by approximately a factor of 5 during HL-LHC operations, with respect to the
current LHC operation. The earliest trigger stage needs to provide a higher rejection factor

2LHCb Run 3 readout system requires about 9× 103 optical data links.
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in a more difficult environment. Studies have been performed based on the architectures
developed within the Fast TracKer and L1Track projects [35,36]: track reconstruction is
based on associative memories, where linear fitting algorithms are run within FPGAs;

• CMS has explored several R&D paths in terms of heterogeneous computing, one of the most
relevant projects aims at reconstructing charged particle trajectories within the hardware–
based trigger system, implementing a novel approach using an all–FPGA solution, as
the HL–LHC era approaches [37–39]. Another advanced CMS project in this context
is Patatrack [40] that aims at reconstructing charged particle trajectories in CMS pixel
detector exploiting GPU power. Within this project, it has been demonstrated that
low–power GPUs can be used for track reconstruction purposes, at a fraction of the cost
of a single CPU node, previously deployed;

• LHCb Upgrade represents a unique opportunity to test new technologies for high luminosity,
during LHC Run 3, even before ATLAS and CMS High Luminosity Phase II. The upgraded
LHCb uses a triggerless readout chain that sends raw detector hits to a custom data
processing center at the full 30 MHz LHC bunch crossing rate, enabling an unprecedented
flexibility for trigger selections. However, the corresponding data rate (32 Tb/s) is so
high that the LHCb collaboration moved from a more traditional CPU–based farm to a
heterogeneous computing system, based on GPUs, to perform the High Level Trigger first
stage (HLT1). Reconstruction algorithms were optimized for many–core architectures and
integrated into a compact, modular, and scalable framework, called Allen [41,42].

As demonstrated by these examples, heterogeneous trigger and computing farms are now
becoming a reality in the HEP field. HEP can profit from industry advancements to deploy
accelerator solutions that are becoming increasingly powerful and inexpensive. However, it is
worth noting that this will make HEP dependent on a market of which it is not a driver, and
future market choices may not be HEP–friendly. HEP will therefore need to adapt to future
market trends or, in case its needs cannot be met by such trends, take early action to develop
its own solutions.

1.4 The LHCb Retina project

Given the ongoing trend towards heterogeneous computing architectures, the LHCb collaboration
has identified the accelerator–related R&D program as a critical element to ensure that trigger
and reconstruction algorithms are optimally designed to take full advantage of the most effective
and affordable architectures, as we move toward the HL–LHC era. To this end, LHCb has,
already in Run 3, implemented a Coprocessor R&D Testbed [43], already in Run 3, to investigate
new architectures, based on accelerators, that will be developed, optimized and commissioned
in the context of future high–luminosity runs. The Testbed allows different R&D projects to
cooperate in a common effort of processing as much data as possible at low data acquisition levels
to limit the data flow to be sent to the High Level Trigger3 stage, while reducing computing
resources and power consumption needs. This is done exploiting different technologies like GPUs,
FPGAs, and IPUs, while dealing with different types of algorithms and data handling, including
neural networks, machine learning, and pattern matching.

3The LHCb–Upgrade trigger system receives data at the full 30 MHz LHC bunch crossing rate and it is divided
into two main stages, named High Level Trigger 1 (HLT1), performed on GPUs, and High Level Trigger 2
(HLT2), performed on CPUs. More details about the LHCb High Level Trigger can be found in Sect. 2.10.
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1.4. The LHCb Retina project

One of the main actors in the Testbed R&D activity is the “Artificial Retina” project [44],
a parallel, high–throughput, low–latency tracking algorithm inspired by the natural vision of
mammals’ brains. It has been specifically designed for track reconstruction by a massive and
intelligent pattern matching, exploiting the FPGA architecture capabilities (see Appendix A).
While GPUs have been the de facto choice for accelerating compute–intensive operations, FPGAs
have been gaining ground because their reconfigurable fabric can be tailored to a specific
application or domain. FPGAs bridge the gap between CPU processors that are flexible and
relatively easy to program, and ASICS that offer optimal performance at a high power efficiency,
while being less flexible. FPGAs can potentially address I/O and memory access issues that
have been one of the traditional bottlenecks of GPU acceleration, since FPGAs are characterized
by a versatile and diverse connectivity, covering several widely–spread protocols, such as PCIe,
Ethernet and Serial Lite, while allowing for highly–configurable connections both to other devices
and to the host.

Figure 1.3 shows the track–reconstruction processing steps performed by the Retina ar-
chitecture. Retina implements a set of cells, each sensitive to hits belonging to a reference
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Figure 1.3: Track–reconstruction processing steps performed by the “Artificial Retina”. Reference tracks
and their interceptions with the detector layers are mapped into a matrix of cells (top left). Cells compute
and sum up the Gaussian weight of the hits xl (top–right). Tracks are reconstructed finding local maxima
in the cell space. Track parameters are computed interpolating the activation level of the 3×3 clusters
around the maxima (bottom).

track, where the response of a cell is proportional to how close the hits are to the reference
track. Cells compute and sum up the Gaussian weights of the hits and tracks are reconstructed
finding local maxima in the cell space, accordingly. Tracks corresponding to cells with a higher
activation level are the tracks that were most likely present in the event. Unlike traditional
reconstruction systems where bandwidth is progressively reduced during processing, Retina
requires the bandwidth to increase significantly at some point, because multiple copies of the
same data are produced and reach different cells, shrinking down only at a later stage where few
tracks are reconstructed from many hits. These features of the Retina architecture make FPGAs
the natural devices where to implement it, given their large internal bandwidth and high degree
of parallelization. Two main components are needed to implement the Retina architecture: the
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Chapter 1. Heterogeneous computing in High Energy Physics

engine and the distribution network. A set of engines implements the weight and sum mechanism,
where each engine corresponds to a cell of the track parameter space, and works in parallel
with respect to the other engines. Since cells are spread over several FPGA chips to overcome
FPGA size limitations and given that detector hits need to be collected from different sources, a
distribution network that exchanges hits between different boards is needed. In order to take full
advantage of the algorithm high–throughput, while significantly reducing the data bandwidth,
the Retina architecture needs to be deployed at pre–build stage, before the proper build stage,
where data are collected by readout boards and exchanged between servers to build complete
events. In addition to data exchange through the event builder network, data are also sent from
the server memory to tracking boards that implement the Retina architecture. Detector hits are
then exchanged between boards by means of an optical network built using optical transceivers,
fibers, and an optical patch panel. Reconstructed tracks are then sent from the tracking boards
back to server memory and added to the data to be built. Figure 1.4 shows a high–level view
of the Retina architecture being implemented within the event builder servers. Further details
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Figure 1.4: Scheme of the data flow between readout cards, Retina tracking boards, the event builder
network, and HLT1 GPUs.

about the Retina architecture can be found in Ref. [45]. Retina is an architecture of rather
general applicability and can be used to reconstruct tracks from hits of detectors characterized
by different technologies and geometries. Over the years, several detailed studies have been
performed to characterize and tune the Retina algorithm for different applications within the
LHCb detector [45–49]. Within the LHCb Coprocessor R&D Testbed, Retina aims at building
and successfully operating a full–size demonstrator capable of reconstructing tracks from the
LHCb silicon pixel vertex locator (VELO), at the full 30 MHz input event rate. Figure 1.5
shows a study on VELO tracking efficiency (see Sect. 6) comparing the Retina response with a
CPU–based tracking algorithm. This and other in-depth studies have demonstrated that High
Level Trigger performances are only negligibly affected when running on tracks produced by
FPGAs. In addition to the VELO application and in the context of future Runs at higher
luminosities, as presented in both the Expression Of Interest for a Phase–II LHCb Upgrade [50]
and the Framework TDR for the LHCb Upgrade II [27], the “Artificial Retina” is considered
a viable option to reconstruct tracks downstream of the magnet at the earliest trigger level
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1.5. LHCb VELO clustering

(see Sect. 6.3). Reconstructing these tracks will allow long–lived s–quark final states (K0
s , Λ)

decaying outside the VELO to be identified. This is crucial to increase the acceptance for many
important bottom and charm decay modes, such as D0 → K0

sK
0
s , B

0 → K0
sK

0
s and Λb → 3Λ.

Moreover, performing downstream reconstruction at early data acquisition stages will allow the
time needed for long–track reconstruction and for the overall HLT1 processing to be significantly
reduced.
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Figure 1.5: Comparison between VELO tracking efficiencies obtained with the CPU algorithm and the
Retina pattern recognition algorithm. The efficiency is shown as a function of the z coordinate of the
track origin vertex. 1000 B0

S → ϕϕ simulated events at LHCb Upgrade conditions are used [49].

1.5 LHCb VELO clustering

For the purpose of applying the Retina architecture to the reconstruction of VELO detector
tracks, I have developed, implemented, optimized, and commissioned a new low–latency, high–
throughput two–dimensional cluster–finding algorithm and the corresponding firmware. Cluster
reconstruction, which consists in grouping contiguous active pixels, is the first step in the chain
of operations to perform an effective VELO tracking, regardless of the architecture in which
tracking itself is carried out. Inheriting the Retina approach, the clustering algorithm, described
in the subsequent chapters of the thesis, is meant to be run at the very early stage of the
data acquisition system on FPGA–based VELO back–end readout cards, processing pixel hit
coordinates at an unprecedented speed, exceeding the bunch crossing frequency of 30 MHz, for
the first time. This approach is beneficial in terms of computing resources, as a significant task
is removed from the HLT sequence, bandwidth reduction, as preprocessed data are sent out
from readout cards to the event building stages, and electrical power consumption, as FPGAs
are power efficient devices.
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Chapter 2

The LHCb Upgrade experiment

This chapter describes the LHCb experiment in the current Upgrade I configuration, focusing on
the systems closely related to the design and deployment of the clustering architecture, namely
the VELO subdetector and the data acquisition and trigger system. The underlying motivations
for the LHCb Upgrade I and an overview of the other subdetectors are also given.

2.1 Why upgrade LHCb?

The LHCb experiment [51] is one of the four large detectors at the Large Hadron Collider (LHC)
accelerator facility at CERN, and it was designed to search for new physics through CP–violation
studies and rare decays of heavy–flavor hadrons. LHCb has been successfully operated from 2010
to 2018 during the LHC Run 1 (2010–2012) and Run 2 (2015–2018)era, and has demonstrated
excellent performance [52], collecting 9 fb−1 of data. Between 2018 and 2022, LHCb underwent
a major update, called Upgrade I, to cope with an instantaneous luminosity of 2× 1033 cm−2s−1,
five times higher than that of Run 1 and 2, and thus with a corresponding increase in the number
of interactions1. In addition to replacing most of the subdetectors, the front–end electronics
and the data–acquisition system were completely renewed to read out and process the complete
information of all subdetectors at the full LHC inelastic event rate of 30 MHz.

Despite the considerable 9 fb−1 data set collected during Run 1 and 2, as discussed in Chap. 1
and in Ref. [53], the precision on many of the key flavor physics observables measured by LHCb
remains statistically limited. In order to probe the Standard Model even more precisely and
thus get the required sensitivity to observe possible new–physics effects, significantly larger data
sets are needed, and this can be obtained only by increasing the instantaneous luminosity of
physics collisions. The LHCb Run 1–2 detector and data acquisition chain were designed and
built with the aim of affording luminosities of about 2× 1032 cm−2s−1 and did not allow the
experiment to significantly increase the size and purity of the collected physics samples in case
of a large increase in instantaneous luminosity, as foreseen during the operations of Run 3 (and
beyond). The maximum allowed readout rate of the tracking subdetectors was about 1 MHz and,
consequently, the High Level Trigger (HLT) was designed and sized to process not more than
this amount of data. In order to increase efficiency on the most interesting physics channels, a
hardware Level–0 trigger (L0) stage [54] was used, during Run 1–2, to reduce the event rate to

1The corresponding average number of pp interactions per bunch crossing increases from 1.1 to 7.6, moving from
Run 2 to Run 3.
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2.2. Overview of the LHCb Upgrade detector

1 MHz, by exploiting the information from either the Calorimeters or the Muon System, which
were, together with the small upstream VELO PileUp system [55], and later the HeRSChel
subsystem [56], the only subdetectors which could be read at the beam crossing rate. However,
as luminosity increases, simple selections based on transverse energy deposits will no longer
allow hadronic signals to be efficiently disentangled from background and reduce the rate to
1 MHz, as previously done at lower luminosities, as shown in Fig. 2.1.
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Figure 2.1: Relative trigger yields as a function of instantaneous luminosity, normalised to
2 × 1032 cm−2s−1 [57].

In order to take full advantage of a higher luminosity and to collect significantly more physics
data per fb−1 of integrated luminosity, the L0–hadron trigger stage has been removed in favor of
a more powerful HLT, capable of applying selections that are more discriminating than simple
inclusive criteria exploiting only calorimeter information. Such selections require a detector that
can be read at the full 30 MHz LHC inelastic event rate and a High Level Trigger capable of
processing events at the full rate and discriminating signal channels over background, based on
the full event reconstruction in real time. The increase in instantaneous luminosity (by a factor
of five) and the improved trigger efficiency for most decay modes (by a factor of two) will lead
to an order of magnitude increase in the annual yields in most channels with respect to the
previous LHCb experiment. A total integrated luminosity of around 23 fb−1 is expected by the
end of Run 3 and 50 fb−1 by the end of Run 4.

For this purpose, the LHCb subdetectors and readout electronics have been redesigned and
are now able to read events at 30 MHz rate and cope with the larger event multiplicity [58]. The
entire software and data processing stack also needed to be upgraded to handle the expected
large increase in data volume.

2.2 Overview of the LHCb Upgrade detector

LHCb is a single–arm forward spectrometer covering the pseudorapidity range 2 < η < 5. It is
located at interaction point 8 on the LHC ring, approximately 100 m underground. Figure 2.2
shows the layout of the upgraded detector. LHCb subdetectors are devoted to two main tasks:
tracking [60,61] and particle identification [62]. Particle tracking is performed by means of the
vertex locator (VELO), an array of silicon pixel subdetectors surrounding the pp interaction region,
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Figure 2.2: Layout of the LHCb Upgrade I detector. The Vertex Locator (VELO), the Upstream tracker
(UT) and the Scintillating Fiber tracker (SciFi) are the subdetectors responsible for tracking, whereas first
and second Ring Imaging Cherenkov subdetectors (RICH1 and RICH2), the electromagnetic (ECAL) and
Hadronic (HCAL) calorimeters and the Muon system (M2–M5) perform the particle identification [59].

the silicon–strip upstream tracker (UT) in front of the dipole magnet, and three scintillating fiber
tracker (SciFi Tracker) stations downstream of the magnet. VELO, UT and SciFi subsystems
are detailed in Sects. 2.3, 2.4 and 2.5, respectively. Particle identification is performed by two
ring imaging Cherenkov subdetectors (RICH1 and RICH2), a shashlik–type electromagnetic
calorimeter (ECAL), an iron–scintillator tile sampling hadronic calorimeter (HCAL), and four
stations of muon chambers (M2–5) interleaved with iron shielding. RICH1 and 2, ECAL, HCAL,
and the muon subsystems are described in Sects. 2.6, 2.7 and 2.8, respectively. Between the UT
and the SciFi the spectrometer’s dipole magnet is placed, providing a vertical magnetic field with
a bending power of about 4 Tm. It is a warm magnet designed to match the detector acceptance,
with a vertically and horizontally increasing pole gap moving towards the downstream tracking
stations.

The data acquisition chain (DAQ) starts at the detector level with front–end (FE) electronics
boards that amplify and shape the signals generated within the subdetectors. The chain continues
towards the back–end (BE) electronics located in a data center on the surface and connected to
the FE in the cavern by 250 m–long optical fibers. Data are then handled by the event–builder
and the event–filter farms. Sects. 2.9 and 2.10 detail the DAQ and trigger system, respectively. A
fast signal control system (TFC) distributes clocks and fast commands to FE and BE electronics,
which are configured and monitored using the experiment control system (ECS).
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2.3. Vertex locator

2.3 Vertex locator

The main goal of the vertex locator (VELO) [60] is to precisely measure tracks produced by
ionizing particles, providing the positions of primary and secondary vertices. Its main physics
design requirements are a track reconstruction efficiency greater than 99% and an impact
parameter resolution2 of the order of 10 µm. Physics requirements, together with mechanics,
vacuum, and cooling constraints, led to the design of the VELO subdetector shown in Fig. 2.3.
The 26 VELO layers are placed perpendicularly to the z axis between −287.50 mm and 750 mm,
where the origin of the LHCb coordinate system is represented by the nominal interaction point.
Each layer consists of two modules, each made of four sensors. A sensor is bump–bonded to
three VeloPix [63] ASICs (chips), as shown in the right part of Fig. 2.3. The two sides of the

Figure 2.3: (left) z − x schematic view of the VELO layers. The luminous region and the 2 < η < 5
LHCb acceptance are also displayed. (right) y − x schematic view of a VELO layer with the ASICs
layout. Grey sensors are placed on the module upstream face whereas blue sensors on the downstream
face. Purple–highlighted modules are on the C side [59].

VELO, 26 modules each, are movable in order to be retracted from the beamline under all
conditions other than stable beams. Each half moves independently in the horizontal direction
from a −29 mm retraction position from the beamline to +4 mm over–closure. VELO is based
on a hybrid silicon pixel detector technology, where the radius of the closest active pixel edge is
5.1 mm from the beamline. The core component of the VELO is the pixel tile that is composed
of a pixellated, planar silicon sensor and three pixellated ASIC chips. Each VeloPix ASIC is
bounded to the sensor and provides analog signal processing and digitization. Each ASIC has
an active matrix of 256×256 pixels, each 55µm×55µm in size, fabricated in TSMCTM 130 nm
CMOS process. When a pixel–hit is recorded, it is time–stamped, labeled with the pixel address,
and sent out from the ASIC, without the need for a trigger signal. In order to reduce the data
bandwidth out of the subdetector by a factor of approximately 30%, 2×4 neighboring pixels are
grouped into SuperPixels (SP), avoiding duplication of the time stamp and address field. Four
serial links carry up to 20.48 Gbit/s of data out of the ASIC by means of a low power custom
serializer, named gigabit wireline transmitter (GWT) [64], that has been designed for the VELO
use case. The silicon sensors, together with cooling, powering, readout, and mechanical support,
are brought into a single unit, the VELO module. Figure 2.4 shows the main components of a
VELO module. The module has a double–sided structure, where two tiles are glued on each
face. Each VeloPix ASIC triplet is connected to the FE electronics that transmits control signals

2Track reconstruction efficiency and impact parameter resolution are defined in Sect. 6.
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Figure 2.4: Faces of a VELO module located (left) upstream and (right) downstream. The main
components are indicated [59].

and routes their data out. The VELO electronics system transports data from the ASICs to
the off–detector processing units, while delivering clock and control signals to the modules, as
well as low and high voltages to power the electronics and bias the sensors, respectively. As
shown in Fig. 2.5, VELO electronics is located in three places: on the subdetector module,
immediately outside the VELO vacuum vessel, and off the subdetector, with dedicated cabling
running between them3. Starting from the on–module electronics, the ASIC reads the analog
signals from the sensor and sends binary SP data over serial links. Data routing, together with
clock distribution, control, and power, is managed on the FE by hybrid circuits. There are two
types of hybrids: the first type provides the FE electronic interface to each VeloPix, connecting
to the ASIC periphery. The second type houses the GBTx chip and distributes timing and
fast control signals to the ASICs via the FE hybrids. The serial data from the hybrids are
transmitted out of the vacuum on high–speed serial links, through a vacuum feedthrough board
to the opto and power board (OPB). The vacuum feedthrough board also carries control signals
to and from the FE, low, and high voltages. The OPB has DC/DC converters that provide the
power needed by the module. It also performs the electrical–to–optical conversion of the 20
high–speed data links from each module and the bidirectional electrical–to–optical conversion
for the three control links, one for each side of the subdetector module and one for the OPB
itself. The OPB hosts a GBTx ASIC that decodes the high–speed control links, interfacing
with two gigabit transceiver slow control adapter (GBT–SCA) ASICs. The final components in
the VELO readout chain are the PCIe40 cards, hosted in servers in the data center. PCIe40
cards can be configured with different firmwares to fulfill different tasks (see Sect. 2.9). Two
types of PCIe40 cards are directly involved in the VELO DAQ, the TELL40 and the SOL40.

3Cables connecting the detector module with the OPB are less than one meter long, whereas optical fibers
connecting SOL40s and TELL40s cards to the OPB are roughly 100 m long.
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Figure 2.5: Block diagram of the VELO electronics [65].

The OPB sends the data to the TELL40 data acquisition cards whilst receiving control signals
from the SOL40 readout supervisor. PCIe40 cards with the SOL40 firmware are used to control
and monitor 13 VELO subdetector modules each, over a total of 39 bidirectional optical fiber
links. This firmware provides the trigger and fast control commands and the protocols for
communication with and via the GBTx and GBT–SCA chips. Four SOL40–flavored PCIe40
cards and 52 TELL40–flavored cards, one per module, are used to control and collect data from
the entire VELO subdetector. TELL40 cards process the data from the 20 high–speed data
serial links of each module. A detailed description of the VELO DAQ firmware is given in Sect. 5.
For further details on the LHCb data acquisition and control chain, see Sect. 2.9.

The remaining main component of the VELO subdetector is cooling. Given that silicon
sensors operate in vacuum, the heat generated (up to 40 W per module) must be dissipated by
conduction. Furthermore, the silicon must be permanently cooled to below −20°C, to mitigate
the effect of radiation damage. An evaporative cooling system has been implemented, with
bi–phase CO2 flowing through microchannels within the silicon substrate of the module.

2.4 Upstream tracker

The Upstream Tracker (UT) subdetector [61], based on a silicon microstrip subdetector technology,
performs charged–particle tracking, allowing an efficient and fast track matching between VELO
and SciFi. This is achieved by exploiting the fringe magnetic field between VELO and UT, so
that a first estimate of momentum and charge can be performed. The UT information allows also
the number of reconstructed fake tracks due to VELO–SciFi track segments mismatching to be
reduced by limiting the search window in which those segments should be looked for. Furthermore,
UT measures long–lived particles such as K0

S and Λ that decay after the VELO. Given these
objectives, the UT has been designed and built so that it covers the entire acceptance of LHCb
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without gaps, while providing high hit efficiencies and purities4. Moreover, the occupancy
over the entire subdetector surface needs to be below a few percent to effectively reconstruct
tracks both at small radii, where particle density is at its highest, and on the outer parts
of the subdetector. The previous objectives and constraints lead to a subdetector geometry
characterized by four silicon subdetector planes organized in two stations, as shown in Fig. 2.6.

Figure 2.6: Schematic view of the four UT planes [59].

The building blocks of the subdetector are the vertical units, called staves, that carry the silicon
sensors. The first station has a straight layer (UTaX) with vertical strips and a stereo layer
(UTaU) with strips inclined by 5°. Both layers are made of 16 staves each. The second station is
similar, with first a stereo layer (UTbV) with opposite inclination, and a straight layer (UTbX).
Both layers contain 18 staves each. To ensure full coverage in the vertical direction, the sensors
are arranged on both sides of the staves to obtain a vertical overlap. Similarly, a z–staggered
arrangement of the staves with horizontal overlaps facilitates full horizontal coverage. Staves
provide the mechanical support for the sensors and FE electronics, as well as active cooling.
Since occupancies and radiation fluences span different orders of magnitude, four different
types of sensor are used, with different strip pitches and lengths. The core component of the
UT readout is a 128–channel ASIC, called Silicon ASIC for LHCb Tracking (SALT), built on
130 nm CMOS process. The main components of the SALT ASIC are an analog processor and a
low–power, fast 6–bit ADC per channel, followed by digital signal processing, data formatting,
and serializer blocks. The 6–bit SAR ADC converts the analog signal to the digital domain, and
its output is processed by a DSP block, which performs operations such as pedestal subtraction
and zero suppression. The UT hybrids connect the microstrip silicon sensors to the readout
ASICs, distributing control signals, and routing data from the ASICs to the periphery electronics

4A high hit efficiency ensures that more than 99% of charged particles leave hits in at least three UT planes. High
hit purity is achieved minimizing spurious hits, for example due to noise.
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processing interface units, which are responsible for readout and control of the subdetector. UT
hits are collected by TELL40 cards that organize them into packets which are then decoded
by HLT. Similarly to VELO, charged particles can leave hits in more than one strip, therefore
a one–dimensional clustering algorithm is run to consolidate neighboring hits into single–hit
clusters.

2.5 Scintillating fiber tracker

The Scintillating Fiber (SciFi) [61] tracker located downstream the LHCb dipole magnet is
responsible for charged particle tracking and momentum measurement. SciFi is based on
scintillating fiber technology with a silicon photomultiplier (SiPM) readout that covers the entire
LHCb acceptance. These design choices were made to achieve a single hit position resolution
better than 100 µm and a single hit reconstruction efficiency better than 99%. SciFi is also
designed to have a low enough occupancy so that the hit efficiency is not impacted. The base
elements of the SciFi subdetector are 250 µm diameter plastic scintillating fibers arranged in
multi–layered fiber mats. Figure 2.7 shows a sketch of the SciFi geometry with 12 detection
planes arranged in three stations (T1, T2, T3) with four layers each in an X–U–V–X configuration.

Figure 2.7: SciFi tracker (left) front and (right) side views [59].

External X layers and inner U and V layers have their fibers oriented vertically and rotated by
±5° and are responsible for measuring the horizontal and vertical deflections of charged particle
tracks caused by the field of the magnet, respectively. Each station is built from modules, where
a module contains eight mats made of six staggered layers of fibers. Each of the 12 layers is
characterized by a very low material budget, accounting for less than 1% of a radiation length.
The photons from the scintillating fibers are detected by arrays of SiPMs. The FE electronics
consists of three types of boards. The PACIFIC board performs the digitization of the analog
signals received from the SiPM. It contains a 64–channel ASIC with analog input and digital
output, implemented in a 130 nm CMOS process. Each channel contains an analog processing,
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digitization, slow control, and digital output. PACIFIC output data are sent to the Clusterisation
board that performs zero–suppression and clustering, grouping neighboring channels from the
same SiPM array into clusters and calculating the cluster position. Cluster data from the
Clusterisation board are serialized on the Master board and shipped over optical fibers. The
Master board is also responsible for the control and clock signal distribution, monitoring, as well
as the distribution of low and high voltages.

2.6 RICH

The main goal of the Ring Imaging Cherenkov (RICH) [62] subdetector is to discriminate charged
hadrons, namely pions, kaons, and protons, representing a crucial component of the LHCb flavor
physics program. The RICH system performs the hadron particle identification (PID) in the
2.6–100 GeV momentum range. Some of the key benefits of the RICH are the capability to
distinguish between final states of otherwise identical topologies (B0

(s) → π+π−, K+K− and

K+π−), to reduce the combinatorial background in decay modes with hadrons in the final state
(B0

s → ϕϕ, where ϕ → K+K−) and to perform the flavor tagging of B0
s mesons, relying on

charged–kaon identification from the b→ c→ s decay chain. RICH consists of two subdetectors,
RICH1 and RICH2, as shown in Fig. 2.8.

Figure 2.8: Schematic view of (left) RICH1 and (right) RICH2 subdetectors [59].

In both subdetectors the Cherenkov light produced inside fluorocarbon gaseous radiators is
reflected outside the LHCb acceptance using a system of spherical and planar mirrors, focusing
the ring images onto the photon subdetector planes. RICH1 is located upstream of the dipole
magnet and employs a C4F10 gas radiator, providing PID in the 2.6–60 GeV momentum range.
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RICH2, located downstream of the magnet, is designed to provide PID for higher momentum
particles, between 15 and 100 GeV, with a CF4 gas radiator. To cope with the highly non–
uniform occupancy, ranging from about 30% in the central region of RICH1 down to 5% in
the peripheral region of RICH2, the photon detection planes are subdivided into two regions
having different granularity. The multi–anode photomultiplier tubes (MaPMT)s provide good
spatial resolution on a large active area, high detection efficiency, and very low background noise
to allow single-photon detection despite the high occupancy. Given the high average hit rate
in the high occupancy regions (107 hits/s per pixel on average), a radiation–hard fast readout
front–end ASIC (CLARO) is used. MaPMTs are plugged into a baseboard, which propagates
anode signals to the front–end board (FEB), which hosts the CLARO ASICs. The FEB output
is sent to a subdetector module digital board that transports the digitized photon subdetector
signals away from the high–radiation region.

2.7 Calorimeters

The LHCb calorimeter system [62] consists of an electromagnetic calorimeter (ECAL) followed
by a hadronic one (HCAL). The main purpose of the calorimeter system is to identify hadrons,
electrons, and photons, and to measure their energies and positions. The identification of
electrons is a key element for flavor tagging in semileptonic decays, whereas the reconstruction
with good accuracy of π0 and prompt photons allows the study of B–meson decay channels.
Both ECAL and HCAL detect particles via scintillation light from plastic scintillator modules,
which is transmitted to PMTs through fibers. To account for different hit densities across the
calorimeter surface, both ECAL and HCAL are segmented laterally in three and two regions,
respectively, with increasing dimensions going from the beam pipe outward, as shown in Fig. 2.9.

Figure 2.9: Sketches of (left) ECAL and (right) HCAL lateral segmentation [59].

ECAL cells have a shashlik structure with alternate scintillator and lead layers. The energy
resolution of an ECAL cell is

σ(E)

E
=

(9.0± 0.5)%√
E

⊕ (0.8± 0.2)%⊕ 0.003

E sin θ
, (2.1)

where E is the particle energy in GeV and θ is the angle between the beam axis and a line
from the LHCb interaction point to the center of the ECAL cell. The first term in Eq. 2.1
is stochastic due to the fluctuations related to the physical development of the shower, the
second contribution is a constant term taking into account effects like mis–calibrations and
non–linearities, whereas the third term is due to the noise of the electronics.
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The HCAL is a sampling tile calorimeter, consisting of staggered iron and plastic scintillator
tiles mounted parallel to the beam axis. The energy resolution is

σ(E)

E
=

(67± 5)%√
E

⊕ (9± 2)%, (2.2)

where E is the deposited energy in GeV. ECAL and HCAL calorimeters share the same
electronics. Front–end boards (FEB) amplify, shape, and digitize PMT signals and then ship
them to the back–end electronics, whilst a calorimeter control unit board distributes clocks and
ECS commands to the FEBs. FEBs provide the digitized analog data in the form of transverse
energy measurements. The central component of the FEBs is the ICECAL ASIC that performs
the analog signal processing stage of the FEB.

2.8 Muon system

The main goal of the muon system [62] is to provide efficient muon identification, while keeping
the pion misidentification probability low. Efficient muon identification with low contamination
is required both for tagging and for clean reconstruction of muonic final states within B decays.
As shown in Fig. 2.2, the LHCb muon system is composed of four stations, M2 to M5, located
downstream of the calorimeter system. The stations are equipped with multi–wire proportional
chambers (MWPC), interleaved with 80 cm thick iron absorbers to filter low–energy particles.
Each station is divided into four regions, R1 to R4, of increasing area moving from the central
beam axis outward, to uniformly distribute the particle flux and the channel occupancy across
each station. MWPCs are made up of four independent layers, each consisting of anode–wires
between two cathode–planes. The muon system electronics is designed to convert, format,
and transmit the analog signals extracted from the subdetector. It hosts an amplifier–shaper–
discriminator stage implemented in a dedicated ASIC, as well as a digital section that allows
time alignment of the signals and logical combinations of readout channels.

2.9 Online and data acquisition

Unlike FE electronics that is custom–made for each subdetector, BE electronics is built on
a common platform, the PCIe40 card [66]. The PCIe40 is a custom PCI–express card that
fulfils several tasks, depending on the firmware loaded on the FPGA at the core of the board5.
Figure 2.10 shows both a picture and a schematic view of the PCIe40 main components. The
Arria 10 FPGA, located at the center of the card, is equipped with 48 bidirectional links running
at up to 10 Gbit/s each. Links are connected to optical modules (MiniPod) driving the I/O
to/from the detector, by means of eight MPO–12 connectors used for the fibers. Moreover,
two bidirectional links running at up to 10 Gbit/s are devoted to time distribution. On the
output side, each PCIe40 card can output data using two PCIe Gen3 x8 lanes. The card is fully
instrumented with sensors that can measure all relevant voltages, currents, and temperatures.
PCIe40 is designed to fulfill the functionality required for data acquisition and control. When
configured for data acquisition purposes, the PCIe40 card takes the name of TELL40. Its
purpose is to decode and process data coming from the detector before sending those to the
server that hosts the card itself, via the PCIe bus. In this case, the optical links are used only in
the receiver mode. The PCIe40 card used for control purposes (SOL40) [68] configures the FE

5The FPGA used for the PCIe40 card is the Intel® Arria® 10 described in Appendix A.
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Figure 2.10: (left) Picture of the PCIe40 card and (right) diagram of the PCIe40 board and its primary
components [59,67].

electronics and transmits timing and fast control (TFC) commands to the FE and TELL40s. In
this case, all bidirectional links are active. When configured as a SODIN [69,70], the PCIe40
acts as a readout supervisor, interfacing the LHC machine clock to LHCb. Considering data
paths first, around 500 TELL40 cards receive data via 10k optical links, carrying subdetectors
data from the LHCb cavern to a data center located on the surface. Data packets are sent from
the FE to the TELL40 boards asynchronously across all input links. The readout firmware of
the TELL40 must be able to decode the data frames from the FE, realign them according to
their bunch crossing identifier (BXID), build an event packet, and send it to the DAQ network,
in which each TELL40 card represents a source point, managing data from a limited number
of detector links. In order to perform selections, the LHCb software trigger requires complete
events, containing the information of all subdetectors. The process of assembling all data
fragments coming from different TELL40s and belonging to the same bunch crossing is called
event building (EB) [71] and is performed on the ∼170 servers that host the TELL40 cards6.
Apart from TELL40 cards, EB servers also contain GPUs running the first stage of the High
Level Trigger (HLT1) application. As each server receives only the data from the subdetectors
connected to the hosted TELL40s, all the EB nodes are interconnected with a high–performance
network7 that transmits the complete information to the node, which is in charge of the full
event assembly. Each server acts in turn as data–source and data–sink in the event–building
process, where cyclically every node acts as a full event builder (sink) and receives data from all
other servers (sources). Instead of putting together single data packets, the EB builds data from
several thousands bunch–crossings, to achieve optimal network performances. Built events are
then stored in a shared memory buffer and sent to a GPU installed in each event–builder server
that performs HLT1 reconstruction and selections. The events selected by HLT1 are sent to a
temporary buffer storage, from where they will be accessed by the alignment and calibration
processes and by the application performing second–stage selections (HLT2).

Figure 2.11 shows a schematic view of the entire LHCb online system. PCIe40 cards, in
SODIN and SOL40 flavors, play a key role in the TFC system. TFC is responsible for controlling
and distributing clock, timing, and trigger information, synchronous and asynchronous commands,
across the readout chain. It also regulates the transmission of events through the readout chain
taking into account TELL40 states, the LHC filling scheme, and calibration procedures, while
ensuring a coherent data taking acquisition across all elements in the readout architecture.
Figure 2.12 shows the TFC architecture and its data flow. The SODIN readout supervisor is the
TFC master, sending necessary information and commands, while being interfaced to the LHC

6Each EB server contains up to three TELL40 cards, where each server hosts cards of a single subdetector.
7The 200 Gbit/s high dynamic range (HDR) InfiniBand technology is used for the EB network implementation.
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Figure 2.11: LHCb Upgrade online system [59].

40 MHz clock distribution system. Subdetector FE and BE readout electronics are connected to
the SODIN via a network of bidirectional optical links using multiple SOL40 interface boards
and passive optical splitters. These connections define the granularity of the partition, where a
partition is a set of subdetector electronics and control resources that can be run independently
of another set. The connections between the SOL40 and the FE boards use the GBT protocol for
fast and slow control distribution to the FE and for slow control back from the FE. In contrast,
the connections between SODIN, SOL40s, and TELL40s use Passive Optical Network technology
(PON) and PON splitters. SODIN is also interfaced to the rest of the DAQ by its PCIe interface,
sending information about the conditions under which the data are collected. Another key
component of the online architecture is the experiment control system (ECS). It is responsible
for the configuration, monitoring, and control of all areas of the experiment, including the slow
control of high and low voltages, as well as monitoring and control of DAQ and trigger systems.

2.10 Trigger

The goal of the trigger system is to reduce the volume of data read from the detector, around
32 Tb/s at the nominal Run 3 conditions, to around 80 Gb/s, which can be recorded to permanent
offline storage, while retaining as much signal as possible [71]. Given the high rate of potentially
interesting events8, instead of making trigger decisions based on partial event information9, as
it was done during Run 1 and 2, the reconstruction of the full event is exploited to achieve

8Over 300 kHz of bunch crossings contain a partially reconstructed beauty hadron and almost 1 MHz of bunch
crossings contain a partially reconstructed charm hadron.

9During Run 1 and 2 the trigger decision was made on calorimeter and muon information, which were the only
subdetectors that could be read out at the full 40 MHz speed.
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Figure 2.12: Logical architecture of the TFC system [59].

a data reduction factor of about 400. Given these constraints, the trigger system is divided
into two main stages, named High Level Trigger 1 (HLT1) and High Level Trigger 2 (HLT2).
HLT1 [42] focuses primarily on charged particle reconstruction and reduces the data volume
by approximately a factor 20, while maintaining a high triggering efficiency. On the other
hand, HLT2 performs the full offline–quality reconstruction, in addition to O(1000) selections.
Between HLT1 and HLT2, a disk buffer (around 30 PB) holds the data while real–time alignment
and calibration processes are being performed. It also allows events selected by HLT1 to be
buffered for processing between LHC fills. The complete data flow from the detector to the
offline storage is illustrated in Figure 2.13. HLT1 uses an array of GPUs mounted on the Event
Builder servers to perform a fast event reconstruction, with the only purpose of reducing the
event rate, while retaining as much signal as possible, to a level acceptable for HLT2. HLT1
focuses on reconstructing the trajectories of charged particles in order to measure their momenta
with percent–level precision, while associating each particle with the corresponding pp collision
and measuring its displacement from the primary vertex. The complete HLT1 reconstruction
sequence is shown schematically in Fig. 2.14. HLT1 reconstruction and selections are preceded
by a Global Event Cut (GEC) that removes a fraction of the events with the highest detector
occupancy. These events require a large amount of computing time to reconstruct, while having
worse detector performances. Subsequently, tracks are reconstructed in the VELO and used
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to find the positions of the primary vertices. Tracks are then extrapolated to the UT and
SciFi, based on a minimum allowed momentum and/or transverse momentum. The particle
displacement from the primary vertex is computed by means of a parameterised Kalman filter
(see Sect. 6) that takes the momentum information as input. Tracks are then fitted to a common
origin to form two–body displaced vertex candidates, which are used for selections. HLT1
selections are divided into four main categories. Primary inclusive selections cover the bulk
of LHCb physics program, which, for example, include two–track vertex triggers, displaced
single–track triggers, and displaced single muon triggers. Selections are also made for calibration
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samples, for specific physics signatures not covered by the inclusive triggers, and technical
triggers for luminosity determination, monitoring, calibration, and alignment.

HLT2 runs on an array of CPU servers, using the real–time alignment and calibration of
the detector, to perform an offline–quality reconstruction, together with O(1000) selections. If
an event is kept, the selection algorithm specifies which parts of the event need to be saved to
permanent storage, exploiting the Turbo technique introduced during Run 2 [72]. The HLT2
reconstruction is divided into the following four main steps:

• charged particle pattern recognition, where VELO tracks are used to find the positions of
the primary pp collisions. As a consequence, tracks that originate from the decays of long–
lived particles, and are therefore displaced from the PV, are precisely identified. VELO
tracks are then extrapolated into the UT and SciFi regions to measure their momentum;

• calorimeter reconstruction, where single–photon clusters, multiple–photon merged clusters
and electron clusters are distinguished one from another using multivariate algorithms;

• particle identification, where a combination of the two RICH detectors, the ECAL, and
the muon system are used to identify the five basic long–lived charged particle species –
electron, muon, pion, kaon, and proton;

• Kalman fit, which allows the parameters of reconstructed tracks to be precisely measured.

2.11 VELO clustering before this thesis

Reconstructing VELO clusters from single–pixel hits is one of the first operations to be performed
within the particle tracking sequence. As reported in Ref. [73], VELO clustering was supposed
to occur within the HLT process, running on a CPU–based architecture. For this purpose,
a first clustering algorithm was developed and optimized for the VELO sparse response [74].
Already from the first tests of the reconstruction software, based on detailed Monte Carlo
(MC) simulated samples, VELO clustering required roughly 10% of the entire time needed for
the HLT1 sequence. As the LHCb collaboration decided to move to HLT1 reconstruction and
selections performed on GPUs, the clustering algorithm, together with a substantial part of the
reconstruction software, was ported to the new architecture [42,75]. With clustering originally
planned to be part of HLT processes, VELO TELL40s had time reordering of VELO SPs as
their main task, with the possibility of performing isolation flagging within the TELL40 itself, if
enough FPGA resources were available. Time reordering consists in sorting VELO raw data
coming from the detector by their timestap as they are not guaranteed to be ordered, due to
the VeloPix readout architecture. Isolation flagging identifies SPs that do not have any active
neighbor SP in order to ease clustering operations. More details about time reordering and
isolation flagging can be found in Sects. 3.2.1, 4.4.3 and 5.3.1.

As I started the work described in this thesis, the algorithms to perform SP decoding and
clustering within GPUs were available, together with the first functioning VELO firmware,
excluding the isolation flagging. After the first exploratory tests using a prototype of the
clustering firmware and the promising results of the first comparative performance studies, it
was clear that a Retina–based VELO clustering algorithm and the corresponding firmware could
be integrated within the VELO FPGA–based readout cards, freeing HLT from a significant
amount of processing load. Thus, the following chapters present all the relevant steps that led,
from the original idea, to a fully–functional and commissioned clustering architecture within the
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LHCb silicon pixel detector. This is the first time that a FPGA–based algorithm, capable of
reconstructing clusters from the hits of a HEP pixel detector, has been deployed to the detector
readout cards, being able to run online at the unprecedented speed of 30 MHz input event rate,
without time multiplexing. The original work detailed in this thesis is a significant and very
challenging step towards innovative solutions aimed at fulfilling the ever–increasing processing
and bandwidth needs of modern HEP experiments, by means of subsystems running at early
DAQ stages and exploiting new heterogeneous computing architectures.

30



Chapter 3

A real–time 2D clustering algorithm

This chapter details the first implementation of a FPGA–based 2D clustering algorithm, capable
of running in real time at the LHC crossing rate. The main components of the algorithm are
described, together with the algorithm parameters that can be tuned for specific use cases. A
specific reference is given to the application within the LHCb VELO detector data acquisition
chain. The main limitations of the algorithm are also discussed.

3.1 Introduction

The clustering algorithm described in this thesis is capable of reconstructing two–dimensional
clusters produced by charged particles hitting a silicon pixel detector in real time, at the LHC
bunch–crossing rate. Clustering in two dimensions is an extremely parallelizable task, where the
reconstruction of a cluster is independent of the presence and topologies of surrounding clusters.
As described in Appendix. A, FPGA–based devices are widely spread in HEP experiments for
readout purposes and they offer high design flexibility. For these reasons, the new algorithm
presented in this thesis is designed to run on FPGA–based readout boards, taking individual
pixel hits as input, reconstructing clusters, and returning their centers of mass. The clustering
algorithm exploits the high level of specialization and parallelization of FPGA–based accelerators,
to achieve the highest possible throughput, while maintaining a very low latency, and, given these
features, it can be integrated within the readout chain of any pixel detector, regardless of its size
and geometry. The algorithm has few parameters that can be tuned for specific applications,
and a baseline VHDL version is available for download from a public code repository [76].
The final version of the algorithm, as well as the optimization work of the overall architecture, is
detailed in this chapter. The algorithm fine tuning is performed by means of the official Geant–
based LHCb simulation [77], taking into account the topology and occupancy distributions
of clusters, and using several MC samples produced at the nominal Run 3 luminosity of
2× 1033 cm−2s−1. Further details about the LHCb simulation and the physics performance of
the algorithms can be found in Chaps. 5 and 6, respectively.
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3.2 Algorithm implementation for LHCb VELO detector

The algorithm described in this thesis is specifically tailored to the LHCb VELO detector and
its readout chain. As discussed in Sect. 2.3, VELO data are read as aggregated groups of 4×2
pixels, named SuperPixels (SPs), and subsequently sent to the clustering block, which takes
as input the list of all active SPs found in a given event and returns the list of reconstructed
clusters.

3.2.1 Isolation flagging

As a first operation, the clustering block compares the two–dimensional position of each SP with
that of all other SPs in the same event within the same sensor. SPs are then sorted according
to the presence of any active neighboring SP: a SP is flagged as ‘isolated’ if none of its eight
SP neighbors has any active pixel. This information is particularly relevant in optimizing the
performance of the cluster reconstruction process, allowing the implementation of a much faster
algorithm for isolated SPs, which account for about 53% of the total number of SPs1. The
isolation flag is used by the algorithm to differentiate the reconstruction mechanism between
isolated SPs and non–isolated SPs, which have at least one active neighbor.

3.2.2 Isolated clustering

Isolated SPs are resolved directly into clusters using a look–up table (LUT). The table links each
of the 28 possible pixel configurations, within a SP, to the center of mass of the corresponding
reconstructed cluster(s). Within the firmware, the LUT is implemented as a single–port RAM,
where the SP hitmap represents the address to be read from the LUT. The LUT is filled with
precomputed two–dimensional coordinates of the center of mass of each SP configuration. The
case of a double cluster in the same SP is also solved. This LUT–based reconstruction allows an
extremely fast processing of isolated SPs, with a very limited amount of logic resources within
the FPGA.

3.2.3 Non–isolated clustering

The cluster reconstruction of non–isolated SPs requires, instead, the parallel processing of an
ensemble of SPs. A chain of independent matrices is used to reconstruct clusters from all
non–isolated SPs coming from the same VELO sensor. This approach avoids the implementation
of a single sensor–sized matrix in favor of smaller matrices that are handled more easily and
faster inside the FPGA2. All matrices are created as empty entities and can contain up to nine
contiguous SPs, organized in three rows and three columns. The first–arriving SP fills the center
of an empty matrix and determines the physical location of the matrix inside the VELO detector,
as well as the set of coordinates of the other SPs that can fill it. If a SP belongs to a matrix, it
fills it; otherwise, it moves forward, checking the next available matrix of the chain or filling
the center of an empty one. An explanatory graphical illustration of this mechanism is shown
in Fig. 3.1. At the end of each event, in a fully parallel way, each pixel of a matrix checks if
it belongs to a predetermined pattern of pixels, as shown in Fig. 3.2. If one of the patterns

1This estimate is performed using the official LHCb simulation tools. The LHCb software stack is detailed in
Sect. 5.4.

2The expected occupancy of the VELO sensors is around 0.125% [60] in the regions closest to the beam pipe. A
cluster is made of 2 pixels on average.
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B G O

B R R

Figure 3.1: Sketch of the matrix filling mechanism with non–isolated SPs. SPs with same color (label) are
neighbors with active pixels. The blue SP (B) fills the first matrix in the line that is already populated
with one of its neighbors. The green SP (G) does not belong to any of the already populated matrices, so
it moves forward. The orange SP (O) has reached an non–initialized matrix, so it fills the center.
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Figure 3.2: Pixel patterns seeding to a cluster candidate. Patterns are optimized for sensor mounting
orientation. See Ref. [78] for further details.

is matched, the cluster candidate is recognized in the 3×3 grid (green pixels), as well as the
anchor pixel (blue pixel), positioned at one of the corners of the 3×3 grid, depending on the
orientation of the sensor. The centroid coordinates are determined using a LUT that links each
of the possible 29 pixel configurations inside the 3×3 cluster candidate to the coordinates of
its center of mass. The absolute position of the cluster candidate is obtained as a sum of three
vectors of coordinates: the position of the matrix with respect to the detector, the position of
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the anchor pixel with respect to the matrix, and the position of the reconstructed cluster with
respect to the anchor pixel. In order to reconstruct cluster candidates that have an anchor pixel
falling near the matrix edge, each matrix is surrounded by edges of registers fixed at zero, as
shown in Fig. 3.3. These edges identify a set of pixels that are not used during the filling process,
but are necessary to determine the 3×3 cluster candidate, even near to the matrix edges. An
example of such a configuration is shown in the right part of Fig. 3.3. The width of the edges
is determined by the VELO sensor number, the allowed patterns, and the cluster candidate
topology (Fig. 3.2).
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Figure 3.3: Matrix edges and pattern orientations: (a) for sensors 0 and 3 and (b) for sensors 1 and 2.

3.3 Parameters and limitations of the algorithm

The clustering algorithm has four main parameters that can be tuned to optimize its performance
in terms of speed, efficiency, and quality of the reconstruction.

• The shape and size of the matrix are determined by how non–isolated SPs are arranged
together. Bigger matrices can contain clusters made of a higher number of SPs. For the
VELO clustering algorithm, matrices that can contain up to 3×3 SPs are implemented.

• The distribution of the number of SPs with neighbors per event determines the number
of matrices that has to be instantiated. Increasing the number of instantiated matrices
increases the number of SPs that can be accommodated. For the VELO clustering
algorithm, 20 matrices are implemented for each VELO sensor.

• The size of the cluster candidates is determined by the distribution of cluster sizes shown
in Fig. 3.4. The sizes of clusters created by individual charged particles crossing VELO
layers are typically rather small (1–4 pixels in 96% of cases), with larger clusters being the
product of merged hits or secondary emissions (δ–rays, etc.).
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• The geometry of the cluster matching patterns (Fig. 3.2) takes into account the fact that
clusters are collections of an arbitrary number of pixels close together and separated
from other active pixels. The “L” shaped sequence of inactive pixels with two different
configurations of active pixels allows cluster seeds to be identified. The actual shape is
chosen in order to optimize the cluster and track reconstruction efficiencies (see Sect. 6).

The tuning of the algorithm parameters needs to take into account the usage of FPGA logic
and memory resources and the processing rate. Increasing the number of SPs that a matrix
can contain linearly increases the amount of logic resources needed. The same linear relation
is present between the number of instantiated matrices and the logic resources. However, an
exponential relation links the sizes of the LUTs used for the cluster candidate reconstruction and
the memory resource usage, as the number of possible pixel configurations increases exponentially
with the number of pixels considered.

Since the algorithm is designed for a FPGA–based implementation, the number of instantiated
matrices cannot be dynamically adjusted to cope with events with a higher number of (non–
isolated) SPs. If the number of matrices is not enough to accommodate all the SPs, a fraction of
those overflow the matrices. Overflow SPs can be discarded as a whole or some partial information
can be extracted resolving them using a LUT, as if they were isolated. This inevitably increases
the number of duplicated clusters, since more than one cluster is reconstructed from a single
and compact conglomerate of pixels that is distributed over several SPs. For the LHCb–VELO
implementation of the algorithm, overflow SPs are reconstructed as if they were isolated. See
Sect. 6 for detailed studies on the algorithm physics performance.

3.4 Algorithm fine tuning

Since its first design, the clustering algorithm has been tuned to improve the overall reconstruction
performance, taking into account the constraints given by the hardware implementation on
the FPGA chip. These improvements concern a better cluster search pattern, as reported in
Refs. [67, 79], an optimized cluster position calculation, and the removal of inefficient matrix
edges. For instance, Fig. 3.5 shows the first version of the cluster search patterns. Starting from
this first implementation, the following changes have been applied to optimize the algorithm
response for what concerns search patterns:

35



Chapter 3. A real–time 2D clustering algorithm

0
0
0

1
0 0

0
0
0

1

0
1
0

Not active  
pixel

Active  
pixel

Anchor 
pixel

Cluster  
candidate

0 1

Figure 3.5: Original pixel patterns seeding to a cluster candidate, before the optimizations and fine
tunings.

• Cluster search patterns have been updated to maximize cluster and track reconstruction
efficiencies. As shown in Fig. 3.6 if two clusters end up being close enough and with specific
topologies, only one of the two is reconstructed, whereas the other is not identified.
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Figure 3.6: Example of cluster reconstruction inefficiency due to the original cluster search patterns,
shown in Fig. 3.5.

This is due to the specific patterns that were originally used to search for clusters. In
particular, the right pattern in Fig. 3.5 requires the bottom–left pixel to be zero in order
to recognize a cluster. For specific cluster topologies and configurations, such as the one in
Fig. 3.6, even if two clusters are present, only one is found. Not reconstructing a cluster
may lead to tracking inefficiencies, where a track is not identified because clusters in one
or more VELO modules are not reconstructed.

To avoid this type of inefficiencies, search patterns have been changed, as shown in
Fig. 3.7. The bottom–left pixel, which was previously required to be zero, now moves to
the ‘don’t care’ category, and the anchor pixel is required to be zero.
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Figure 3.7: First optimization of the cluster search patterns adopted to avoid cluster reconstruction
inefficiencies, as shown in Fig. 3.6.

• Search patterns were also optimized to avoid the reconstruction of multiple clusters from a
single collection of pixels close together. Figure 3.8 shows an example of cluster splitting,
where two clusters are reconstructed from a single one. Cluster splitting can lead to
an increase in the number of clone tracks, which are tracks with many hits in common
(see Sect. 6.3.1) but that differ by a small number of hits not being shared. Moreover,
increasing the number of clusters has a negative impact on the time required to run the
reconstruction, as the tracking algorithms need to run on a higher number of hits.
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Figure 3.8: Example of cluster splitting where two clusters are reconstructed from a single collection
of pixels close together.

This splitting behavior is due to the right pattern shown in Fig. 3.5 and the optimization
described in Fig. 3.7 did not improve this specific case. In order to reduce cluster splitting,
this specific search pattern has been updated, as shown in Fig. 3.9.
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Figure 3.9: Second optimization of the cluster search patterns adopted to avoid cluster splitting, as
shown in Fig. 3.8.

An additional pixel is required to be zero in the bottom–right part of the pattern. Cluster
splitting is significantly reduced when applying this new pattern. In the example shown in
Fig. 3.8 only the red cluster is reconstructed with the new optimized search pattern.

• Cluster search patterns have also been optimized to account for VELO sensor mounting
orientation. Given a VELO module, two of its sensors are mounted on the front side of
the layer, whereas the remaining two on the back side, having opposite local coordinate
system origins (pixel [0, 0]), as shown in Fig. 3.10.

Figure 3.10: Sensor mounting orientation on a VELO layer. The origins of the local coordinate
system are also highlighted as green dots. Red lines show particle tracks originating from the
interaction vertex.

If the mounting orientation is not taken into account correctly, the number of split clusters
being reconstructed increases. This is mainly due to the presence of large clusters elongated
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in one direction, as shown in Fig. 3.11, produced by tracks grazing VELO sensors at small
angles. While large clusters that develop from bottom–left to top–right are partially
reconstructed, but no more than one cluster is identified3, clusters that develop in the
opposite direction, from bottom–right to top–left, lead to cluster splitting, due to the
orientation of the cluster search patterns.
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Figure 3.11: Example of a large cluster splitting due to an elongated cluster developing from
bottom–right to top–left.

To account for this mirrored geometry, the cluster search patterns have been changed
accordingly for sensors mounted on the back side, as shown in Fig. 3.12. This change does
not affect the reconstruction of small clusters or clusters with an almost circular geometry.
It affects large clusters lengthened in a diagonal direction for which a non–symmetrized
cluster search pattern would lead to an increase in cluster spitting and, as a consequence,
in clone and ghost track rates (see Sect. 6.3.1).
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Figure 3.12: Third optimization of the cluster search patterns adopted to avoid large cluster
splitting, as shown in Fig. 3.11, due to the VELO sensor mounting orientations.

Other than search patterns optimizations, the following tunings were applied to the algorithm.

• The cluster center position calculation has been tuned both for clusters originating from
isolated and non–isolated SPs. In case of isolated SPs, the firmware has been adjusted
to account for the possibility of two clusters in a single SP, as shown in the left part of
Fig. 3.13. In the first implementation of the algorithm, only one cluster was reconstructed
in this case. Even if isolated SPs containing two clusters are quite rare, introducing the
possibility of reconstructing both of them allows the cluster reconstruction inefficiency to
be reduced. The case of two independent clusters in the same 3×3 cluster candidate is
also taken into account for the non–isolated case, as shown in the right part of Fig. 3.13.
While in the first version of the algorithm only one cluster was reconstructed, having as

3Also bottom–left–to–top–right clusters can lead to cluster splitting if they are large enough to end up populating
more than one matrix.
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coordinates the average values of the coordinates of the single clusters, the updated version
reconstructs both clusters correctly. In both cases the LUTs in the firmware have been
updated.
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Figure 3.13: Examples of (left) an isolated SP containing two clusters and (right) a 3×3 cluster
candidate containing two clusters.

• The cluster reconstruction for both isolated and non–isolated SPs has been tuned in such a
way that the fractional parts of its center coordinates are no longer truncated to the lower
one–forth step, as done in the first version of the algorithm, but rounded to the closest
one–forth. A comparison between cluster coordinate truncation and rounding is shown in
Fig. 3.14.
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Figure 3.14: Comparison between cluster coordinates truncation and rounding.

This change was applied after an in–depth analysis to identify the cause of a bias observed
in the primary vertex (PV) reconstruction position, as detailed in Sect. 6.3.4 and Ap-
pendix C. The truncation of the cluster coordinates to the lower one–forth step caused the
reconstructed tracks to be shifted outward with respect to the interaction region. As a
consequence, the reconstructed primary vertex is shifted towards negative z values. After
applying this update, the shift in the PV z position is no longer visible.

• The matrix geometry has been modified from an initial 3×5 SP geometry to a more efficient
3×3 scheme. This allows the removal of inefficient matrix edges that could not seed clusters
and the recovery of residual clustering and tracking inefficiencies, as shown in Fig. 3.15.
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Figure 3.15: Fine tuning of the matrix geometry to improve cluster reconstruction efficiency.
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In the first implementation of the algorithm, each matrix, appointed to non–isolated SP
cluster reconstruction, had an edge of inefficient pixels that can be used to load SPs but
could not trigger the reconstruction of a cluster as anchor pixels. As the algorithm was
improved, the inefficient edges were removed in favor of a set of registers fixed to zero
surrounding each matrix. Those registers are needed to extract a cluster in case the
corresponding anchor pixel is on the edge of the matrix. Instead of keeping the same
matrix geometry, making all pixels capable of seeding a cluster and surrounding it with
fixed–to–zero registers, the matrix size has been reduced from 3×5 to 3×3 SPs so that the
number of pixels that can seed a cluster remains comparable in the two cases4. This choice
has been made based on firmware considerations: increasing the number of pixels that can
seed a cluster would require more logic, as more pixels need to be checked at the same time
according to cluster search patterns. Moreover, it would have put more pressure on timings
as more fast logic would be needed to run in unison. More details about the firmware
implementation, with special reference to timings and resource usage, can be found in
Sect. 4.3, Sect. 5.3.5 and in Appendix B. However, reducing the matrix dimensions can
cause SPs that make up large clusters to be more likely split over multiple matrices. This
might have a negative impact on the tracking performance. For this reason comparison
performance studies have been conducted, showing that the advantages of having a smaller
but entirely active matrix have a net positive impact on physics performances. The
corresponding increase in cluster splitting is marginal and does not have a noticeable effect.

This chapter ends the descriptive part of the thesis, where the motivations of the work, the
environment in which it has been done and the clustering algorithm itself are detailed. The
following chapters are devoted to an in–depth description of the firmware implementation of
the algorithm, to its firmware and software integration within the LHCb readout chain, to
the physics performance studies, and to the commissioning process. All the steps described
play an important role in being able to collect data effectively with a significant part of the
reconstruction process being performed online, for the first time.

4The number of pixels that can seed a cluster are 63 in the 3×5–SP matrix implementation and 72 in the 3×3–SP
geometry. Making every pixel in the 3×5 matrix capable of seeding a cluster would have led to 120 potential
anchor pixel positions seeding a cluster.
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VHDL firmware implementation

This chapter describes the firmware implementation of the clustering algorithm detailed in Chap. 3.
A high–level description of the firmware as a whole is provided, together with a detailed view of
the working principle of each component. Data formats and details of components not strictly
related to cluster reconstruction, such as monitoring and error handling, are also discussed.

4.1 Key components of the architecture

The clustering architecture is built in a modular way, where each component is devoted to a
specific task. First, a decoding and flagging stage splits data into separate streams, while flagging
isolated SPs. Second, a pair of switch blocks sends data to the appropriate cluster processing
component. Reconstructed clusters are then finally encoded with the chosen output format.
Figure 4.1 shows a simplified view of the basic blocks that make up the architecture, whereas a
more detailed view of the firmware structure is shown in Fig. 4.2.
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Figure 4.1: VELO data are received as 256–bit words, each containing eight SPs. A “Data Valid” signal
states whether the incoming data are valid. Start of package (SOP) and end of package (EOP) signals
delimit the start and the end of the data corresponding to each event. The clustering block sends a ready
signal to the previous architecture component when it is ready to accept data. The “decoder and isolation
flagging” block splits the 256–bit bus into eight 32–bit wide busses, each containing one SP. It also flags
SPs that do not have any active neighbour SPs (isolation flag). A pair of switches arranges SPs by sensor
(S0/S1) and by isolation flag (IF). The “clustering isolated” and “clustering matrices” blocks reconstruct
clusters, that are encoded back into 256–bit words by means of an encoder.
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4.2. Input–output interfaces

The clustering architecture can be described in terms of the following schematic elements:

• input–output interfaces – formats and protocols used to exchange data between the
clustering and the surrounding components;

• clock domains – different clocks used to drive the clustering logic, with appropriate clock
crossing between clock domains;

• logic and memory components – the actual components responsible for the cluster recon-
struction and buffering;

• monitoring – auxiliary components used to monitor the health of each firmware component
during data taking;

• error handling – dedicated error detection and recovery logic assigned to all the main
components.

4.2 Input–output interfaces

As with the majority of firmware components within the LHCb firmware, the clustering receives
data on a 256–bit bus. Given that each SP is encoded in a 32–bit word, the data bus can carry
up to eight SPs per clock cycle, where the input–interface clock frequency, as well as the output
one, is 250 MHz. Each 256–bit word comes with a binary valid signal that states whether or
not a word is valid. Data words are grouped into packets, each carrying data from a specific
event. The first word of a packet is identified with a start–of–packet (SOP) binary signal and
the last word with an end–of–packet (EOP) binary signal. The first word of a packet comes
with some auxiliary signals, the FTYPE signal (8 bits) identifying the type of the packet for
a specific subdetector, the FSIZE signal (16 bits) stating the size of a packet in bytes, and
the BXID (12 bits) signal carrying the bunch crossing identifier1. Together with data–related
information, a timing and fast control signal (TFC, 64 bits) is propagated together with a
corresponding binary valid signal. The TFC architecture is described in Sect. 2.9. Figure 4.3
shows an example of input–output interface signals, where a valid data packet, containing SPs,
goes into the clustering block (Fig. 4.3 left) and a corresponding valid data packet, containing
clusters, leaves the same block (Fig. 4.3 right). In the following, the word metadata is used to
refer to signals that do not carry data (SP or cluster), such as FTYPE and FSIZE.

Figure 4.3: Example of (left) SP input data and (right) cluster output data.

1Section 5.3.1 details how the VELO firmware deals with detector latency.
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4.2.1 Data formats

Active SPs are encoded by 32–bit words, as shown in Fig. 4.4. Each word contains the pixel
hitmap (8 bits), the SP position within the sensor (15 bits), and the sensor identifier within the
sensor pair (1 bit). Each VELO sensor is made of 256×768 pixels. Each SP is composed of 4×2
pixels, such that 6 bits are needed to specify the SP row, whereas 9 bits are required for the
column. One extra bit is needed to identify the source sensor, as each data chain receives SPs
from two sensors.

ID
 

SP row SP hitmap

31 24 23 22 14 13 8 7 0

SP columnPadding

Figure 4.4: Data formats for VELO SuperPixels.

Clusters are encoded in 32–bit output words, as sketched in Fig. 4.5. Of these, 22 bits are used to
specify the position of the cluster centroid, with 18 bits specifying the position of the pixel where
the cluster centroid is located (Integer column and Integer row), and additional 4 bits are used to
specify the position of the centroid within the pixel, in units of 1/4 of a pixel (Frac col and Frac
row). Analogously to SP data, 1 bit is used to identify the sensor (ID). Eight additional bits
are used to encode a cluster–topology identifier (Topology ID) and the reconstruction–quality
flags (Flags). The topology identifier is used to distinguish cluster topologies that share the
same centroid position within the pixel, so that the full cluster topology can be retrieved. If
the cluster is reconstructed from an isolated SP (bit 30 = 1 in Fig. 4.5 top), six bits are used
to store the topology identifier, whereas five bits are needed to store the identifier for clusters
reconstructed through the matrices (bit 30 = 0 in Fig. 4.5 bottom).
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Figure 4.5: Data formats for (top) clusters reconstructed from isolated SPs and (bottom) clusters
reconstructed from not isolated SPs. Bit 31 (Res) is reserved for internal use.

The cluster topology information is used both for monitoring purposes and for the ultimate
optimization of the tracking performance, as the uncertainty associated with the 2D posi-
tion of a cluster depends on its topology. The reconstruction–quality flags allow clusters
from isolated SPs to be distinguished from clusters built from SPs overflowing the maximum
number of instantiated matrices (which are arbitrarily treated as isolated). For clusters re-
constructed within a matrix, these flags specify whether a cluster was fully contained in the
3×3 grid (Fig. 4.6 left) and whether the grid touched the boundary of the host matrix, which
potentially means that the reconstructed cluster is a fragment of a larger one (Fig. 4.6 right).

44



4.2. Input–output interfaces

?

0

0

0 0 0 ? ?

?

?

?

? ? ? ? ?

Figure 4.6: Graphical explanation of self-contained and edge flags. Gray pixels outside the matrix
are fixed to zero. A cluster is flagged as self-contained if all surrounding pixels (orange pixels in the
left image) are not active. A cluster is flagged as at the edge of the matrix if its anchor pixel is one of
the green pixels in the right image.

Table 4.1 shows the returned values of the reconstruction quality flags, if a cluster is reconstructed
from (left) an isolated SP or (right) within the matrix chain.

Meaning Flag

Isolated 1
Overflow 0

Meaning Flag

Self–contained & edge 11
Self–contained & not–edge 10
Not–self–contained & edge 01
Not–self–contained & not–edge 00

Table 4.1: Values and meanings of the reconstruction quality flags.

Topology ID

The topology identifier and the fractional parts of the position of the cluster center allow the
derivation of the 3×3 or 2×4 full cluster topology. As shown in Fig. 4.7, only 320 3×3 topology
configurations, out of the 512 (29), lead to a reconstructed cluster. This is due to the shape of
the patterns used to find the anchor pixel in the cluster search (Fig. 3.2).

Figure 4.7: Count of the 3×3 topologies that lead to a cluster.

Table 4.2 shows all the possible fractional part configurations of the cluster centers for 3×3
topologies, as well as the number of appearances of each configuration. The majority of the
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N° topologies Frac. part (x,y) N° topologies Frac. part (x,y)

71 (0.00, 0.00) 14 (0.00, 0.50)
27 (0.75, 0.00) 14 (0.50, 0.00)
27 (0.00, 0.75) 12 (0.25, 0.25)
25 (0.25, 0.00) 10 (0.50, 0.50)
25 (0.00, 0.25) 8 (0.50, 0.75)
23 (0.75, 0.75) 8 (0.75, 0.50)
22 (0.25, 0.75) 6 (0.50, 0.25)
22 (0.75, 0.25) 6 (0.25, 0.50)

Table 4.2: Number of 3×3 topologies with the same fractional parts.

clusters has (0.00, 0.00) as fractional part; however, 28 configurations, out of 71, lead to a single
cluster in the given 3×3 pixel grid. The remaining 43 configurations contain two independent
clusters that are reconstructed using two different patterns (associated to two different anchor
pixels), with a topology belonging to the 28 configurations leading to a single cluster. Figure 4.8
shows two examples of these occurrences, where the two topology configurations, associated
with the reconstructed clusters, are the same (top) or different (bottom). In conclusion, in order
to unambiguously identify 28 different topology configurations at most, five bits are needed to
encode the full topology, as shown in Fig. 4.5 (bottom).

Similar arguments can be made to determine the minimum number of bits needed to identify
2×4 topology configurations that share the same fractional parts of the cluster center position.
As above, Table 4.3 shows all the possible fractional part configurations of cluster centers for
the 2×4 topologies, as well as the number of appearances. Only 12 configurations, out of a total

N° topologies Frac. part (x,y) N° topologies Frac. part (x,y)

48 (0.00, 0.00) 11 (0.25, 0.75)
45 (0.50, 0.50) 11 (0.75, 0.25)
32 (0.50, 0.00) 11 (0.75, 0.75)
20 (0.50, 0.75) 8 (0.25, 0.00)
20 (0.50, 0.25) 8 (0.25, 0.50)
14 (0.00, 0.50) 8 (0.75, 0.00)
11 (0.25, 0.25) 8 (0.75, 0.50)

Table 4.3: Number of 2×4 topologies with the same fractional parts.

of 48, have (0.00, 0.00) as fractional part with a single reconstructed cluster. The remaining 36
configurations contain two independent clusters. On the other hand, out of the 45 configurations
having (0.50, 0.50) as fractional part, 36 have a single reconstructed cluster. Thus, in order to
unambiguously identify at most 36 different configurations that share the same fractional part,
six bits are needed to encode the full topology as shown in Fig. 4.5 top.

46



4.3. Clock domains

Figure 4.8: Example of a 3×3 topology configuration with (0.00, 0.00) fractional parts containing two
independent reconstructed clusters (red square). The two reconstructed clusters (top) have the same
topology, and (bottom) do not have the same topology.

4.3 Clock domains

Logic and memory components within the clustering architecture are driven by two clock sources,
with frequencies of 250 MHz and 350 MHz. The clocks are created using PLLs that take the LHC
40 MHz external clock as input. Figure 4.2 shows the clock domain to which each component
belongs using blue and red triangles, for 250 MHz and 350 MHz clock, respectively. These values
have been chosen to ensure that the system as a whole can provide a throughput in excess
of 30 MHz2, while still respecting the timing constraints due to internal signal propagation
in all of its parts (see Appendices A and B). The optimal working point of each firmware
component has been evaluated using firmware simulation tools and official LHCb simulated
data samples. Further details on the tests performed with the first functioning prototype of the
clustering architecture are described in Sect. 5.1. Dual–clock FiFos are placed between firmware
components running at different clock speeds to allow data synchronization between different
clock domains.

240 MHz is the crossing frequency of the LHC RF–buckets, however not all buckets are filled with protons
(bunches). The averaged bunch–bunch collision frequency over the LHC cycle is 30 MHz.
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4.4 Logic and memory components

This section describes the firmware implementation details for each component within the
clustering architecture. The overall clustering architecture is built in a modular way, where
each component performs a specific task. This approach eases the design, allowing separate
components, devoted to different tasks, to be built and tested separately. It also allows the
processing of one component to be decoupled from the processing of close–by components, intro-
ducing decoupling FiFos between them. Apart from clock crossing synchronization, decoupling
FiFos absorb different processing rates of consecutive components limited in time, by reducing
the overall rigidity of the system to the data flow3. FiFos allow also long data paths to be
reduced, giving the firmware compiler more freedom to place components within the FPGA
chip, resulting in lower compilation times and better timings. Each FiFo receives read and write
requests, together with the data to be written, from the surrounding components, and exposes
the read data and status signals. Status signals are used to show whether a FiFo is full or empty
to avoid writing or reading, respectively. Within the clustering firmware an almost–full signal is
used instead of the full one, which is raised if the occupancy of the FiFo is higher than a certain
threshold. In this way, the component writing data to a FiFo does not have to stop writing as
soon as it receives the full signal but can still write for a few clock cycles more, typically.

4.4.1 Input FiFos

Incoming data and metadata to the clustering are stored in the following three input FiFos:

• the postRAM FiFo stores the input SPs and can contain up to 1024 294–bit words, where
each word is made of 256 bits of SP data and 38 bits of metadata;

• the TFC FiFo contains up to 512 64–bit TFC words, one for each event, received with the
SOP signal. This FiFo buffers the input TFC words to be read at the end of the clustering
processing block, keeping the event synchronicity;

• the command FiFo in which up to 512 32–bit commands are written. Each word is a
subset of the TFC word and contains the command and the BXID of the event to which
the command has to be applied. As for the TFC FiFo, a word is written at the start of
each event, received with the SOP signal. See Sect. 4.4.3 for more details.

These three FiFos represent the input buffering stage of the clustering and are read by the
subsequent components.

4.4.2 Decoder feeder

PostRAM and command FiFos are read by the decoder feeder, which, as the name suggests,
sends data to the following block, the decoder. Figure 4.9 shows a block diagram of the decoder
feeder that is built on a simple finite state machine that issues read requests to the postRAM
and command FiFos, sending read data and corresponding valid signals to the decoder. The
FSM receives a hold signal from the decoder stating that the decoder is not ready to accept
any more data because it is busy elaborating previously received data. The FSM issues read
requests if FiFos are not empty, reading the command FiFo once per event.

3Considering two firmware components placed one after the other having the same average throughput, a decoupling
FiFo in between can store data output from the first component while the second one is temporarily busy and
can provide previously buffered data to the second component even if the first one is not outputting data.
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Figure 4.9: Block diagram of the feeder reading the postRAM and the command FiFos. Data and valid
signals related to the postRAM FiFo (Valid P and Data P) and the ones related to the command FiFo
(Valid C and Data C) are sent to the decoder. A hold signal is received from the decoder stating the it is
not ready to accept data.

4.4.3 Decoder block

Data output from the decoder feeder are received by the decoder, a block diagram of which
is shown in Fig. 4.10. As a first step, the decoder reads the command, originally stored in
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Data_B
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Figure 4.10: Block diagram of the decoder, that is responsible for bypassing input data not containing
SPs, for performing the isolation cluster flagging, for splitting a single 256–bit stream into eight 32–bit
streams while moving from a SOP/EOP logic to an EndEvent one.

the command FiFo, and decides whether the input data contain valid SPs or control words to
be bypassed. In the latter case, the bypass selector sends the input data to the bypass FiFo,
together with a valid signal (Valid B and Data B signals in Fig. 4.10). At the same time, it
sends a dummy word to be propagated throughout the cluster processing to be received by the
component responsible for bypass FiFo reads, so that it knows when to perform a read request
to the bypass FiFo, keeping the right event synchronicity. Valid SPs, together with dummy
words, are sent from the bypass selector to the Isolation Cluster Flagging (ICF) bypass logic.
As detailed in the following section, the ICF can perform isolation flagging if the input packet
contains less than 144 SPs. If this is not the case, the entire packet is bypassed, saved in the
ICF Bypass FiFo, and a dummy word is propagated through the ICF block. As the ICF block
performs the flagging on input SPs, it sends its output to the output part of the ICF Bypass
logic. The purpose of this component is to propagate flagged SPs and to identify bypass dummy
words, in which case it performs a read request to the ICF Bypass FiFo. Flagged and bypassed
data are sent to the SOP/EOP–to–EndEvent converter. This block is responsible for splitting
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the 256–bit words into eight 32–bit streams so that individual SPs can be reconstructed into
clusters. It is also responsible for converting the SOP–EOP protocol to the EndEvent (EE)
protocol used within the clustering architecture: a 32–bit EE word is interposed between SPs of
different events in all the eight data streams. Each EE word carries a specific flag to distinguish
it from SPs and an event identifier (5 bits) that can be used during subsequent data processing
stages to cross–check data synchronization. Fig. 4.11 shows an example of input and output
data to the SOP/EOP–to–EndEvent converter.

clk

sop

eop

valid

data [0:255] D0 D1 D2 D3

clk

valid

line0 [0:31] SP00 SP01 SP02 SP03 EE

line1 [0:31] SP10 SP11 SP12 SP13 EE

line2 [0:31] SP20 SP21 SP22 SP23 EE

line3 [0:31] SP30 SP31 SP32 SP33 EE

line4 [0:31] SP40 SP41 SP42 SP43 EE

line5 [0:31] SP50 SP51 SP52 SP53 EE

line6 [0:31] SP60 SP61 SP62 SP63 EE

line7 [0:31] SP70 SP71 SP72 SP73 EE

Figure 4.11: Example of (left) input and (right) output data to the SOP/EOP–to–EndEvent converter
shown in Fig. 4.10, where the 256–bit bus is split into eight 32–bit streams and the SOP/EOP control
logic is converted into a EndEvent logic.

Isolation flagging

SPs are flagged with an isolation bit inside the decoder block, as shown in Fig. 4.10. The flagging
process includes five steps: read, buffer, load, flag, and write, arranged in a pipeline, as shown in
Fig. 4.12. First, all SPs of a given event are read and stored in registers. The maximum number

Read Buffer Load Flag Write

Control

Data

Size

Data

Size

Data

Size

Data

Size

Data

Size

Data

Size

Figure 4.12: Block diagram of the isolation flagging.

of SPs that can be stored in the read registers is not dynamically adjustable. It has been set
to 144 based on the distribution of the expected number of SPs in the most crowded VELO
module, requiring more than 98% of the LHCb simulated events to be accommodated in the
read registers. In events where the number of SPs exceeds the size of the read registers, SPs
are not sent to the flagging process, but are instead bypassed and sent directly to the cluster
reconstruction, using the bypass mechanism previously discussed.
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As soon as all SPs belonging to one event are received, the content of the read registers is
copied to the buffer. This data exchange decouples the reading and flagging operations, allowing
SPs of an event to be read in while the flagging of the previous event is still ongoing. The
flagging process compares the coordinates of each SP with those of the other SPs in the same
event. A status vector is used to store the isolation flag for each SP: if two SPs are found to be
neighbors, the corresponding bits in the status vector are set to one. SP comparisons are not
performed all in a single clock cycle. At each clock edge, the load block extracts two subsets of
16 SPs each from the buffer (Fig. 4.12). For each SP in the two subsets, it also computes the set
of coordinates to be matched by the neighbors by one–unit additions and subtractions of the
coordinates of the SP row and column. The two SP subsets, together with the coordinates of
the neighbors, are passed to the flag block that performs the 16×16 comparisons on the two
subsets. For each SP of the first subset, the flag block checks if the SP row is equal to one
of the rows of the SPs in the second subset or to the row above or below; the same check is
performed on columns. If both row and column checks yield a positive result, the two SPs are
flagged as neighbors, and the corresponding bits in the status vector are set to one. On each
clock cycle, the load block selects a different pair of SP subsets from the buffer, sending them to
the flag block until all possible combinations of 16–SP subsets have been checked. The described
architecture allows the same logic resources to be re-used while updating the SP subsets to be
flagged at each clock cycle. To make comparisons between n 16–SP blocks, n(n+ 1)/2 clock
cycles are needed.

The number of parallel comparisons performed for every clock cycle is the result of a trade–off
between resource usage and throughput and is based on the constraints of its use within the
LHCb experiment. As soon as all comparisons are completed, the contents of the flagging
registers and the status vector are copied to the write block, thus decoupling the flag and write
processes. The write block is responsible for adding the isolation flag to the SP words and
for sending flagged data to the next component, the switch. The data exchange within the
read–load–flag–write pipeline is regulated by back–pressure: if a component cannot accept the
data of an event because it is still processing the previous event, the control unit keeps the
previous component on hold.

4.4.4 Transfer and Bypass FiFos

Data output from the decoder are stored in two FiFos: the transfer FiFo and the bypass FiFo.
The first one contains flagged SPs, while the second one stores bypassed words. Both are vector
FiFos, meaning that they consist of more FiFos grouped together. In both cases, eight FiFos that
can contain up to 1024 32–bit words are instantiated. Unlike a single 256–bit FiFo, a collection
of FiFos allows read operations to be performed independently on each FiFo. This is a key
feature of the following components, such as the switch, which require each SP to be accessible
individually. The transfer and bypass FiFos send their almost–full signals to the decoder to
be used as hold signals: if either of the FiFos is approaching its depth limit, the decoder stops
sending data to them.

4.4.5 Switch

The SPs stored in the transfer FiFo are not ordered by sensors within a VELO half–module nor
by isolation flag. The switch, placed after the decoder, arranges SPs by sensor and isolation flag,
feeding them to the appropriate cluster–reconstructing blocks. Fig. 4.13 shows the two switching
units, each of them handling the data of four of the eight FiFos within the transfer vector FiFo.
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Figure 4.13: Block diagram of the switch units.

Within a switch unit, four feeders send read requests to the transfer FiFos, according to their
empty state and the state of the 4×4 switch. If a FiFo contains data and the corresponding
input line of the 4×4 switch on which the feeder should write the data is not busy, the feeder
performs a read request to the corresponding FiFo. Each of the two switching units performs a
4→4 switching, allowing every input data word to be directed to any of the four output streams
according to its sensor number and isolation flag, regardless of the origin input stream. The
basic components of the switch are the splitter and the merger (Fig. 4.14). The former has one
input and two outputs, and it sends input data to one of the two outputs according to their
isolation flag or origin sensor. The latter has two inputs and one output, and it routes two
inputs in a single output line. Two splitters and two mergers combine to form a 2→2 dispatcher.
To implement a switch with 2n inputs/outputs, N two–way dispatchers connected together are
needed, where

N(n) = 2N(n− 1) + 2(n−1).

The block diagram of the splitter is shown in Fig. 4.15. The splitter is based on a finite state
machine (FSM). The next state is determined by the R0 register state, the arrival of valid input
data, and the hold state of the following processing block. On the arrival of valid input data, the
FSM decides between sending it directly to the output or storing it in the R0 register, based on
the input hold signal. In the latter case, a latch–enable (LE) write signal is sent to the register.
A multiplexer controlled by the FSM routes data to the output. If a SP is received, then one of
the two valid signals is set to one, according to the routing scheme (isolation flag or sensor). If
an EE signal arrives, it is sent to both outputs. The input hold signal determines whether data
can be sent to the output. An output hold is generated as long as the R0 register is full, since
no more data can be accepted as input, given the possibility of an input hold signal assertion.

The block diagram of the merger is shown in Fig. 4.16. As for the splitter, a FSM determines
if input data can be sent directly to the output or must be stored in appropriate registers (R0
and R1). If an EE word arrives on one of the inputs, it is stored until a second EE word arrives
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Figure 4.14: Block diagram of a 4 to 4 switching unit.
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Figure 4.15: Splitter block diagram. R0 and State are registers, MUX is a multiplexer and FSM is a
finite state machine that manages hold, valid, control and latch enable (LE) write signals.

on the other input. The two EE words are then compared and, if their event IDs match, a single
EE word is output; otherwise, a sync error signal is set to one.

53



Chapter 4. VHDL firmware implementation

R0 R1

MUX

Data in 0 Data in 1

Data out

FSM

Hold out Valid in

Hold inValid out

State

Sout

Sin

Control

LE

Figure 4.16: Merger block diagram. R0, R1 and State are registers, MUX is a multiplexer and FSM is a
finite state machine that manages hold, valid, control and latch enable (LE) write signals.

4.4.6 Switch FiFo

SP data processed by the switch are stored in the switch FiFo. Like transfer and bypass FiFos,
the switch FiFo is also a vector component made of eight FiFos that can contain up to 512
32–bit words. Out of the eight FiFos, two contain isolated SPs from sensor zero, two contain
isolated SPs from sensor one, two contain non–isolated SPs from sensor zero, and two contain
non–isolated SPs from sensor one.

4.4.7 Cluster reconstruction – isolated SPs

All isolated SPs, identified by the switch and stored in the four corresponding switch FiFos, are
read by the cluster–reconstructing component shown in Fig. 4.17. Four feeders read the SP data
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Figure 4.17: Sketch of the component reconstructing clusters from isolated SPs.

from the four FiFos, two containing SPs from isolated SPs of sensor zero and two of sensor one.
SPs are sent to four corresponding LUTs that reconstruct the clusters from the pixel content
of each SP, as shown in Fig. 4.18 (left). Each LUT reconstructs the cluster centroid from the
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Figure 4.18: (left) Cluster reconstruction of isolated SPs by means of a LUT and (right) example of
isolated SPs containing 2 clusters.

active–pixel hitmap extracted from the SP word. The cluster word is built by combining the
LUT output with the original SP row and column. As shown in Fig. 4.18 (right), isolated SPs
can contain two individual clusters. If this is the case, the LUT reconstructs the two clusters
and a corresponding bit is set to one (#Clusters in the left part of Fig. 4.18). Each isolated
LUT has 256 addresses, each of which contains a 27–bit word. The SP hit map is used as the
address to access the LUT, using the pixel order shown in Fig. 4.18 (right). The 27–bit output
word from the LUT contains one bit stating if there are two clusters within the same isolated
SPs and two 13–bit words, each carrying the seven–bit position of the cluster and the six–bit
topology identifier. Reconstructed clusters are written in FiFos (Fig. 4.17), placed after the
LUTs. Each FiFo is read by a feeder, and the eight lines coming out of the feeders are merged
into four, using the same switch merger shown in Fig. 4.16, and sent to the output.

4.4.8 Cluster reconstruction – non–isolated SPs

Non–isolated SPs are resolved into clusters using two instances, one for each of the two sensors,
of the same firmware component shown in Fig. 4.19. Input data are read from switch FiFos using
two feeders and sent to the matrix chain. In order to ensure a high throughput, each matrix
receives data from two parallel input lines. Each input line is combined with a hold signal, that
is propagated backwards through the whole chain to control the data flow by back–pressure,
avoiding data loss. As the first SP populates a matrix, a set of coordinates is calculated and
stored, to be matched with all further SPs arriving at the same matrix. The initialization of an
empty matrix is done using only one of the two input lines, since only a single SP can enter
the center of the matrix at a time. A second SP coming simultaneously from the other parallel
line would need the coordinates of the free slots to fill the matrix, which cannot be immediately
available due to timing constraints. For this reason, input line 0 (Fig. 4.19) has the priority over
input line 1 during a matrix initialization. In order to maintain good load balance, input lines
are swapped when going from one matrix to the next: line 0 of a matrix feeds line 1 of the next
matrix and vice versa. When EE words have arrived on both input lines, the content of the
matrix is moved to the cluster finder block. An error is raised if two different EE signals are
detected.

The cluster–finder block processes the content of the corresponding filled matrix. Figure 4.20
shows the logic of how clusters are reconstructed, starting from the matrix pixel content. Each
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Figure 4.20: Cluster finder block diagram and its data flow.

pixel in a matrix checks if it belongs to one of the L–shaped patterns of the algorithm through
the pixel checker block. This process is performed in parallel at full speed for each pixel in
each matrix. When a pattern match is found, an anchor pixel in the matrix is identified. As a
consequence, the bit in the pixel flag vector corresponding to the position of the anchor pixel in
the matrix is set to one. An encoder reads the content of the pixel flag vector and passes the
addresses of all anchor pixels found to a multiplexer, one at a time. The multiplexer extracts
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the 3×3 cluster candidate corresponding to the address received from the encoder. As soon as
an anchor pixel has been processed and the corresponding cluster candidate found, the decoder
block receives the pixel address from the encoder and resets the corresponding bit to zero in
the pixel flag vector. The reset operation is performed by means of the pixel flush signal. For
each cluster, a word containing the matrix coordinates, the anchor pixel position, and the 3×3
cluster candidate is written to the matrix FiFo. A merger (purple rectangle in Fig. 4.19) reads
the reconstructed clusters from the matrix FiFos. Fig. 4.21 shows how the merger is built. A
series of feeders perform read requests to the matrix FiFos and the read data are fed to a chain
of 2–to–1 mergers (the same switch merger component shown in Fig. 4.16). The 20 input lines
are merged into a single output line.
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Figure 4.21: Block diagram of the merger collecting reconstructed clusters from matrices.

The merger output is sent to two LUTs, one computing the center of mass (LUT CM) of
the cluster, starting from the 3×3 cluster candidate and the other (LUT POS) computes the
position of the anchor pixel within the matrix. The center–of–mass LUT has 512 addresses, one
for each of the possible pixel configurations within the 3×3 candidate. Each address contains a
11–bit word, where six bits are used for the cluster center position and five bits are used for the
topology identifier. The position LUT has 128 addresses to be able to extract the anchor pixel
position from the 72 possible configurations inside the matrix. Each address contains a 7–bit
word, of which four are used to identify the row and three the column. The cluster position
is obtained by combining the matrix position in the detector, the anchor–pixel position in the
matrix, and the center of mass position within the 3×3 cluster candidate. Cluster words are
then saved into a FiFo that contains all the clusters from non–isolated SPs of a VELO sensor
that do not overflow the matrix chain.

The two data lines at the end of the matrix chain that carry overflow SPs are merged into a
single line. Overflow SPs are reconstructed as if they were isolated by means of a LUT with the
same content of the one used for isolated–SP reconstruction, and the reconstructed clusters are
stored in a FiFo.
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4.4.9 Cluster output FiFo

Reconstructed clusters are stored in the output FiFo, which is a vector component that contains
eight FiFos. Each of the eight FiFos can store up to 1024 32–bit words. Out of the eight FiFos,
four are dedicated to store clusters from isolated SPs, two for sensor zero and two for sensor one.
The remaining four FiFos contain clusters reconstructed from non–isolated SPs, two for sensor
zero and two for sensor one, where, for a given sensor, one FiFo stores clusters output from the
matrix chain, whereas the other contains clusters reconstructed from overflow SPs.

4.4.10 Encoder, bypass merger and event logic converter

Reconstructed clusters are read from the output FiFo by means of a feeder and sent to the
encoder. The output of the encoder is sent to the bypass merger, which reads the bypass FiFo
and incorporates the previously bypassed data into the data stream. The EE–to–SOP/EOP
converter converts the EndEvent logic used inside the cluster–reconstruction components back
to a SOP/EOP logic. These operations are performed by the same firmware entity sketched in
Fig. 4.22. The encoder, as the name implies, is devoted to encoding the eight separate 32–bit
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Figure 4.22: Structure of the firmware component performing data encoding, bypass merging and EE–to–
SOP/EOP conversion.

data streams into a single 256–bit bus to comply with the required output format. The encoder
architecture has been designed as a trade–off between speed and bandwidth optimization. The
encoder is required to output a 256–bit word at each clock cycle to maintain a throughput larger
than 30 MHz. Given the speed constraint, the SP packing performed by the encoder is not
optimal in each event, interleaving zero–padded words between 256–bit words to match the
output width. To build the complete 8→1 encoder, seven 2→1 encoders are instantiated, as
shown in Fig. 4.23. The 2→1 encoder block puts together two input data lines (N + N bits)
into a single output (2N bits) by means of buffer registers (R0, R1, and R3) and a control FSM
(Fig. 4.24). If two cluster words are received and no hold signal is asserted by the subsequent
block, the two words are packed together and sent out. If a single cluster is received, it is
stored in the R3 register and matched to the next input cluster. If a hold signal is received, the
incoming cluster is stored in the R0 or R1 register, depending on its input line. In case an odd
number of words is received within an event, a zero–padded word is added to match the 2N
output width. When two EE signals are received, they are compared and, if they match, sent
out. Otherwise, an error signal is generated.

The bypass merger, shown in Fig. 4.25, is responsible for reading the data from the encoder
output, while incorporating the previously bypassed data into the data stream at the appropriate
time (see Sect. 4.4.3). As in the case of the encoder, a FSM manages read request operations to
the bypass FiFo, sending the appropriate data to the output and handling hold signals. As soon
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Figure 4.23: Structure of a 8→1 encoder built from 2→1 encoders.
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Figure 4.24: 2–to–1 encoder block diagram. R0, R1, R3 and State are registers, MUX0, MUX1 and
MUX3 are multiplexers and FSM is a finite state machine that manages hold, valid and latch enable (LE)
write signals.

as the R1 register is free and the bypass FiFo is not empty, the FSM performs a read request to
the FiFo, so that a bypassed word is ready in the register to be sent to the output. Whenever
cluster or EE words are received, they are sent to the output, if the input hold signal is low,
otherwise, input data are stored in the R0 register. As soon as a dummy bypass word is received,
the bypassed data are sent to the output, keeping the correct event synchronicity. The FSM
issues the latch enable signals if data need to be stored in the R0 or R1 registers, while keeping
track of whether they already contain data using the state register. The FSM also triggers the
Control signal to decide which data should be sent to the output. Before sending the data to the
next component, an EE–to–SOP/EOP converter changes the logic used to define the start and
end of an event from EE words to SOP and EOP signals. Its architecture is similar to the 2→1
encoder and bypass merger: a FSM manages the internal operations, sending as an output both
data and SOP/EOP signals, taking into account the ready state of the following component.
Each time an EE signal is received, an EOP is issued to be propagated with the last word of the
previous event, and a SOP signal is associated with the first word of the following event.
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Figure 4.25: Block diagram of the bypass merger. R0, R1 and State are registers, MUX is a multiplexers
and FSM is a finite state machine that manages hold, valid, latch enable (LE) and read request signals.

4.4.11 Size counter

Data from the EE–to–SOP/EOP converter are stored in a FiFo that can contain up to 1024
258–bit words. These words contain reconstructed clusters (256 bits), the SOP, and the EOP
signals (one bit each). As data are written to the FiFo, they are also counted to compute the
FSIZE of the event. The computed size is stored in a separate FiFo that can contain up to 1024
16–bit words. Fig. 4.26 shows the firmware component responsible for the FSIZE computation.
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Figure 4.26: Block diagram of FSIZE counter firmware component.

4.4.12 Double–output feeder

The double–output feeder reads data from the data and size FiFos within the size counter. When
the following component is ready to accept data, the feeder performs read requests to the data
FiFo and, once per event, to the size FiFo. At the same time, it also issues read requests to the
TFC FiFo (Sect. 4.4.1) that buffers TFC words, right at the beginning of the clustering block.

4.4.13 Double–output

During normal data–taking operations, only reconstructed clusters are sent to the output. In this
case, clusters and the corresponding metadata are stored in a cluster FiFo, which can contain up
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to 512 350–bit words, made of 256–bit cluster words, 64–bit TFC words, 16–bit FSIZE words,
12–bit BXID words, SOP and EOP signals. The cluster FiFo is read by a feeder and its content
is sent to the output. For debugging and monitoring purposes, the firmware is equipped with
a double–output mode that allows both clusters and SPs of the same event to be sent to the
output, when enabled. Fig. 4.27 shows the structure of the double–output component. The
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Figure 4.27: Block diagram of the double output firmware component.

double–output mode is enabled through ECS, by writing to the corresponding enable register.
In this case, SP data and the corresponding metadata are written to the SP and SP Meta FiFos.
The first one can contain up to 1024 294–bit words, whereas the second one 1024 24–bit words.
Once the double–output mode is enabled, the BXID of the first SP packet is stored so that it
can be matched with the BXID of the corresponding cluster packet (BXID match). When the
match is found, the data process starts to concatenate cluster and SP data: first, all the 256–bit
words containing reconstructed clusters are sent out, followed by SP words. The first cluster
word is accompanied by the SOP, BXID, TFC, FTYPE, and FSIZE signals. The last SP word
goes along with the EOP signal. A dedicated FTYPE value (0x61) is assigned to double–output
packets so that they can be distinguished from SP and cluster packets. The unused bit 31 of
each 32–bit SP within the 256–bit word is set to one to distinguish clusters from SPs. The
size of the entire packet is computed by the size process that adds cluster and SP sizes, taking
care of the padding. Since the size has to be provided with the first word in the packet, SP
sizes are stored in the SP meta FiFo that is read independently from the SP FiFo containing
data. A FSM manages the overall operation of the double–output component, guiding the read
requests from the feeders to the FiFos and enabling the write operations to the SP FiFos, when
the double–output mode is on.

61



Chapter 4. VHDL firmware implementation

4.5 Monitoring and error handling

The clustering architecture has several blocks whose behavior affects the functioning of the entire
data processing chain. Therefore, a monitoring procedure is implemented to probe each block
throughout the entire reconstruction process to ensure correct data handling. Monitoring is
performed through ECS read and write requests, as shown in the left and right waveforms of
Fig. 4.28, respectively. The occupancy levels of all FiFos in the design, as well as their maxima

Figure 4.28: Example of (left) an ECS read operation and (right) an ECS write operation.

over a certain time interval, are periodically read to check for, and diagnose, possible slowdowns
of any processing blocks. The fraction of SPs that overflow the matrix chain is also monitored.

Each processing block in Fig. 4.2 is also equipped with an error–checking logic that monitors
two types of errors. The first type corresponds to a data loss, occurring when a block receives
valid data in input and the register in which data should be written is already full. The second
type occurs when mismatching EE signals are received, indicating a loss of synchronization in
the input data. In both cases, a signal is generated and an error word is output, containing a
code to trace back the origin of the error for debugging purposes. A reset signal needs to be sent
to the clustering logic and memories to recover from both error types. The clustering block may
also receive an error word from the previous firmware components. Error words are identified by
a specific FTYPE (0x1D). In case an error word is received, the corresponding BXID is saved in
a FiFo within the error manager, and the data are bypassed. Before being sent to the output,
the BXID of the data is compared to the one stored in the error manager FiFo. If a match
is found, the appropriate error FTYPE is propagated. The error BXID buffering mechanism
described here is implemented locally because the BXID signal is not propagated throughout
the entire cluster reconstruction chain; instead, it is recovered at the end of the chain, reading
the TFC FiFo.
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Chapter 5

Firmware and software integration

This chapter details the integration process of the clustering firmware within the VELO DAQ
chain, as well as all the changes and updates of the LHCb software stack, needed to decode,
process, and simulate FPGA VELO clusters instead of SPs. It covers all the steps of this process,
from the first tests of the first functioning clustering firmware on a prototyping board to the final
measurement of a significant improvement of the HLT1 reconstruction throughput.

5.1 Highlights of the development stage

The first functioning prototype of the clustering firmware consisted of the core components
between the decoder and the encoder stages, as shown in Fig. 4.2, excluding the ICF. The
firmware was designed, extensively tested, and debugged in simulation over the course of one
year. Figure 5.1 shows an example of the QuestaSim® simulator used to test the behavior of
each firmware component and the interplay between components. Once the overall behavior

Figure 5.1: Display of the QuestaSim® firmware simulation tool, showing input (ST INPUT) and output
(ST SOURCE) interfaces of the clustering firmware. Meanings and purposes of signals are detailed in
Sect. 4.2.
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was checked to be correct, the firmware was compiled using the Quartus® software tool. As an
output of the compilation, the following main parameters are reported:

• resources required; the compiler reports the amount of logic and memory resources that
are needed to implement the firmware on the FPGA. The first prototype required 24%
of ALM logic and 6% of M20K memories to perform cluster reconstruction of a VELO
module. See Appendix A for further details on FPGA building blocks. The resource values
need to be kept as low as possible in order to be able to integrate the clustering firmware
within the VELO DAQ firmware (Sect. 5.3);

• timings; unlike simulation tools, the firmware compiler takes into account the actual FPGA
fabric and its clock resources when placing the firmware into the FPGA blocks. As a
consequence, it reports potential timing issues related to one or more clock sources used to
drive the logic. Reports show the maximum clock frequencies at which the firmware can
be run, together with the critical paths that limit its frequency, and some optimization
suggestions. See Appendix B for further details on timing issues.

5.2 First tests on hardware

A key step during the firmware development stage was hardware testing, where the compiled
firmware was loaded into a FPGA and tested using simulated data as input. Hardware tests
are essential for the development, as they allow the firmware to be run on a real chip for longer
time with respect to the simulation, which may highlight bugs and weaknesses of the design.
Hardware tests allow also the firmware throughput to be measured in real time and to stress test
the chosen design, finding its limits, for example, by progressively increasing the clock frequencies
at which it runs. Figure 5.2 shows the prototyping system used for the first tests of the clustering
firmware, together with its main components. The system is a DNS5GX F2 (DN0237) from Dini
group enclosed within a 4U rack–mount chassis. It consists of a FPGA–based main board along
with up to four modular I/O boards. The main board supports two Intel® Stratix® V GX
FPGAs1, together with a Marvell Discovery processor used for system monitoring and control.
An additional Stratix V configuration FPGA provides configuration and I/O control for the main
board peripherals and subsystems. The main advantage of testing the clustering firmware on
this type of board is the high degree of control and monitoring allowed both via software and by
directly probing relevant signals with an external oscilloscope. Another key advantage is given
by the similarities between the FPGA mounted on the DNS5GX F2 prototyping board and the
one used for DAQ purposes on the PCIe40 card, as shown in Table 5.1. Hardware tests were
performed loading simulated SP data into input RAMs2 which are read in loop to continuously
feed data into the cluster reconstruction block. The clusters reconstructed in hardware were
read and compared to the output of the high–level C++ simulation of the algorithm, run on the
same set of input SPs. The quality of the reconstructed clusters was verified. Further details
on the software emulation of the clustering algorithm are presented in Sect. 5.4. In addition to
reconstruction quality checks, hardware tests allow the average reconstruction throughput to be
measured. To be able to run the firmware online, it is mandatory that this throughput is higher
than 30 MHz, within the VELO DAQ cards. To measure the throughput the system was set
up in order to send a pulse signal on a pin on the board every 256 reconstructed events. These

1The FPGA model number is 5SGXEABN2F45C3.
2Hence the name of postRAM for the first clustering buffering FiFos in Fig. 4.2.
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Figure 5.2: (left) Top view of the DINI prototyping board used for hardware testing and (right) block
diagram of the main components of the board.

5SGXEABN2F45C3 10AX115S4F45E2SG

Family Stratix Arria
Node 28 nm 20 nm
ALM 359200 427200
M20K 2640 2713
DSP 352 1518
CLK 650 MHz 644 MHz

Table 5.1: Comparison of Intel® Stratix® V and Arria® 10 FPGAs used in the prototyping board and
in the PCIe40 board, respectively.

signals were measured and stored using a digital oscilloscope and the corresponding average
throughput was measured. Figure 5.3 shows an oscilloscope screenshot used for throughput
measurements. It turns out that the firmware can process events with up to an average of
32 SPs per VELO half–module, using a 350 MHz clock rate, which corresponds to a speed of
0.96 GSpixel/s or 7.7 GPixel/s, given that each SP is made of eight pixels. This condition
is met for the entire VELO detector, where the average occupancy is 26 SPs per event, near
the nominal interaction point. An average event processing rate of 38.9 MHz is measured on
minimum–bias LHC collision events, in the most crowded VELO module, at the Run 3 nominal
instantaneous luminosity of 2 × 1033 cm−2 s−1 . The measurement is also performed on pp
collisions with higher than average track multiplicity, containing reconstructible B0

s → ϕϕ decays,
as a sample of typical data that the LHCb DAQ would select and save on permanent storage.
The measured throughput of 30.9 MHz is still higher than the average LHC bunch crossing rate
and ensures that even a random fluctuation due to the occurrence of several high–occupancy
events in a row poses no risk of clogging the pipeline. Input RAMs were set up to inject an
event every 25 ns, in order to test the back–pressure mechanism and the resistance to trains of
more consecutive events. Moreover the high–occupancy test shows that the firmware, and in
particular its buffering stages (FiFos), can cope with a high number of input SPs per event, thus
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being resistant to potential large tails in the distribution of the number of clusters per event.
Therefore, the clustering firmware is expected to run safely throughout the entire Run 3 physics
data taking.

Figure 5.3: Oscilloscope screenshot used for throughput measurements. The system is set up such that a
signal is generated every 256 reconstructed events.

5.3 Firmware integration

The first working firmware prototype allowed us to measure its performance in terms of cluster
reconstruction quality and throughput, ensuring that it can run online. Given also the relatively
low amount of FPGA resources required, we integrated the clustering within the VELO firmware,
taking all the necessary steps to make our implementation LHCb–compliant.

5.3.1 VELO firmware

This section is intended to provide more details on the VELO TELL40 firmware [67] that are
key to understanding the steps taken to integrate the clustering within the VELO DAQ chain.
The key characteristics of the VELO detector are described in Sect. 2.3. Figure 5.4 shows the
main components of the VELO TELL40 firmware, including the clustering reconstruction. The
VELO TELL40 firmware is structured into two independent data streams. Each stream receives
data from 10 optical links connected to the FE electronics of a VELO half–module and sends
out reconstructed clusters via a PCIe Gen 3 ×8 bus. A low–level interface surrounds the core of
the firmware, providing functions such as transceiver interfaces for the optical links and PCIe
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Figure 5.4: Block diagram of the VELO TELL40 firmware. Data from the detector front–end are received
via 20 optical links and is sent to two independent data streams. Data are then decoded, processed,
formatted, and sent to the host server via the PCIe bus. Data processing include SP extraction, timestamp
sorting and timing alignment.

bus, slow control capabilities for reading and writing registers in the firmware, and the interface
to the timing and fast control system. These components, together with the Output Formatting
block3, are the same for all the LHCb subdetectors, whereas the Deserialization & Decoding and
the Data Processing block are VELO specific. As a first step, data are decoded and deserialized.
A 128–bit GWT frame is received from each of the 20 input links every 25 ns. Each frame can
carry up to four SPs. Together with SP data, the frame contains parity information to identify
possible transmission errors and four header bits. Since the GWT frame arrives as a serial
stream, a bit–slip operation is performed on data to identify the header bits. When the header
is identified, the link is locked. Deserialized data are then sent to the data processing block,
where several operations occur. First, the pre–router component extracts the four SPs from each
GWT frame, discarding the empty ones, and performing a retiming from the 40 MHz input rate
to the 160 MHz one, so that SPs can be treated individually. The pre–router also adds three
bits to each SP word in order to identify its origin VELO chip. The following component, the
router, performs the timing sorting of the SPs. This operation is required since the VeloPix chip
has a columnar readout logic, where data fragments traverse the length of the column from their
origin. This implies that data fragments produced at the top and bottom of the pixel matrix
have significantly different readout latencies and data from different events might be read out in
a mixed order. The router takes the 9–bit timestamp assigned to each SP within the VeloPix
and performs a time sorting. The sorting operation is first performed on the first four most

3The Output Formatting block formats the data into LHCb event fragments, adding metadata information as the
event number and the source identifier to trace back the origin of the data. These metadata are essential for
event–building purposes where information from multiple subdetectors and different events is put together.
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significant bits by means of switching blocks, interleaved with buffering FiFos. The remaining
five least significant bits are sorted using a series of multiplexers. Sorted SPs are stored in 512
RAMs, one for each of the possible values of the 9–bit timestamp. Time–sorted SPs are sent to
the post–router that performs the alignment with the LHCb TFC timing system, moving from
the partial VELO 9–bit identifier to the 12–bit LHCb one4. The clustering firmware is inserted
right after the post–router block so that, instead of sending out SPs, clusters are reconstructed
from them and passed to the Output Formatting stage.

5.3.2 Clustering within VELO

In order to fully integrate clustering within the VELO firmware, several changes were required
that led to the complete firmware sketched in Fig. 4.2. The main changes applied are the
following.

• SOP–EOP to EndEvent logic conversion. As described in Sect. 4.4.3, the clustering
processing uses an EndEvent logic, placing special EE words between SPs or clusters
belonging to different events. This allows the independent treatment of data lines while
maintaining event synchronization and being able to check for potential data corruption.
However, the standard LHCb implementation, and hence the VELO one, to distinguish
data belonging to different events is to propagate Start Of Packet and End Of Packet
signals. In order to comply with the SOP–EOP logic, two conversion layers were added
to the decoder and to the encoder stages to move from SOP–EOP to EE and vice versa,
respectively.

• Bypass non–SP data. Input data to the clustering block might not contain valid SPs, in
which case data need to be bypassed and retrieved at the end of the clustering process
with the right timing. For this purpose, a bypass mechanism has been put in place, where
the decoder decides whether or not an input data packet contains meaningful SPs based
on TFC information. In the latter case, input data are written to a bypass FiFo, and a
dummy placeholder word is propagated throughout the clustering chain. Once the dummy
word enters the encoder, it is recognized and non–SP data are retrieved from the bypass
FiFo and added to the output stream.

• Compute FSIZE. To be able to efficiently perform event building and access built data, the
size of the data in bytes needs to be computed within the FPGA and sent out as metadata.
The size counter component was added after the encoder stage to count the number of
reconstructed clusters and provide the correct value of FSIZE for each packet.

• Remap ECS addresses. Since the first development stage, the clustering block has an
ECS interface to be able to read and write register inside the firmware itself. During the
integration process, the ECS addresses were remapped in order to avoid conflicts with
other addresses already defined in the rest of the VELO firmware. The remap was done
assigning to the most significant eight bits of the ECS address the role of component
identifier in the firmware, with different sets of this eight–bit identifier for the different
components.

• Add metadata signals. In addition to the core input data containing SPs, their valid
signal, SOP, and EOP, the LHCb firmware requires additional metadata such as BXID and

412 bits are needed to uniquely identify each of the 3654 possible positions of the bunch inside the beam.
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FTYPE, together with the aforementioned FSIZE and TFC. These ports were added to
both input and output interfaces and appropriate buffering and propagation mechanisms
were introduced in the clustering chain.

• Introduce the double output mode. As described in Sect. 4.4.13, a double output component
is placed at the end of the clustering firmware so that, once enabled, it outputs both
clusters and input SPs of the same event for debugging purposes. This extension required
an additional buffering stage to hold SPs while waiting for the corresponding clusters
to be reconstructed. It also required an additional control stage, activated via ECS, to
enable/disable double–output operations.

The integration of the clustering firmware within the VELO framework, described in this section,
was done together with Luca Giambastiani, whom I trained. More details about this topic can
be found in Luca’s Master thesis [78]. Besides the aforementioned changes, a reorganization
and optimization of the isolation cluster flagging process was needed to be able to fit it into the
FPGA, given the limited amount of resources, and to ensure that it can sustain high enough
input event rates. Changes to the ICF are described in the following section.

5.3.3 Isolation cluster flagging

As described both in Sects. 3 and 4, being able to distinguish isolated SPs from not isolated ones is
a key component of the clustering algorithm, allowing for a fast and efficient cluster reconstruction
of the non–negligible fraction of isolated SPs. Isolation cluster flagging is performed by comparing
the 2D coordinates of all SPs in each event, belonging to the same VELO sensor. If SPs are
found to be neighbors, an appropriate flag is assigned to the SP word. These operations require
the SPs to be buffered while the coordinate comparison is performed. Since the number of
registers storing the SPs cannot be dynamically adjusted, its value was determined in simulation
so that ∼99% of events can be completely contained in the ICF registers. This value turned out
to be 144 SPs. During the clustering integration stage, the ICF was restructured and optimized
both in terms of resource usage and throughput. Figure 5.5 shows the effects of the different
optimizations on the consumption of ALM logic resources.

The first ICF implementation (black curve) required around 24% of the FPGA logic to flag up
to 64 SPs per sensor pair. This performance per ALM was pour due to the flagging being done in
a single clock cycle. Furthermore, timings were not met, and it was not possible to run the ICF
at a high enough clock frequency to sustain the 30 MHz input event rate. Several optimizations
were applied, initially trying to maintain the overall design choices. Implementing mutual SP
flagging, where if SP A is a neighbor of B, also the opposite relation is true (black–to–blue
transition in Fig. 5.5) and adding coordinate pre–computation while disabling decimal to Gray
conversion5 (blue–to–light–blue transition in Fig. 5.5) led to an improvement of about 57% of the
resource usage. However, resource needs were still too high and a high enough throughput was
yet to be reached. These considerations led to a complete redesign of the ICF, as described in
Sect. 4.4.3, with the main changes being the concurrent read–flag–write operations and the reuse
of the same logic to flag SPs belonging to the same event. The green curve in Fig. 5.5 shows the
resource needs for the final ICF version, which exhibits a linear behavior as a function of the
maximum number of SPs that can be flagged per event, contrary to the quadratic behavior of
the first implementations.

5During the first ICF development stages, the decimal to Gray code conversion of SP word was investigated to
ease the 2D coordinate comparisons. However, it turned out to have no significant benefit.
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Figure 5.5: Percentage of FPGA ALM logic required to implement one instance of the ICF as a function
of the maximum number of SPs that the ICF can handle per event. Two instances, one per data stream,
are required to perform isolation flagging of a VELO module. Black, blue, light blue and green curves
represent different ICF firmware iterations and optimizations, that are described in the text. The red
curve, referring to the right axis, shows, as a fraction of the maximum number of SPs that the ICF can
store, the percentage of events that can be completely flagged.

5.3.4 Simchecker

Being able to check the cluster reconstruction quality in QuestaSim® as new features and fixes
are added to the firmware is paramount to ensure a stable development and maintenance cycle.
For this reason we developed a simulation checking tool (simchecker) that allows a bit–level
comparison to be performed between clusters reconstructed in firmware and the output of a
software algorithm emulating the firmware expected behavior, integrated within the LHCb
software stack6. The steps performed by the simchecker to verify the accuracy of the firmware
output are the following:

• SPs and clusters produced via the full LHCb simulation are dumped to a file;

• the simulation output file is formatted appropriately to create both input files to be loaded
into the firmware input RAMs and check files containing the expected clusters;

• the firmware simulation is run over the SP input files, and the reconstructed firmware
clusters are saved to a file. All these operations are performed using QuestaSim®;

• comparison checks are run over the software–produced clusters and the firmware ones.
Errors are raised if not all firmware–reconstructed clusters are present in the software list,
and vice versa.

Input and check files are produced once for all VELO modules, whereas checks are repeated each
time a change is added to the firmware. QuestaSim® configuration and the consequent checks
have been wrapped into a set of scripts that can be executed to run the test automatically over
the data from a user–defined set of VELO modules.
6The software side of the clustering integration is discussed in Sect. 5.4.
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5.3.5 FPGA resources

Compiling through Quartus® allowed us to measure the amount of FPGA resources needed
to implement the VELO firmware on the Arria 10 chip. Figure 5.6 shows a detailed report on
resource usage. Overall, the VELO firmware requires 73% of the logic and 71% of the M20K

Figure 5.6: Quartus® report table summarizing the amount of FPGA resources used for the VELO
firmware implementation.
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memories available on the FPGA chip. More detailed reports allow also the resource consumption
of the single components to be checked. Clustering requires 31% of logic and 11% of M20K
memories. With respect to the resource needs of the first prototype, described in Sect. 5.1,
the additional logic resources required come from the ICF that has been integrated within the
clustering. Moreover, the additional memory resources required come mainly from the buffers
used for metadata, bypass, and double output purposes.

Quartus® reports allow also the placement of the different firmware components within the
FPGA chip to be visualized using a tool called Chip Planner. Figure 5.7 shows the placement of
the VELO firmware on the FPGA highlighting the different components with different colors.
Components like the Low Level Interface and the PCIe block are placed by the compiler close to
the edges where the transceivers are located. On the contrary, components such as the clustering
that do not need to communicate directly with the outside are placed away from transceivers.

Figure 5.7: Quartus® Chip Planner view identifying different components of the VELO firmware placed
within the FPGA chip. Details about different VELO firmware components can be found in Sect. 5.3.1

Figure 5.8 shows the utilization of routing resources within the FPGA, in a color–coded scale.
Regions close to LLI transceivers are particularly crowded due to the high signal fan–out.

Figure 5.8: Quartus® Chip Planner view of routing resource utilization in different parts of the FPGA.
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5.3.6 Timing optimization

During the firmware integration process, several changes were applied to the firmware to mitigate
the impact of timing violations (see Appendix B). The changes mainly concerned the move from
combinatorial unbuffered logic to buffered pipelined logic to ease the compiler job of placing the
firmware components while being compliant with clock constraints. These changes had an effect
on the overall clustering throughput; however, they led to a more stable system. Figure 5.9
shows the average event throughput that the clustering can sustain as a function of the VELO
module. Even with the timing optimization changes, the throughput is always higher than the
30 MHz limit. The throughput was measured in QuestaSim® by feeding the clustering with
Run 3 simulated data. As it can be observed, the lowest throughput value is around module 15,
located near the nominal interaction point. In this region, modules have the highest occupancy,
and also the fraction of non–isolated SPs is higher with respect to the external modules. The
bottleneck in this configuration is represented by the matrices used for non–isolated SP cluster
reconstruction.
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Figure 5.9: Average event throughput that the clustering can sustain as a function of the VELO module
at the nominal LHCb Run 3 luminosity of 2× 1033 cm−2s−1. The 30 MHz lower limit, below which the
throughput must not fall, is highlighted with a red dashed line.

5.4 Software integration

This section describes the work done on the software side, developing algorithms to emulate the
FPGA clustering and decode its output within the LHCb software stack [72, 73]. This work
was needed to study the performance of the FPGA clustering and compare them with a more
standard CPU algorithm, as detailed in Sect. 6. The main steps to adapt the VELO decoding
sequence taking into account the cluster format are also detailed. First, an overview of the
LHCb software stack is given.

5.4.1 LHCb software stack

Figure 5.10 shows the main steps within the LHCb data flow. In the case of real data taking,
built events (see Sect. 2.9) are sent to the two–stage trigger (see Sect. 2.10). Selected events then
go through an offline data processing called sprucing, which applies further selections to data
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Figure 5.10: Sketch of the LHCb data flow, including the simulation part [59].

while being able to tune the amount of event information to be persisted in the final output. In
case of simulated data, pp interactions are modeled, and the resulting particles are propagated
inside the detector volumes with which they interact. The detector and readout electronics
response is also modeled and implemented in the simulation. Simulated data are then passed
to the same trigger–sprucing–offline analysis chain as the real data. The data flow and the
corresponding operations are managed by several software packages, all built on the Gaudi core
software framework [80]. The Gauss package handles the particle production and propagation
within the detector, Boole manages detector digitization and signal handling, Allen performs
the HLT1 trigger operations, whereas Moore runs HLT2 together with Sprucing operations.
DaVinci is used for offline analysis.

5.4.2 Simulation side

In order to produce VELO clusters, accurately emulating the FPGA firmware behavior, and
perform quality checks and tests (see Sect. 6), we added the following algorithms to the LHCb
software stack:

• VPRetinaMatrix emulates the behavior of the firmware matrix (see Sect. 4.4.8), recon-
structing clusters from non–isolated SPs. It defines the matrix geometry, together with
functions to initialize an empty matrix, to check if a SP belongs to an already initialized
matrix, and to eventually add it to the matrix. VPRetinaMatrix also implements the
cluster search mechanism, using the patterns described in Sect. 3.2.3, both for light and
full VELO clusters7.

• VPRetinaClusterCreator flags SPs according to their isolation and creates VELO light
clusters from SPs using the isolation flag information. If a SP is isolated, the corresponding
cluster(s) is(are) reconstructed using a LUT initialized with the same content as the one
implemented in firmware (see Sect. 4.4.7). If the SP is not isolated, it is sent to a chain
of matrices, implemented as a vector of VPRetinaMatrix objects. The chain length

property of the algorithm allows the number of matrices per sensor to be set. By default,
this is set to the actual number used in the firmware (20 matrices).

7A light VELO cluster is an object containing the position of the cluster center of mass in the LHCb coordinate
system and identified with a unique LHCbID. A full VELO cluster is an object with all the characteristics of a
light one, but it also contains the list of all the pixels from which the cluster is made up. Light clusters are used
to perform fast–track reconstruction, whereas full clusters are used for finer reconstruction, including the error
on the position of the particle obtained from the cluster topology and dimensions. Full clusters are also used for
MC matching during simulation studies.
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• VPRetinaFullClustering performs the same operations as of VPRetinaClusterCreator
but outputting full clusters instead of light ones. It has the same chain length property
as VPRetinaClusterCreator.

• VPClusterEfficiency is used to perform cluster reconstruction quality studies, including
efficiency and residual checks (see Sect. 6).

VPRetinaClusterCreator and VPRetinaFullClustering can be run as part of the reconstruc-
tion sequence, in order to reconstruct clusters from simulation files that contain only SPs.
Alternatively the VPRetinaClusterCreator algoritm can be run directly in Boole, so that
VELO clusters are added to the produced simulation files. The following options are available in
Boole configuration file:

• RetinaCluster option allows files to be produced with VELO clusters instead of SPs;

• PreserveSP option preserves SPs, preventing the previous option from removing them.

An additional script was made available in order to add VELO clusters to already available simu-
lation files, produced before the introduction of the FPGA VELO clustering algorithm. Changes
were also applied to the VPSuperPixelBankEncoder algorithm that emulates the VELO TELL40
behavior if a SP–only firmware is loaded. The output format of the VPSuperPixelBankEncoder
algorithm was updated to reflect the actual hardware behavior.

5.4.3 Firmware–software differences

Great care has been taken to ensure a perfect bit–by–bit correspondence between the output
produced by the firmware and by its software simulation when fed exactly with the same sequence
of SPs. This is key for both the simchecker checks (see Sect. 5.3.4) and physics performance
checks (see Sect. 6). However, the algorithm has some sensitivity to the exact order in which
the SPs are fed into the clustering process, and this order is unpredictable during the actual
data taking from a real detector. This amounts to an intrinsic limitation in the accuracy of
the simulation of the firmware output. This discrepancy is relevant only for a small number of
large clusters consisting of several SPs, since SPs that are part of the cluster may be split over
matrices in different ways depending on their arrival order, as shown in Fig. 5.11. In events

Figure 5.11: Example of different ways in which a large cluster can be split depending on the SP input
order to the matrix. Active pixels are marked in green, reconstructed clusters are represented by red,
blue and yellow boxes. Each color corresponds to different cluster.

with many SPs with neighbors, the number of matrices implemented in the firmware might not
be enough to accommodate all the SPs. SPs that overflow the matrices are reconstructed as
isolated, both in the firmware and software implementations of the algorithm. Again, the SP
input order determines which SPs overflow the matrices.
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These small differences are not relevant for physics performance checks, where a large number
of events are analyzed. However, in the simchecker case all possible outcomes of the clustering
algorithm as a function of the input SP order are considered to avoid raising false errors or not
identifying true ones.

5.4.4 Decoding side

Similarly to what has been done on the simulation side (see Sect. 5.4.2), new decoding algorithms
have also been added or existing ones have been changed to accept VELO clusters instead of
SPs. The main algorithms are the following:

• CalculateNumberOfRetinaClustersPerSensor is the HLT1 algorithm that counts the
number of clusters contained in each data bank. Its purpose is to determine the amount of
GPU memory required for VELO decoding, before performing the decoding itself;

• DecodeRetinaClusters performs the HLT1 VELO cluster decoding, moving from a set of
32–bit cluster words to a container of clusters, the position of which is specified within
the LHCb global coordinate system. The decoding algorithm has been written to perform
efficient accesses to GPU memory, while discarding empty clusters added during encoding
firmware operations (see Sect. 4.4.10);

• DecodeRetinaClustersContracts runs some checks on the decoded clusters output by
the DecodeRetinaClusters algorithm. The implemented contracts involve checks on the
coordinates to be within the VELO acceptance. These contracts are usually run during
the decoding development stage and are not run during data taking to avoid adding extra
work to the GPUs;

• VPRetinaClusterDecoder is the HLT2 algorithm that decodes the VELO data bank and
outputs a set of light clusters;

• VPRetinaFullClusterDecoder is the HLT2 algorithm that decodes the VELO data bank
and outputs a set of full clusters;

• VeloClusterTrackingSIMD is the baseline HLT2 VELO tracking algorithm. A template
has been added to decode VELO clusters and perform tracking from them instead of
decoding SPs and reconstructing clusters, before moving to tracking;

• VPRetinaTopologyID defines the function to compute the topology identifier during the
cluster reconstruction process when clustering is performed in simulation and the function
to decode the topology identifier from the cluster word when clustering is run on the
FPGA. For more details on the topology ID, see Sect. 4.2.1;

• VPRetinaClusterDoubleOutputChecker decodes VELO data collected in double–output
mode (see Sect. 4.4.13). It reconstructs clusters from SPs using the same working prin-
ciple as the VPRetinaClusterCreator algorithm and compares them with the clusters
reconstructed in firmware.
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5.5 Throughput and bandwidth gains

One of the key advantages of performing two–dimensional VELO cluster reconstruction at early
data acquisition stages, within detector readout cards, is the significant load reduction on GPUs
and CPUs devoted to HLT processing. As a consequence, GPUs and CPUs, characterized by
more complex architectures than FPGAs, can be exploited in an optimal way, focusing their
efforts on more articulated tasks such as track reconstruction and selections. Having developed
the full set of VELO cluster decoding algorithms, it was possible to measure the performance
gains obtained by offloading cluster reconstruction to readout FPGAs instead of performing
this operation within HLT1. The throughput gain was measured both for the GPU and CPU
implementations of HLT1. In the GPU case, a 11% throughput gain was measured both on
Nvidia RTX 2080 Ti gaming cards and on Nvidia A5000 cards, which are the actual GPU cards
mounted on Event Builder servers to perform HLT1 reconstruction and trigger decisions. The
same throughput gain was measured to be about 8% in the CPU implementation of HLT1. The
difference in throughput gain between GPU and CPU implementations is due to the different
architecture and degree of parallelization, together with the higher amount of optimizations
performed in the GPU case. Moreover, both CPU and GPU implementations expect to receive
SPs with the isolation bit already available, whereas the FPGA clustering determines it by itself
in the firmware. Lastly, the CPU implementation expects SPs to be spatially sorted per row and
per sensor, which is not the case for the TELL40 output, where in each VELO data bank, SPs of
two sensors are mixed. Given these assumptions made by the GPU and CPU implementations,
the real throughput gains are likely higher than the ones reported here.

As an additional advantage, outputting clusters instead of SPs allows for a reduction in VELO
data size of approximately 14%. Given that both SPs and clusters are encoded into 32–bit words,
the bandwidth reduction can be measured by counting the number of clusters produced from a
given number of SPs. A first estimate can be made considering that about 50% of SPs are isolated
and 50% have neighbors. With the exception of isolated SPs that contain two clusters, which is
a less common case, from an isolated SP, one cluster is reconstructed. Therefore, reconstructing
clusters from isolated SPs does not lead to a bandwidth reduction. Instead, out of the 50% of
non–isolated SPs, the vast majority creates two–SP clusters, where the cluster is spread over
two SPs. In this case, out of two SPs, a single cluster is reconstructed, leading to a bandwidth
reduction. With the previous assumptions, the maximum theoretical bandwidth reduction is
about 25%. However, the trade–offs introduced in the encoder design, for which empty clusters
are interleaved between other clusters, together with the precise measurement of the fraction
of isolated–vs–non–isolated SPs and the correct estimate of the number of non–isolated SPs
per cluster, lead to a measured bandwidth reduction of about 14%. This additional bandwidth
reduction allows resources to be saved both in the DAQ chain and in the data storage, sending a
preprocessed information out of readout cards to the Event Builder and to HLT1 processes.

5.6 More on clustering algorithms

As the LHCb HLT design evolved from a CPU–only implementation to a GPU–CPU mixed
architecture, two main implementations of the VELO clustering were developed. On one hand the
sparseCCL algorithm [74] was developed for the CPU architecture and optimized for analyzing
many small and sparse images at high throughput, as in the case of HEP vertex detectors.
When tested on an Intel® Xeon Gold 6126 @2.6GHz, this algorithm is capable of handling
173 MSpixels/s. On the other hand, the mask clustering algorithm [75] was introduced as the
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HLT1 architecture was moved from CPUs to GPUs, exploiting the high degree of parallelization
of GPUs, while keeping memory consumption low. When tested on a Nvidia Quadro RTX 6000,
the mask clustering algorithm proved capable of processing 50.6 MSpixels/s. Instead, as detailed
in Sect. 5.2, the FPGA–based clustering algorithm can process up to 32 SPs at a 30 MHz input
event rate, leading to a 960 MSpixel/s processing speed. It is also worth noting that the FPGA
implementation requires only a fraction of the electrical power required by GPUs to perform the
same task, as discussed in Sect. 7.8.

While comparisons against sparceCCL and mask clustering algorithms take into account
implementations tackling the same problem but running on different architectures, it is also worth
comparing the FPGA VELO clustering with similar clustering algorithms running on FPGA
architectures. The most advanced FPGA–based clustering algorithm [81] that can be found in
literature tackling a similar problem to the FPGA VELO clustering has been developed within
the Fast TracKer project [35], with an eye to the trigger upgrade of the ATLAS experiment.
This system can run at about 100 KHz input event rate, with the deployment of about 4 parallel
firmware copies, processing about 12.5 MPixel/s each. It runs on a Xilinx Spartan–6 LX150 T
FPGA, occupying 5739 FlipFlops, 10583 LUTs, 15 8kb–BRAMs, 21 9kb–BRAMs to reconstruct
144×328 pixels. For comparison, VELO FPGA clustering requires 132500 ALMs and 300 M20K
memories and it is capable of processing an input event rate of 38.9 MHz, while reconstructing
clusters from 512×768 pixels. In both cases, the detector occupancy is expected to be on the
order of 0.1%. Therefore, the algorithm presented in this thesis is a significant advancement
over the previous state–of–the–art in HEP.

In a broader perspective, the VELO FPGA clustering algorithm can be seen as a special case
of Connected Component Labeling with Center of Gravity calculation (COG), a computation
that often occurs in image processing systems with the purpose of identifying connected sets of
pixels belonging to the same visual feature. The main difference being the modest size of the
features of our interest that we could contain within a 3×3 matrix, and their sparseness, which
makes our problem somewhat simpler. However, this greater simplicity comes with a ‘frame rate’
requirement (30 MHz) that is orders of magnitude larger than typical image processing rates
(<1 kHz). In recent years, this type of image processing tasks are also increasingly being moved
from CPUs to dedicated FPGA firmware to achieve greater speed and efficiency, and it may be
interesting to compare those solutions to the present work. As an example, we take the FPGA
implementation described in Ref. [82]. There, frames of 640×480 pixels are processed at a 730 Hz
rate, by a Zynq AP–SOC 7045 FPGA, running a 225 MHz clock, without COG. This system
compares well with our case, where each of the 104 instances of our firmware processes a matrix
of 512×768 pixels, and clock frequency and resource usage are also quite similar. However, our
frame rate is larger by a factor of nearly 105. This difference is likely due to the sequential
structure of image processing firmwares that proceed by a raster scan rather than by a massively
parallel calculation; but is definitely also a consequence of the greater simplicity of our problem
in terms of cluster size and occupancy. In fact, cases of FPGA–based CCL implementations that
reach a throughput comparable to that of our architecture are based on splitting the image into
smaller parts that are analyzed in parallel and later coalesced [83]; an approach that bears some
resemblance to our use of sparse matrices. However, all the above examples assume that image
data arrive as an ordered sequence of pixels and do not provide detailed topology analysis of the
found clusters, so they could not be straightforwardly applied to our problem. Conversely, the
smallness of the components addressed by our system may not be of interest in general image
processing application; nevertheless, it cannot be excluded that some of the ideas described in
this article could find some use in image processing tasks, at least in some specific instances.
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Chapter 6

Physics performances

This chapter details the studies performed to ensure that the quality of the VELO FPGA cluster
reconstruction is sufficiently performing to meet the very demanding physics requirements of
the LHCb track reconstruction. Comparisons with the CPU implementation of the clustering
algorithm are performed both at the low level, measuring the cluster efficiency, and at high level,
studying tracking resolutions, as an output of the full reconstruction sequence.

6.1 Motivation

As discussed in Chap. 3, the FPGA implementation of the clustering algorithm performs some
approximations to be able to reconstruct clusters in a highly parallel way, in excess of 30 MHz.
A key step before deploying the firmware to the DAQ system is to ensure that the algorithm, as
it has been designed, does not degrade the track reconstruction efficiency nor the quality of the
reconstruction. This is particularly important because the FPGA cluster–finding architecture
was designed with the intent of replacing the raw pixel data with reconstructed hit coordinates
at the detector readout level. As a consequence, the raw pixel data are discarded and cannot
be recovered at any later stages. For this purpose, extensive studies are performed, comparing
the FPGA implementation of the VELO clustering to the CPU one, in order to spot possible
issues and to tune the algorithm parameters as needed. For the sake of generality, comparisons
are made with a CPU–based clustering algorithm that is free from implementation–specific
constraints. The actual HLT1 implementation at LHCb is GPU–based, but its performance is
indistinguishable from the CPU version we take as reference [42,84]. Details about the CPU–
and GPU–based VELO clustering algorithms are discussed in Sect. 2.11. Performance studies
are first done by comparing cluster reconstruction at low level, both in terms of efficiency and
residuals. The track reconstruction efficiency is also studied together with the momentum,
impact parameter, and primary vertex resolutions.

6.2 Clustering performance

The key differences between the FPGA and CPU algorithms that can potentially affect reconstruc-
tion performance are the cluster finding mechanism, based on pattern matching, the maximum
cluster size in the FPGA algorithm (limited to a 3×3 pixel grid), and the constraints due to
the FPGA sparse–matrix filling scheme. Those differences can potentially lead to inefficiencies,
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cluster splitting, or incomplete reconstruction of some clusters. An example of partial cluster
reconstruction is illustrated in Fig. 6.1a, where the red pixel is left out of the reconstructed
cluster. The shift of the reconstructed hit position may lead to a degradation of the precision on
the reconstruction of the particle trajectory, or even to a loss of efficiency if the associated track
is not reconstructed at all. Figure 6.1b shows an example of cluster splitting, where the algorithm
finds two clusters, with a pixel in common, from six contiguous active pixels. Therefore, it is
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Figure 6.1: Example of corner cases of the FPGA clustering algorithm: (a) partial cluster reconstruction
and (b) cluster splitting.

very important to compare FPGA and CPU clustering algorithms at a low level, considering
their capabilities of reconstructing the true position of a Monte Carlo simulated charged particle
hitting a layer of the VELO detector (MC hit). If the simulated particle releases enough energy
to light up one or more pixels, these pixels are associated with the hit itself. Since clustering
algorithms accept the digital response of the detector as an input, only MC hits that have at
least one pixel associated with them are considered. This is done to factor out possible detector
inefficiencies and resolution degradation in hit position measurement.

In order to study the physics performance, the software simulation of the FPGA–based
clustering algorithm described in Sect. 5.4.2 is used. The CPU–FPGA comparisons presented
in this section are performed on a minimum bias1 sample of about 50k pp bunch crossings2, at
instantaneous luminosity of 2× 1033 cm−2 s−1, corresponding to a total of 10.4× 107 SPs and
7.1× 107 clusters, generated at the foreseen LHCb–Upgrade running conditions with a center
of mass energy of 14TeV. Figure 6.2 shows the number of SPs per event as a function of the
VELO module number, considering both entire modules and half–modules3. The corresponding
distributions for clusters are shown in Sect. 7.12.

1Minimum bias (MB) events are inelastic events selected with a loose (minimum bias) trigger configuration, with
as little bias as possible.

2This corresponds to an average number of pp interactions per bunch crossing ν = 7.6.
3As discussed in Sect. 5.3.1 a VELO module is read by a single TELL40, containing two clustering instances, each
processing SPs from one half–module.
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Figure 6.2: Distributions of the number of VELO SPs as a function of the module (left) grouping SP per
module and (right) grouping SPs per half-modules.

6.2.1 Cluster efficiency

The efficiency (ϵ) in reconstructing VELO clusters is defined as the ratio between the number of
MC hits matched to a cluster (Nlinked MC hits) and the total number of MC hits (NMC hits),

ϵ ≡ Nlinked MC hits

NMC hits
, (6.1)

where an MC hit is matched to a cluster if they share at least one pixel. Table 6.1 shows a
summary of the samples used and the overall efficiencies. The efficiency in reconstructing VELO
clusters of the FPGA–based algorithm is approximately 99.8% and almost indistinguishable
from that of the CPU algorithm. Overall, the FPGA clustering algorithm produces 2.97%

MagDown MagUp

Events 38477 49157
CPU clusters 54231010 69191020
FPGA clusters 55835697 71251193
CPU clustering efficiency 100.00% 100.00%
FPGA clustering efficiency 99.82% 99.82%
CPU clustering efficiency – VELO reconstructible 100.00% 100.00%
FPGA clustering efficiency – VELO reconstructible 99.92% 99.92%

Table 6.1: Summary of the MC samples used and of the overall clustering efficiencies.

more clusters than the CPU one, whereas the clustering efficiency difference between the CPU
and FPGA algorithms is 0.18% and 0.08% when considering all clusters and clusters from
reconstructible VELO tracks only, respectively4. An MC track is defined as a reconstructible
VELO track if it has at least 3 VELO sensors with at least 1 MC hit each, as defined in Ref. [85].

Figure 6.3 shows the clustering efficiency, for both the FPGA and CPU clustering algorithms,
as a function of the radius and module number of the hit and of η, ϕ, p, and pT of the corresponding

4Numbers is Table 6.1 are obtained with both polarities of the magnet, magnet down (MD) and magnet up (MU).
Plots in the following are obtained using the MU sample as the results are the same for the two polarities.
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track. In each figure, red and blue curves represent the FPGA clustering efficiencies considering all
clusters (including those from non–reconstructible VELO tracks) and selecting only clusters from
VELO reconstructible tracks, respectively. The black curve represents the corresponding CPU
efficiency, considering all types of cluster. The 68% confidence intervals for the efficiencies are
calculated using the Wilsonian approach [86]. In order to identify possible efficiency dependencies
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Figure 6.3: Comparison of the clustering efficiency of all clusters and clusters from VELO reconstructible
tracks when using the FPGA and CPU clustering algorithms, as a function of various kinematic variables.

on the same kinematic variables, the clustering inefficiency is plotted as a function of the same
variables in Fig. 6.4. It turns out that the FPGA cluster finder is slightly less efficient than
the CPU algorithm, when all types of clusters are considered inclusively (the inefficiency is
approximately 0.18% on average). Due to the intrinsic features of the FPGA algorithm, this
inefficiency is due to large clusters linked to more than one MC hit. However, when selecting
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Figure 6.4: Comparison of the clustering inefficiency as a function of momentum, transverse momentum,
pseudorapidity, ϕ, radius and VELO module, (red) for FPGA considering all clusters, (blue) for FPGA
selecting only clusters from VELO reconstructible tracks and (black) for CPU considering all clusters.
The red and blue histograms show the momentum, transverse momentum, pseudorapidity, ϕ, radius and
VELO module distribution of MC hits from all types of tracks and selecting only VELO reconstructible
tracks, respectively.
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only MC hits from VELO reconstructible tracks, the overall inefficiency decreases to 0.08%.
Although not exactly uniform, this inefficiency does not show any “hot spots” in particular
places, varying around 0.2% over most of the space; the largest effects are observed at low
momenta, where the maximum effect reaches 0.6%. An exception to that is a peak of large
inefficiency at pseudorapidity close to zero, where, however, the distribution of MC tracks has
very few entries. These tracks graze VELO sensors at a very low angle and likely produce very
spread–out clusters. For this reason, they are unlikely to be accurately measured regardless of
the clustering algorithm. Anyhow, all inefficiency effects decrease dramatically for VELO tracks,
being nearly uniformly distributed, where the average inefficiency is approximately 0.08%. Given
that physics decay candidates are built out of reconstructible tracks and that they can typically
count on many measurement layers, we should expect negligible effects on physics efficiencies and
resolutions. However, this will be explicitly studied in the following sections. In particular, it is
important to double check for possible effects on the vertex reconstruction, where VELO–only
tracks play a role (Sect. 6.3.4). The largest effects observed on VELO–only tracks, especially at
low pseudorapidity, are consistent with the fact that they correspond to a higher proportion of
“large” clusters, linked to more than one MC hit, due to the wider range of dip angles in crossing
VELO sensors. FPGA clustering has been optimized for clusters containing at most nine pixels,
and large clusters lead to lower efficiency for the FPGA algorithm relative to the CPU one.
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6.2.2 Cluster residuals

In addition to cluster efficiencies, cluster residual distributions are key to determine the quality
of input data to the track fit. The residual is defined as the distance between the position of
the reconstructed cluster and the true coordinates of the hit generated by the passage of the
particle in the corresponding detector layer. A comparison between residual distributions of
reconstructed clusters, between the CPU and FPGA algorithms, is shown in Fig. 6.5.
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Figure 6.5: Comparison of the normalised distributions of the cluster residuals (left) for all clusters,
including those produced by non–reconstructible tracks and (right) for clusters produced by VELO
reconstructible tracks. Top (bottom) plots are displayed in linear (logarithmic) scale.

The overall difference between CPU and FPGA distributions is visible only in logarithmic scale.
When considering all types of clusters, including those from non–reconstructible tracks, the
FPGA distribution shows higher tails starting at two orders of magnitude below the peak value.
These tails are due to split–up clusters. The difference becomes negligible when selecting clusters
from VELO reconstructible tracks, where the FPGA distribution shows smaller tails due to
clustering inefficiencies. In both cases no effect due to the FPGA rounding of the cluster center
is observed5. Figure 6.6 shows residual distributions for special regions: long pixels and sensor
edges. Pixels connecting VELO chips are designed to be 2.5 times longer (137.5µm) than
standard pixels (55µm). Sensor edges are defined as a 3–pixel wide area around each sensor. In
both cases, no peculiar behavior is spotted. Moreover, the efficiency of reconstructing clusters in
these special regions is the same as the one measured over the entire VELO.

5As discussed in Sects. 3.4 and 4.2.1, the position of the cluster center is specified with 1/4 of a pixel position.
This could have had a negative impact on the residual distribution. From the studies reported in this section
and in the following, no effect is observed due to rounding.
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Figure 6.6: Comparison of the cluster residual distributions for (left) clusters produced by MC hits at
the edge of VELO sensors and (right) clusters produced by MC hits on long pixels. Distributions are
normalized to their respective integrals.

6.2.3 Cluster inefficiency sources

After several improvements and refinements of the FPGA clustering algorithm (see Sect. 3.4),
the cluster inefficiency has been reduced below 0.2%. The residual inefficiency is due to MC hit
merging, where more than one MC hit is linked to the same cluster. Figure 6.7 shows the number
of MC hits linked to CPU clusters not reconstructed by the FPGA, as a function of the number
of pixels in the CPU cluster itself. Since the two–dimensional distribution of CPU–reconstructed
MC hits missed by the FPGA algorithm starts from two MC hits linked to the same cluster,
it can be deduced that all the clusters not reconstructed by the FPGA originate from MC hit
merging, where the number of MC hits linked to the CPU cluster is greater than one. Some hot
spots are present when two MC hits are linked to the same CPU cluster, as shown in Fig. 6.7.
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Figure 6.7: Number of MC hits linked to CPU clusters not reconstructed by the FPGA as a function of
the number of pixels in the CPU cluster.
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Figure 6.8 illustrates some examples of MC hits not identified by the FPGA algorithm because
of hit merging. It is worth noting that, in these particular cases, the CPU algorithm reconstructs
a single cluster, averaging the positions of the two hits.
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Figure 6.8: Examples of MC hits missed by the FPGA clustering due to MC hit merging. Red squares
are the 3×3 cluster candidates.

Figure 6.9 shows the comparison between CPU cluster residual distributions of all clusters and
clusters linked to MC hits not reconstructed by the FPGA. As it can be observed, the cluster
reconstruction quality of clusters linked to MC hits missed by the FPGA algorithm is bad.
Therefore, the loss of a small fraction of poor–quality reconstructed MC hits is not harmful.
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Figure 6.9: Cluster residual distributions comparing all CPU clusters with CPU clusters liked to MC hits
not reconstructed by the FPGA.
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6.3 Tracking performance

Extensive studies are also performed to measure the quality of the full track reconstruction,
when FPGA VELO clusters are used. The trajectories of charged particles traversing the
tracking system are reconstructed from hits in some of the three tracking detectors, which are the
VELO and the Upstream Tracker (UT), located upstream of the magnet, and the Scintillating
Fiber (SciFi) detector located downstream of the magnet [61]. Figure 6.10 shows a pictorial
representation of the track type definitions within LHCb. The tracks reconstructed using only

VELO track Downstream track

Long track

Upstream track

T track

VELO
UT

T1 T2 T3

Figure 6.10: Pictorial view of the track types in the LHCb tracking system.

hits from the VELO detector are called VELO tracks6. VELO tracks with 2 < η < 5 can also
have hits in the SciFi detector and optionally in the UT. These tracks are called “long tracks”.
As they traverse the whole magnetic field of the LHCb detector, they have the most precise
measurement of the momentum and therefore are key for physics analyses.

6.3.1 Tracking efficiency

Tracking reconstruction efficiency is defined in Eq. 6.2 as the ratio between the number of
reconstructed tracks matched to an MC particle and the number of reconstructible MC particles,

ϵ ≡ NMC-matched

NMC-reconstructible
. (6.2)

An MC particle is called VELO reconstructible if it has at least one hit on three different VELO
sensors. An MC particle is called long reconstructible if it is VELO reconstructible and if it has

6VELO tracks can also have η < 2, in which case they are used only for the primary vertex reconstruction.
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at least one x and one stereo cluster in each of the SciFi tracker stations. The association of a
reconstructed track with an MC particle is defined in terms of the number of shared hits. A
reconstructed VELO track is matched to an MC particle if at least 70% of its hits are matched
with the hits of the MC particle. A reconstructed long track is matched to an MC particle if at
least 70% of its hits are matched with the hits of the MC particle in each VELO, SciFi, and
UT subdetectors7. Matching and reconstructibility conditions of the other track types shown in
Fig. 6.10 are extensively discussed in Ref. [61].

The comparison between the CPU– and FPGA–based reconstruction performances for VELO
tracks and for VELO segments of long tracks is reported in Tab. 6.2. It also reports the relative
fraction of reconstructed clone tracks with respect to the total number of tracks in the category
to which they belong and the relative fraction of ghost–reconstructed tracks with respect to
the total number of tracks. A clone is defined as any additional reconstructed track matching
an already truth–matched MC track, whereas a ghost is a reconstructed track not associated
with any true MC track [85]. The efficiencies and clone fractions are almost indistinguishable

Track type Quantity CPU clusters [%] FPGA clusters [%]

All VELO tracks
efficiency 98.254 ± 0.007 98.254 ± 0.007
clone 1.231 ± 0.006 1.234 ± 0.006

Long tracks
efficiency 99.252 ± 0.006 99.252 ± 0.006
clone 0.806 ± 0.006 0.806 ± 0.006

ghost 0.848 ± 0.003 0.928 ± 0.003

Table 6.2: VELO tracking efficiency, relative fraction of clone and ghost tracks, comparing CPU and
FPGA clusters.

when comparing CPU and FPGA algorithms for VELO and long tracks, not displaying any
perceptible systematic difference. The fractions of ghost tracks differ at the per–mille level. This
difference is due to tracks in the pseudorapidity region below 1.5. These tracks graze VELO
sensors at a very low angle and produce very large clusters, increasing the possibility of cluster
splitting. For this reason, it is unlikely that the position of the particle hitting the detector and
creating the cluster is accurately measured, regardless of the clustering algorithm.

In order to identify possible “hot spots” of inefficiency, the tracking efficiency is checked as a
function of p, pT, ϕ, η of the track and as a function of the number of primary vertices in the
event. This is done separately for the following track categories:

1. all HLT1 VELO tracks (Fig. 6.11);

2. all long tracks for HLT1 (Fig. 6.12) and for HLT2 (Fig. 6.15);

3. long tracks originating from b–hadron decays, with momentum greater than 3GeV/c
and transverse momentum greater than 500MeV/c for HLT1 (Fig. 6.13) and for HLT2
(Fig. 6.16);

4. long tracks from electrons for HLT1 (Fig. 6.14) and HLT2 (Fig. 6.17).

7The condition on the UT hits applies only if UT hits are reconstructed for the track.
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In addition, Fig. 6.12 and 6.15 include a plot of efficiency as a function of DOCAz
8, for the

special category of long tracks corresponding to particles produced in the decay of s–hadrons
(for all other tracks the distribution of DOCAz is concentrated near zero, with larger values
dominated by secondary particles from interactions with the detector material).
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Figure 6.11: Comparison of the HLT1 reconstruction efficiency of all reconstructible VELO tracks when
using CPU and FPGA clustering algorithms, as a function of various kinematic variables, at Run 3
instantaneous luminosity of 2× 1033 cm−2 s−1.

8DOCAz is defined as the distance of closest approach of a track to the beamline, along the z direction.
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Figure 6.12: Comparison of the HLT1 reconstruction efficiency of all reconstructible long tracks when
using CPU and FPGA clustering algorithms, as a function of various kinematic variables, at Run 3
instantaneous luminosity of 2× 1033 cm−2 s−1. The DOCAz plot at the bottom right is restricted to the
sample of long tracks from s–hadron decays.
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Figure 6.13: Comparison of the HLT1 reconstruction efficiency of all reconstructible long tracks produced
in the decay of a b–hadron and with momentum (transverse momentum) greater than 3GeV/c (0.5GeV/c),
when using CPU and FPGA clustering algorithms, as a function of various kinematic variables, at Run 3
instantaneous luminosity of 2× 1033 cm−2 s−1.

92



6.3. Tracking performance

0 10000 20000 30000 40000 50000
p [MeV]

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

CPU

FPGA

reconstructible

LHCb simulation

Forward tracks

 < 5ηLong, 2 <

0 1000 2000 3000 4000 5000
 [MeV]

T
p

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

CPU

FPGA

reconstructible

LHCb simulation

Forward tracks

 < 5ηLong, 2 <

2 3 4 5
η

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

CPU

FPGA

reconstructible

LHCb simulation

Forward tracks

 < 5ηLong, 2 <

3− 2− 1− 0 1 2 3
 [rad]φ

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

CPU

FPGA

reconstructible

LHCb simulation

Forward tracks

 < 5ηLong, 2 <

0 5 10 15
# of PVs

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

CPU

FPGA

reconstructible

LHCb simulation

Forward tracks

 < 5ηLong, 2 <

Figure 6.14: Comparison of the HLT1 reconstruction efficiency of all reconstructible electron long tracks
when using CPU and FPGA clustering algorithms, as a function of various kinematic variables, at Run 3
instantaneous luminosity of 2× 1033 cm−2 s−1.
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Figure 6.15: Comparison of the HLT2 reconstruction efficiency of all reconstructible long tracks when
using CPU and FPGA clustering algorithms, as a function of various kinematic variables, at Run 3
instantaneous luminosity of 2× 1033 cm−2 s−1. The DOCAz plot at the bottom right is restricted to the
sample of long tracks from s–hadron decays.
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Figure 6.16: Comparison of the HLT2 reconstruction efficiency of all reconstructible long tracks produced
in the decay of a b–hadron and with momentum (transverse momentum) greater than 3GeV/c (0.5GeV/c),
when using CPU and FPGA clustering algorithms, as a function of various kinematic variables, at Run 3
instantaneous luminosity of 2× 1033 cm−2 s−1.
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Figure 6.17: Comparison of the HLT2 reconstruction efficiency of all reconstructible electron long tracks
when using CPU and FPGA clustering algorithms, as a function of various kinematic variables, at Run 3
instantaneous luminosity of 2× 1033 cm−2 s−1.
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As anticipated by cluster–level studies in Sect. 6.2, the tracking efficiencies obtained with
FPGA–based clustering are nearly indistinguishable from those using CPU–based clustering.

Another key quantity to monitor when comparing CPU and FPGA performances is the
ghost rate of forward tracks. It is defined as the fraction of ghost tracks reconstructed over all
reconstructed tracks, and it is shown in Fig. 6.18 as a function of p, pT, η of the tracks and as a
function of the number of PVs. A track is classified as a ghost track if it is not matched with
any MC particle. Ghost tracks are reconstructed due to the mismatch of hits from separate
MC particles or from detector noise or spillover [85]. Also, the ghost rate turns out to be
indistinguishable between the two clustering approaches.
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Figure 6.18: Comparison of HLT1 ghost rate of long tracks reconstructed using CPU and FPGA
clustering algorithms, as a function of various kinematic variables, at Run 3 instantaneous luminosity of
2× 1033 cm−2 s−1.
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6.3.2 Electron tracking efficiency

When performing physics comparison studies between different VELO clustering algorithms,
special care has been taken over electron reconstruction quality. The precise identification and
characterization of electrons are particularly important for the LHCb physics program, especially
for measurements related to Lepton Flavor Non–Universality tests. Like heavy charged particles,
electrons release energy via the ionization process as they travel through matter. However, due
to their small mass, the energy loss due to bremsstrahlung9 effects become more relevant with
respect to heavier charged particles. Moreover, electrons can originate from gamma conversion
of photons interacting with matter. All of the above reasons suggest that electrons are more
difficult to track and measure accurately with respect to other particles. Given their importance
within the LHCb physics program and their peculiar way of interacting with matter, it is
particularly important to study tracking reconstruction efficiencies focusing on electrons only.
This is also motivated by the fact that electrons tend to produce larger clusters with respect
to other particles, and this could lead to higher tracking inefficiencies due to the limit on the
maximum cluster size (3×3 pixels). Therefore, the tracking reconstruction efficiency for long
electron tracks is tested for both HLT1 and HLT2 reconstructions using a 10k–event MC sample
of B0→ K∗0e+e− decays and a 40k–event MC sample of B0→ K∗0γ decays, where the photon
is converted into an electron–positron pair when interacting with matter, at the nominal Run 3
instantaneous luminosity of 2×1033 cm−2 s−1. These decay modes belong to the b→ sll category,
which is one of the golden search paths for Lepton Flavor Universality violation.

9Bremsstrahlung consists of the emission of electromagnetic radiation due to the interaction of a charged particle
with the nucleus electric field. The emission probability varies as the inverse square of the particle mass.
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B0→ K∗0e+e−

Figures 6.19 and 6.20 show HLT1 and HLT2 reconstruction efficiency comparisons on the
B0→ K∗0e+e− sample, when using CPU and FPGA clustering algorithms.
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Figure 6.19: Comparison of the HLT1 reconstruction efficiency of all reconstructible electron long tracks
from B0→ K∗0e+e− decays, when using CPU and FPGA clustering algorithms, as a function of various
kinematic variables, at Run 3 instantaneous luminosity of 2× 1033 cm−2 s−1.
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Figure 6.20: Comparison of the HLT2 reconstruction efficiency of reconstructible electron long tracks
from B0→ K∗0e+e− decays when using CPU and FPGA clustering algorithms, as a function of various
kinematic variables, at Run 3 instantaneous luminosity of 2× 1033 cm−2 s−1.
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B0→ K∗0γ

Figures 6.21 and 6.22 show comparisons of HLT1 and HLT2 reconstruction efficiency on the
B0→ K∗0γ sample, when using CPU and FPGA clustering algorithms.
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Figure 6.21: Comparison of the HLT1 reconstruction efficiency of all reconstructible electron long tracks
from B0 → K∗0γ decays, when using CPU and FPGA clustering algorithms, as a function of various
kinematic variables, at Run 3 instantaneous luminosity of 2× 1033 cm−2 s−1.

101



Chapter 6. Physics performances

0 10000 20000 30000 40000 50000
p [MeV]

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

CPU

FPGA

reconstructible

LHCb simulation

BestLong tracks

 < 5ηLong, 2 <

0 1000 2000 3000 4000 5000
 [MeV]

T
p

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

CPU

FPGA

reconstructible

LHCb simulation
BestLong tracks

 < 5ηLong, 2 <

2 3 4 5
η

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

CPU

FPGA

reconstructible

LHCb simulation

BestLong tracks

 < 5ηLong, 2 <

3− 2− 1− 0 1 2 3
 [rad]φ

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

CPU

FPGA

reconstructible

LHCb simulation

BestLong tracks

 < 5ηLong, 2 <

0 5 10 15
# of PVs

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

CPU

FPGA

reconstructible

LHCb simulation
BestLong tracks

 < 5ηLong, 2 <

Figure 6.22: Comparison of the HLT2 reconstruction efficiency of all reconstructible electron long tracks
from B0 → K∗0γ decays when using CPU and FPGA clustering algorithms, as a function of various
kinematic variables, at Run 3 instantaneous luminosity of 2× 1033 cm−2 s−1.

In both B0→ K∗0e+e− and B0→ K∗0γ cases, the efficiencies obtained with CPU and FPGA
clustering algorithms are nearly indistinguishable over all kinematic variables analyzed. This
is a further confirmation that the approximations performed within the FPGA–based VELO
clustering algorithm do not affect the reconstruction quality, also for these particularly important
decay modes.
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6.3.3 Impact parameter and momentum resolution

One of the key observables that need to be measured with high accuracy during the track
reconstruction process is the impact parameter (IP). The IPx observable is defined as the x
component of the vector linking the PV to the intersection of the track with the plane transverse
to the z axis and passing through the PV,

IPx ≡ (x− xPV)−−(z − zPV)
px
pz
,

where all variables are referred to reconstructed quantities and (x, y, z) is the point of closest
approach of the track to the PV (IPy is the analog of IPx with the substitution x→ y). Measuring
the IP and its resolution with high precision is key for an efficient trigger and to determine the
mean lifetime of particles. This is particularly important for time–dependent measurements,
such as the study of very fast flavor oscillations of B0

s mesons. The IP resolution with respect to
the PV is checked using HLT1 VELO Kalman–fitted tracks, by analysing separately IPx and
IPy distributions. IPx and IPy resolutions, estimated using the standard deviation of a Gaussian
function fitted to their distributions in the range [−300, 300]µm, are displayed in bins of 1/pT
and η in Fig. 6.23. The performances of the CPU and FPGA clustering algorithms are almost
indistinguishable. One of the key ingredients for the high–precision IP determination is the
Kalman filtering stage [87]. During Kalman filtering, the information from measurements at
detector planes is combined to obtain optimal estimates of the track parameters, while rejecting
fake tracks. Therefore, IP resolution is also checked using HLT2 full Kalman–fitted tracks.
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Figure 6.23: Comparison of the resolution of (top) IPx and (bottom) IPy of HLT1 Kalman–fitted VELO
tracks when using the FPGA and CPU clustering algorithms, (left) as a function of the inverse of the
true transverse momentum and (right) as a function of the true pseudorapidity of the track, at Run 3
instantaneous luminosity of 2× 1033 cm−2 s−1.
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Figure 6.24: Comparison of (top–two) IPx and (bottom–two) IPy resolution of HLT2 full Kalman–fitted
tracks using FPGA and CPU clustering algorithms, as a function of the inverse of the true transverse
momentum and of the true pseudorapidity of the track, (left) considering all track types and (right) only
long tracks, at Run 3 instantaneous luminosity of 2× 1033 cm−2 s−1.
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Resolutions on IPx and IPy are shown in Fig. 6.24 as a function of 1/pT and η for all track types
and only long tracks, separately. Also in this case performances of the CPU and FPGA–based
clustering algorithms are almost indistinguishable. As a possible improvement, the cluster
topology, as provided by the firmware, can be used to assign more realistic uncertainties on the
positions of the hits. This would improve tracking performances as a whole and, in particular,
the IP resolution.

In the effort to identify possible reconstruction quality degradation while using FPGA
VELO clusters, the momentum resolution is also studied. The relative resolution on the
momentum magnitude for long tracks in the range 2 < η < 5 is displayed as a function of
the true momentum and pseudorapidity in Fig. 6.25 and Fig. 6.26, using HLT1 and HLT2
reconstruction, respectively. Resolution is defined as the sigma of a Gaussian function fitted
to the dp/p distribution in the range [−10%, 10%] ([−5%, 5%]) for the p (η) observable. As
observed for track reconstruction efficiency and IP resolution, momentum resolution performance
is indistinguishable when comparing CPU and FPGA VELO clusters.
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Figure 6.25: Comparison of the HLT1 resolution on the momentum of long tracks when using the FPGA
and CPU clustering algorithms, (left) as a function of the true momentum and (right) as a function of
the true pseudorapidity of the tracks, at Run 3 instantaneous luminosity of 2× 1033 cm−2 s−1.
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Figure 6.26: Comparison of the HLT2 resolution on the momentum of long tracks when using the FPGA
and CPU clustering algorithms, (left) as a function of the true momentum and (right) as a function of
the true pseudorapidity of the tracks, at Run 3 instantaneous luminosity of 2× 1033 cm−2 s−1.
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6.3.4 Primary vertex reconstruction

The primary vertex (PV) is another key observable, used both for trigger applications and for
precise measurement of time–dependent quantities, such as the particle time–of–flight and the
flight distance between the primary and secondary vertices. Therefore, both the PV reconstruction
efficiency and its resolution are checked during CPU–FPGA performance comparison studies.
The primary vertex reconstruction efficiency is defined in Eq. 6.3

ϵ ≡ NMC-matched

NMC-reconstructible
(6.3)

where NMC-matched is the number of reconstructed primary vertices that are matched to an MC
PV, and NMC-reconstructible is the number of MC PVs with at least four reconstructed VELO
tracks. MC matching is performed by distance, requiring that the reconstructed PV lies at a
distance along the z axis less than 2mm or 5σ(zPV), whichever is less, from the MC PV, where
σ(zPV) is the uncertainty of the reconstructed position of the PV along the z axis. Figure 6.27
shows the efficiency comparison for the two clustering methods, both as a function of the number
of reconstructed tracks associated with the corresponding MC PV and of the z coordinate of
the MC PV. The reconstruction efficiency as a function of zPV is rather flat in both cases, but
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Figure 6.27: Comparison of the reconstruction efficiency of the PVs with the FPGA and CPU clustering
algorithms, as a function of (left) the true z position of the PV vertex and (right) of the number of
reconstructed tracks of the PV, at Run 3 instantaneous luminosity of 2× 1033 cm−2 s−1.

both clustering methods exhibit a small drop in efficiency for values of zPV between −60 and
0mm. The resolution and bias of the PV reconstruction is quantified along each coordinate axis,
based on the distribution of the residuals of the reconstructed position of the PV minus the true
one (∆x ≡ xreconstructed − xMC, etc.). To prevent our estimates from being confounded by the
presence of few outliers far in the tails of these high–statistics distributions, we adopt a more
robust procedure to measure resolutions than the raw root mean square (RMS). First, the RMS
of the bulk of the distribution is estimated from the values of the 25th and 75th percentiles of
the distribution. Second, a Gaussian fit is performed with a range limited to ±4RMS around
zero, and the sigma of this Gaussian is taken as a measure of the resolution. Figure 6.28 shows
the results as a function of zPV and the number of reconstructed PV tracks. The performances
of the CPU and FPGA–based clustering algorithms turn out to be barely distinguishable. The
resolutions along all the axes show a small knee in the region −60 < zPV < 0mm that is
characterized by a lower reconstruction efficiency (see Fig. 6.27). Further checks on the PV
reconstruction are displayed in Appendix C. In particular, a bias on the reconstruction of zPV had
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Figure 6.28: Comparison of the resolution in reconstructing the PVs with the FPGA and CPU clustering
algorithms, as a function of (left) the true z position of the PV vertex and (right) of the number of
reconstructed tracks, for (top) the x coordinate, (center) the y coordinate and (bottom) the z coordinate
of the PV, at Run 3 instantaneous luminosity of 2× 1033 cm−2 s−1.

initially been spotted, limited to the low–efficiency and low–resolution region −60 < zPV < 0mm.
The size of the bias was about −3µm, which corresponds to approximately 4% of the zPV
resolution. The origin of the bias was traced back to the first version of the rounding of the
coordinates of the cluster center position. Cluster coordinates are encoded in the FPGA output
with two fractional binary digits, corresponding to a resolution of one fourth of a pixel. In the
first implementation of the code, the values of the coordinates were truncated, causing a bias on
the measurement of the cluster positions. In the current implementation, instead, a rounding to
the closest one–fourth step is applied, and the bias is no longer visible. In conclusion, all studies
have shown that FPGA–reconstructed clusters lead to a track reconstruction quality that is
effectively indistinguishable from the software reconstruction.
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6.4 Robustness to large clusters split–up

This section details all the studies performed to determine the robustness of the FPGA cluster
reconstruction algorithm to the amount of large cluster split–up. As discussed in Sect. 3.3, the
clustering algorithm reconstructs clusters with dimensions up to 3×3 pixels. Any cluster larger
than that would be partially reconstructed. Furthermore, due to the limited dimensions of the
matrix, SPs that make up a single cluster may end up in different matrices, thus leading to
cluster splitting. Moreover, the cluster split–up or partial reconstruction occurrence rate in
real data might not be accurately predicted by simulation. For these reasons, we performed
additional studies to identify possible issues as the abundance of large clusters increases. Here,
the comparison with the CPU case is investigated, using the same reconstruction code and the
same simulated sample as in Sect. 6.2.1. In the following, a CPU cluster is referred to as a “large
cluster” if it contains more than 9 pixels. This is the maximum number of pixels that a FPGA
cluster can include, while any cluster with more than 9 pixels is reconstructed with only a subset
of its pixels, and in some cases it is split into more clusters.

The left plot in Fig. 6.29 shows the distribution of the fraction of large clusters per event,
divided into four equally populated quantiles. The rightmost quantile is further divided into
two regions to investigate the effect of events with a high fraction of large clusters on the
reconstruction quality. Moving from the leftmost quantile to the rightmost tail, the large cluster
fraction increases from 0.42% to 1.83%, spanning over a factor of four. The bin corresponding
to zero fraction contains events that do not have large clusters. These events have a smaller
number of clusters compared to the average event, as shown in the right plot of Fig. 6.29.
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Figure 6.29: (Left) Distribution of the fraction of large clusters (Npixels > 9) per event, split into four
equally populated quantiles. The quantile corresponding to the highest fractions is further divided into
two regions for a better identification of the effects in the right tail. (Right) Distribution of the number
of CPU clusters per event, (black) for all events and (red) only for events without any large clusters.

Figure 6.30 shows the ghost fraction, defined as the ratio between the number of ghost tracks
and the number of reconstructed tracks, as a function of the large cluster abundance. Each
point is centered on the average fraction of each of the five highlighted regions in Fig. 6.29.
CPU and FPGA ghost rates follow the same trend, with the absolute difference between the
two always below 0.1%. Figures 6.31, 6.32 and 6.33 show tracking reconstruction efficiencies,
clone rates, and hitEffFirst3 for (left) VELO and (right) long tracks, respectively. The tracking
reconstruction efficiency is defined in Sect. 6.3.1. The clone rate is defined as the ratio between
the number of clone tracks and the number of reconstructed tracks. HitEffFirst3 is the VELO
hit efficiency using the hits on the first 3 layers, which are key to precisely identify the origin
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Figure 6.30: HLT1 ghost rate as a function of large cluster abundance.

vertex of the track. Hit efficiency is defined as the ratio between the number of hits shared
between the matched and the reconstructed track and the number of hits of the matched track.
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Figure 6.31: (top) HLT1 efficiency and (bottom) inefficiency (left) for VELO tracks and (right) for long
tracks as a function of large cluster abundance.
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Figure 6.32: HLT1 clone rate (left) for VELO tracks and (right) for long tracks as a function of large
cluster abundance.
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Figure 6.33: (top) HLT1 HitEffFirst3 and (bottom) HitIneffFirst3 (left) for VELO tracks and (right) for
long tracks as a function of large cluster abundance.

All studies show permille–level differences when comparing FPGA and CPU algorithms over
the large–cluster fraction distribution in Fig. 6.29 (left). We conclude that the small differences
observed between FPGA and CPU clustering algorithms do not show any tendency to enlarge
when the fraction of large clusters increases, neither for the ghost rate nor for the clone rate or
tracking efficiency. Therefore, there is no reasons of concern that a possible larger than expected
proportion of large clusters might cause an unanticipated drop in performance.

6.5 Robustness to VELO occupancy

Another important aspect to be checked is the level of robustness of the FPGA clustering with
respect to the increase in the VELO occupancies. The simulation could underestimate the
occupancy of clusters (and SPs) in the VELO sensors; therefore, it is of crucial importance to
check if the reconstruction degrades in terms of cluster efficiency and tracking performance when
the occupancy increases.

6.5.1 Clustering efficiency

The FPGA clustering efficiency depends on the occupancy of each VELO module because of the
following main reasons:

• the probability of having not isolated SPs (and so the cluster dimensions) increases with a
higher number of SPs;

• as the number of SPs increases, the number of matrices instantiated inside the FPGA
might not be enough to accommodate all of them.

The efficiency (or inefficiency) of the clustering algorithm is measured using simulated samples
by selecting regions with a different average number of passing tracks and, consequently, a
different number of SPs and reconstructible clusters. In order to determine the local occupancy,
for each VELO sensor a 2D histogram10 is filled with the positions of the reconstructible MC

10The 2D histogram is divided into 0.5mm× 0.5mm bins.
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hits, by integrating over the whole set of reconstructed available events. Therefore, the local
occupancy is determined as the ratio of the number of counts in each bin to the area of the bin,
divided by the total number of reconstructed events. Subsequently, a 1D histogram in occupancy
bins is filled with the number of reconstructible MC hits. The same procedure is repeated with
non–reconstructed MC hits. Inefficiency is then measured as the ratio between these two 1D
histograms. Figure 6.34 shows a comparison between CPU and FPGA clustering inefficiencies
as a function of VELO occupancy, where the FPGA inefficiency is plotted considering both all
clusters and selecting only clusters from VELO reconstructible tracks. The difference between
FPGA and CPU clustering algorithms does not show any relevant tendencies to increase when
the local VELO occupancy increases.
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Figure 6.34: Clustering inefficiency as a function of the local VELO occupancy.
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6.5.2 Tracking performances

Tracking performance is also studied as a function of the total number of SPs per event in the
VELO detector. The distribution of the number of SPs per event, divided into four equally
populated quantiles, is shown in Fig. 6.35. The rightmost quantile is further divided into two
regions to investigate the effect of events with a high number of SPs on the reconstruction quality.
Moving from the leftmost quantile to the tail on the right, the number of SPs spans almost a
factor of five.

quant_tot
Entries  46484

Mean     2024

Std Dev      1004

0 1000 2000 3000 4000 5000 6000
# SPs per event

0

100

200

300

400

500 quant_tot
Entries  46484

Mean     2024

Std Dev      1004

total

I quantile

II quantile

III quantile

IV quantile - core

IV quantile - tail

Figure 6.35: Distribution of the number of VELO SPs per event.

Figure 6.36, instead, shows the ghost fraction as a function of the number of SPs. Each point is
centered on the average fraction of each of the five highlighted regions in Fig. 6.35. CPU and
FPGA ghost rates follow the same trend, with the absolute difference between the two staying
always below 0.1%.
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Figure 6.36: HLT1 ghost rate as a function of the number of SPs per event.
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Finally, Figures 6.37, 6.38 and 6.39 show tracking reconstruction efficiencies, clone rates, and
hitEffFirst3 for (left) VELO and (right) long tracks.
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Figure 6.37: (top) HLT1 efficiency and (bottom) inefficiency for (left) VELO tracks and (right) long
tracks as a function of the number of SPs per event.
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Figure 6.38: HLT1 clone rate (left) for VELO tracks and (right) for long tracks as a function of the
number of SPs per event.
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Figure 6.39: (top) HLT1 HitEffFirst3 and (bottom) HitIneffFirst3 (left) for VELO tracks and (right) for
long tracks as a function of the number of SPs per event.

All presented studies show permille–level changes spanning over the number of SPs per event
distribution in Fig. 6.35. The FPGA behavior follows the CPU trend, within permille level
differences. As in the case of robustness to large cluster splitting, the small differences observed
between FPGA and CPU clustering algorithms do not show any tendency to enlarge when the
number of SPs is increased, neither for ghost rate, nor for clone rate or tracking efficiency.

6.6 Summary of the performance studies

The performance studies summarized in this chapter aim at characterizing the FPGA–clustering
algorithm in detail. The cluster reconstruction efficiency and quality show that none of the
approximations applied (see Chap. 3) has a significant impact on the reconstruction of the
cluster itself, and thus on the accurate measurement of the particle hit position, with marginal
residual inefficiencies due to hit merging. This is also reflected in higher–level quantities, such as
tracking efficiency, impact parameter and momentum resolutions, and primary vertex efficiency
and resolution. In–depth comparisons with a full–fledged CPU–based clustering algorithm
show that the two algorithms have indistinguishable responses for different types of decay
modes, including b–hadrons, s–hadrons and LFU golden channels such as B0→ K∗0e+e− and
B0→ K∗0γ. The search for significant differences between CPU and FPGA implementations
returns null results, also when taking into account that the simulation might not perfectly mimic
the detector real behavior, both in terms of cluster size and occupancy. This is not obvious given
the profound differences between the two clustering implementations running on very different
architectures. The choices made during the design and implementation of FPGA algorithm do
not impact the performance quality and allow the cluster reconstruction to be run with a high
degree of parallelization, reaching offline–like reconstruction quality, while running online, on the
spare space of detector readout cards. Given the indistinguishable performance of the FPGA
implementation relative to the CPU one, the algorithm presented in this thesis has been chosen
as the baseline option for LHCb Run 3 data taking. The commissioning steps required to fully
validate the clustering firmware response are detailed in the next chapter.
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Commissioning and final thoughts

This chapter describes the commissioning steps that led to a fully functional clustering firmware,
deployed on VELO TELL40 cards. Starting from the outcome of the integration process, where
the clustering firmware was added to the VELO DAQ chain, several tests have been performed,
gradually getting closer to data taking conditions. During this test campaign, fixes and refinements
have been applied to the firmware. The conclusions and final considerations of the work detailed
in this thesis are also presented.

7.1 Introduction

The successful firmware and software integration process, together with the detailed performance
studies, has demonstrated that the VELO clustering reconstruction can be moved from the
HLT farm to a preprocessing stage, being deployed within the detector readout cards, with
benefits for the entire DAQ chain, both in terms of throughput and bandwidth. Despite the
fact that the attention and close scrutiny put in identifying possible bugs and pitfalls did not
show any criticality, the tests performed are based on the expected behavior of the detector
and its front–end and back–end electronics, modeled in detail within the LHCb MC simulation.
Therefore, in–depth stress tests of the clustering architecture, using the first real collision data,
are of utmost importance to validate simulation–based test outcomes. This test campaign goes
by the name of commissioning and took, as for the other subdetectors and subsystems, the
entire 2022 data taking period. It involved hardware tests, starting from a single board up to
the full–scale production system, software–based monitoring tests, both at low and high level
throughout the DAQ chain, and firmware tests, validating the clustering response at bit level.
Commissioning also allowed the overall electrical power reduction to be measured, while moving
clustering from the GPU to the FPGA architecture, which is especially relevant for future
HEP experiments. The validation of new diagnostic tools built directly within the firmware,
exploiting real data, was also performed during the commissioning period. Such tools include
per–bunch luminosity monitoring, of which a preliminary calibration is provided. Moreover, the
2022 commissioning period also led to the first physics results, including invariant mass peaks, a
hint of which is presented in this chapter.
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7.2 MiniDAQ tests

The LHCb upgrade required the design and construction of a new detector and the related
electronics, as described in Sect. 2. To facilitate the commissioning process, the LHCb Online
team made available a development platform to test the monitoring and control of the new
subdetector front–end electronics, together with the new readout electronics and the TFC
system. This development platform goes by the name of MiniDAQ [88]. A MiniDAQ consists of
a dual–socket server1 equipped with PCIe40 cards and comes with the software suite to control
and monitor the hardware. The MiniDAQ used for cluster firmware tests has two PCIe40 cards,
one acting as a TELL40 and one as a SODIN and SOL40 card. The two cards are used to control
and collect data from a complete VELO module. The module, together with its optical and
power board (see Sect. 2.3), is powered by a bench power supply while the sensors and the ASICs
are passively cooled, instead of using active CO2 cooling. A first set of tests was performed
using the digital test pulse mode, where individual pixels can be turned on. This type of test
allows the behavior of the DAQ chain to be studied even in the absence of real pp collisions,
knowing the exact position of each active pixel. The digital test–pulse test was performed to
compare the position of the reconstructed clusters with the input SPs, under different input
rate and occupancy conditions. A similar type of test was performed using the internal data
generator of the TELL40 card, where data do not come from the VELO module itself but are
generated within a specific firmware block in the TELL40 card. The internal generator can
be set up in one of two modes: a pseudo–random mode generates SPs spread randomly over
the entire module and a slow–control mode where the user defines a set of SPs to be used and
writes them in appropriate firmware registers, using the ECS. These modes allow tests of the
firmware even without a front–end connected and working, giving maximum flexibility to the
user. During these tests, both with the generator and the actual module, no issue was identified.

7.3 First tests on VELO TELL40s

Having tested that the VELO firmware was behaving fine within the MiniDAQ setup, we moved
to the actual TELL40s within which we loaded the complete VELO firmware, including the
clustering. During one of the first tests involving the entire DAQ chain, from the detector to the
event building stage, we loaded a pixel hitmap onto one of the VELO modules, using digital
test pulses. The pixel hitmap is shown in the upper part of Fig. 7.1. The corresponding SPs
were then sent out of the detector to the TELL40 readout card, where the cluster reconstruction
occurs. Data are then propagated to the event builder and finally saved to a file. The content of
the file was then decoded using the algorithms described in Sect. 5.4.4 and the positions of the
reconstructed clusters were plotted (bottom image of Fig. 7.1) and compared to input SP hitmaps.
This was the first key test that demonstrated the proper functioning of the FPGA–based VELO
clustering both at the firmware level, being able to reconstruct the correct clusters starting
from the input SPs, and at the DAQ higher level, where data containing clusters were correctly
propagated, built, and decoded, using the production–grade software that would be used for
data taking.

1The MiniDAQ server is a DELL® PowerEdge® R740, equipped with two Intel® Xeon® Silver 4210.
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Figure 7.1: Outcome of one of the first tests performed on VELO TELL40 cards, showing (top) an
image of the active pixels loaded onto one VELO half–module and sent as input to the firmware cluster
reconstruction, where each of the six different colors indicates the origin ASIC, and (bottom) the two–
dimensional positions of the reconstructed clusters. The x and y axes are the column and row of the
VELO ASIC, respectively, in units of pixels.

7.4 WinCC slow control

As mentioned in Sect. 2.9, one of the key components of the data acquisition architecture is the
experiment control system. The system is implemented in different firmware and software layers.
The layer with which the user interacts is the WinCC OA SCADA2 that is interfaced with the
front–end electronics via a message broker called DIM [89]. WinCC is used for all the slow
control related tasks, including the DAQ monitoring at the firmware level. Having integrated
the clustering architecture within the DAQ chain, the WinCC VELO project needed to be

2SCADA stands for Supervisory Control And Data Acquisition.
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updated to include the necessary monitoring components for the clustering part. To facilitate
firmware monitoring and debugging during data taking, the readings of the relevant registers
within the firmware have been structured in a panel, as shown in Fig. 7.2. Within the panel, the
user can follow the data flow from the input side, where SPs are received, through the cluster
reconstruction steps, to the output. The panel shows the current occupancy levels of several
FiFos within the firmware (see Fig. 4.2), together with enable and error LEDs and SP overflow
counters.

Figure 7.2: Cluster monitoring panel within the VELO WinCC project.

7.5 Online monitoring

Being able to quickly identify possible detector issues or software bugs during data taking is key
for the success of the LHCb experimental physics program. For this reason, a small subset of the
data is reconstructed on the LHCb Online computing farm. As an output of the reconstruction,
a set of plots and histograms is created, allowing detector experts to identify possible pitfalls.
The core software that performs the just–mentioned operations is called Monet [90], which is a
python–based web application that allows data quality plots to be visualized.

During the commissioning stage the VELO part of Monet processing has been updated
to take into account the different output format that contains clusters instead of SPs. This
update required the replacement of SP–decoding and software clustering algorithms with cluster–
decoding algorithms (see Sect. 5.4.4). After some local tests, the updated Monet configuration
was then deployed to the production system. Examples of plots produced by Monet are shown
in Fig. 7.3. In the left plot of Fig. 7.3, the cluster hitmap of VELO module 20 is represented in
the absolute LHCb coordinate system. Brighter regions of the hitmap are closer to the beam
pipe and thus have more clusters. In the right plot of Fig. 7.3, the distribution of the primary
vertex position along the x axis, measured using only C–side VELO modules, is shown. Given
that during this run, the VELO was opened, with A–side sitting at +28 mm and C–side sitting
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at −28 mm, the PV position measured with the C–side only is centered at +28 mm, due to the
reconstruction software assuming that the VELO was closed at 0 mm.

Figure 7.3: Two plots available on Monet during data taking, showing (left) the cluster hitmap on one
VELO module and (right) the distribution of primary vertices horizontal positions. The average PV
position around −28 mm is due to the VELO open position.

7.6 Debugging

After the first tests on VELO TELL40s using test pulses on the detector side and having set up
all the necessary tools to monitor the DAQ behavior, both at low and high level, the firmware,
including cluster reconstruction, was tested during pp collisions under different conditions. To
stress test the system, the input data rate to the TELL40 cards was increased from a few kHz
up to 20 MHz and an issue was observed around 18 MHz where the DAQ system was going into
error. At the same time, the WinCC cluster panel (see Fig. 7.2) was showing an error at the
encoder level. To debug this issue, the firmware was recompiled adding a SignalTap3 instance to
monitor the behavior of several signals inside the FPGA. The debug firmware was then loaded
into the MiniDAQ setup, and using the TELL40 internal generator, the issue was reproduced
under controlled and known conditions. Using SignalTap, it was possible to identify the matrix
(see Sect. 4.4.8) as the faulty component, as data were received correctly and in sync by the
matrices, but after the matrix cluster reconstruction, data from different events were mixed.
An overflowing FiFo, within each matrix, was causing the loss of EndEvent signals, which are
then responsible for the error in the encoder that identifies data from different events being
mixed. Being able to reproduce the issue using the internal firmware generator allowed us to
recreate and study it in QuestaSim® simulation. Using the simulation tool, the appropriate fix
was identified and implemented. Having fixed this issue, the clustering firmware did not show
any input–rate–related issues during the following data taking.

When analyzing the cluster data collected during the first collisions, we observed some peculiar
behaviors clearly related to a bug in the firmware. Under specific conditions, duplicated clusters
within the same data bank and clusters with the wrong ASIC ID4 were observed. As in the

3SignalTap is a FPGA debugging tool that captures and displays user–specified signals within a firmware design.
Similarly to an oscilloscope, the developer can specify one or multiple trigger conditions based on a set of signals
and, if the conditions are matched, the signals within one or more firmware components are shown while the
FPGA is running.

4The two most significant bits of the cluster column bit–field (see Sect. 4.2.1) can be used to identify the ASIC
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high–throughput issue, these problems were firstly analyzed and then solved using the SignalTap
debugging tool. Duplicated clusters were due to input data not being correctly bypassed (see
Sect. 4.4.10) and being interpreted as SPs. Changing the bypass conditions accordingly solved
the issue. The wrong ASIC ID issue, however, was not caused by the clustering itself, but was
due to a data mishandling within the router (see Sect. 5.3.1), which was promptly fixed.

7.7 Double output checks

As described in Sect. 4.4.13, the clustering firmware is equipped with a double–output mode
that, when activated, allows both reconstructed clusters and input SPs to be output. This mode
was used during the first period of Run 3 data taking for debugging purposes, in order to ensure
that the reconstructed clusters are the correct ones, given the input SPs. A typical VELO data
bank collected when the double–output mode is enabled is the following:

Bank: 0x101B (subsystem: 2 ’VELO A’, number: 27)
Size: 56B (48B payload)
Type: 97 ’VPDoubleOutput’
Version: 4
0x0000 | 94 D2 02 30 74 12 03 20 00 00 00 00 00 00 00 00 7C 02 03
00 88 E2 02 00 C4 A2 8A 60 00 00 00 00
0x0020 | 28 27 06 80 04 E8 05 80 20 A9 05 80 02 6C 15 80 |

The sourceID of the bank (0x101B) indicates that the data come from VELO side A, in
particular module 13 and data flow number one. The size of the bank (56B) shows the number of
bytes that make up the bank itself. The type (97) and the version (4) allows the format version
and the type of data contained in the bank to be identified. After the metadata information,
the actual data are present. Excluding empty clusters, the decoded data are the following:

Clusters SPs
3002D294 (row=165, col=45) 80062728 (row=156, col=48)
20031274 (row=157, col=49) 8005E804 (row=160, col=46)
0003027C (row=159, col=48) 8005A920 (row=164, col=44)
0002E288 (row=162, col=46) 80156C02 (row=176, col=170)
608AA2C4 (row=177, col=170)

To distinguish between clusters and SPs when the double output mode is active, the most
significant bit of each SP is set to one. Figure 7.4 shows a graphical representation of active
pixels (green squares) and the corresponding reconstructed clusters (red crosses).
The collected data have been analyzed with the VPRetinaClusterDoubleOutputChecker algo-
rithm described in Sect. 5.4.4. One million events have been analyzed for a total of about 1.4
billion clusters. No errors or discrepancies have been observed between the firmware behavior
and its software emulation.

within a sensor from which a cluster or SP comes from. Given that there are three ASICs per sensor, these two
bits can take values 0, 1 and 2. A value of 3 was observed, clearly indicating an issue in the firmware.
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Figure 7.4: Graphical representation of the position of SPs and clusters from the VELO data bank above.
Active pixels are drawn as green squares and reconstructed clusters are represented as red crosses. The
rows and columns values are also shown for reference.

7.8 Power consumption

During Run 2 operations LHCb power demand was around 5.5 MW. The experiment power
consumption is expected to increase by roughly 1.5 MW during Run 3 due to the increased data
processing power, to be compared to the five–fold increase in luminosity. Given that LHCb is
currently proposing to build a second upgrade [27], which would lead to an order of magnitude
increase in data rate and hence to a significant increase in the processing power required, a
power consumption optimization strategy is paramount for the future of LHCb.

Moving part of the reconstruction sequence to a preprocessing stage performed on FPGAs
might be a valuable option in terms of power consumption. A hint for this already comes from
the VELO cluster reconstruction in Run 3. Adding clustering to the FPGA processing increases
its power consumption, which has been quantified by measuring the current on the 0.9 V power
input line. Figure 7.5 shows the FPGA power consumption of all VELO TELL40s at the nominal
event rate of 30 MHz. The measurement was performed with and without cluster processing.
The average power consumption of a TELL40 FPGA when processing an event rate of 30 MHz
with the readout firmware only is 6.1 W; this increases to a total of 8.6 W for the full firmware,
including the clustering block. Given the 52 VELO TELL40 cards, performing clustering within
the readout requires roughly 130 W. The same measurements have been repeated for different
values of the input event rate, as shown in Fig. 7.6, where the average FPGA power consumption
increases slowly as a function of the input rate. For comparison, we estimate the power needed
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Figure 7.5: Power consumption of individual VELO TELL40 FPGAs processing data at an event input
rate of 30 MHz. The average value over all 52 FPGAs is also superimposed with an horizontal line.
Measurements using the firmware without the cluster finding block (outputting SPs instead of clusters)
are also reported for comparison.
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Figure 7.6: Average power consumption over all 52 FPGAs as a function of the input event rate.
Measurements using the firmware without the cluster finding block (outputting SPs instead of clusters)
are also reported for comparison.
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7.9. VELO closure with clusters

to perform clustering on GPUs during the HLT1 reconstruction. Knowing the GPU power usage
(230 W), the number of GPUs (236) required to process a 30 MHz input event rate and the
fraction of time spent in cluster reconstruction (11%), running cluster reconstruction on GPUs
requires about 6 kW. Therefore, reconstructing clusters on readout FPGAs requires O(50x) less
power than performing the same task on GPUs. This is in agreement with the measurements
presented in Ref. [91].

FPGA-based clustering is just a first step towards track reconstruction being performed at
a preprocessing stage, the benefits of which are discussed in depth in Chap. 1. However, this
result clearly suggests that running part of the reconstruction on FPGAs at early DAQ stages
has a substantial benefit in terms of reduction in power consumption.

7.9 VELO closure with clusters

As described in Sect. 2.3, the two sides of the VELO detector are movable and can be retracted
to protect the detector during beam injection, or in general during non–stable beam conditions.
Being able to move the two halves allows also the detector to be centered around the beam,
fill by fill. The VELO closing procedure has been updated from the Run 2 one and validated
with the new detector to be able to safely close the detector, starting from the so–called garage
position at a 54 mm opening5. The main steps performed during closing are the following:

• once LHC declares the stable beam condition, the VELO high voltage is turned on and the
monitoring task, devoted to the closing of the VELO, starts to receive data and reconstruct
tracks and primary vertices out of them;

• the primary vertex positions are measured with respect to each half of the detector and
used to fill histograms, from which the position of the detector relative to the beam is
determined;

• the closing software, implemented in WinCC, takes as input the position of the beam and
a set of safety criteria, such as the beam condition monitors [92], to decide whether and
how to move the VELO halves, both in x and y;

• the motion is done in steps and at each step the beam conditions and the PV position are
checked before moving on. At each point, if safety conditions are not met or if PVs are
not provided correctly, the closing software asks the operator to open the VELO.

After the first VELO closures performed with the TELL40 cards loaded with the SP firmware,
we moved on with the first closure using the firmware with clustering included. As a safety
measure, before the closure two data sets were collected, one with the SP–only firmware and
one with the cluster one, to compare the PV position distributions, based on which the closing
steps are performed6. The distributions are shown in Fig. 7.7 and since no significant differences
were observed between SP– and cluster–based PV distributions, we moved on with the closure.
The closure was done in steps corresponding to (54, 40, 30, 26, 12, 10, 6, 4, 2, 1 and 0) mm
opening values. At each position, the PV position distributions were checked, together with the
safety criteria, before moving on to the next steps. The entire closure procedure was carried out
without issues or problems.

5The opening is defined as the distance along x between modules on opposite sides of the VELO.
6Between the two data sets collection both the TELL40 firmware and the monitoring software were updated in
order to produce and decode clusters instead of SPs.
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Figure 7.7: PV position distributions along the x (top–left), y (top–right) and z (bottom) axes, comparing
data collected with the SP–only firmware (red) with cluster ones (blue).

7.10 New opportunities with VELO clusters in real time

With cluster reconstruction occurring inside VELO TELL40 readout cards online, at 30 MHz, it
becomes possible to accumulate useful statistics in the firmware itself. The main advantages of
this type of monitoring are the very high rates at which statistics are accumulated, while being
accessible via ECS, without disturbing data acquisition, even when HLT1 is not running. This
low–level monitoring can provide diagnostics, such as the identification of misbehaving regions
of the detector and the measurement of spillover. It can also be a useful source of data for beam
parameter measurements, such as the beam line position, which can be monitored at the full
30 MHz bunch crossing rate. An example of cluster–based firmware–level monitoring that has
already been implemented and used during Run 3 data taking is for instance instantaneous
luminosity measurement in real time, complementary to the Plume subdetector [93] built
specifically for this purpose. Moreover, being performed in real time, the clustering can provide a
measurement of the instantaneous luminosity per bunch which is affected by the individual bunch
intensities and, to a lesser extent, by the beam emittances. These quantities being challenging
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to track, a bunch by bunch measurement of µ can provide an interesting feedback to the LHC,
directly from the low–level firmware cluster counting. In this section the key components of the
firmware luminosity monitor are summarized.

The working principle of luminosity monitoring within the VELO TELL40 cards is the linear
relation between the mean number of reconstructed clusters and the luminosity at which data are
collected. Detailed simulation studies have been performed to determine the best way to measure
luminosity in terms of linearity with respect to the number of reconstructed clusters, stability
with respect to the position of the luminous region, and taking into account that the required
firmware resources need to be limited in order to fit within the FPGA chip. The implemented
solution involves the addition of extra logic, placed at the end of the cluster reconstruction chain,
to select and count the number of reconstructed clusters within specific regions of each VELO
module (see Fig. 7.8), using a minimal amount of both logic and memory resources. Cluster
counts are performed independently for each of the four possible bunch–crossing7 types in order
to subtract the detector noise and background. Furthermore, changes to both ECS–related
firmware and software components were applied to be able to read, archive, and reset cluster
counts. In order to provide luminosity measurements, cluster counts need to be calibrated. The
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Figure 7.8: Positions of outer counters (black regions) used for luminosity monitoring and inner counters
(red) used for beam position monitoring within a VELO station.

calibration procedure has been performed during a Van der Meer scan [94], where the beams have
been gradually shifted one with respect to the other, as shown in Fig. 7.9, and, as a consequence,
the number of reconstructed clusters changes accordingly. A Van der Meer scan offers the ideal
conditions under which an observable, linearly proportional to the instantaneous luminosity, can
be calibrated and normalized under well–defined and controlled beam settings.

To obtain a first preliminary determination of the cross section, σ, defined as the pro-

7Depending on the LHC filling scheme four bunch–crossing types are possible: beam–beam where both beams
are colliding at the interaction point, beam–empty and empty–beam where only one beam is present and
empty–empty where none of the beams are present.
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Figure 7.9: (top) Rate of cluster counts for each bunch–crossing type. (middle plots) Horizontal and
vertical separations of beams. (bottom) Number of protons per bunch. All quantities are plotted as a
function time during the Van der Meer scan.

portionality constant between the luminosity and the number of reconstructed clusters, the
background–subtracted and bunch–population–normalized cluster rate is plotted as a function
of the beam separation and fitted with a Gaussian function. This fit is performed both for
one–dimensional scans, as shown in Fig. 7.10, where beams are shifted in the horizontal and
vertical planes separately, and for the two–dimensional scan, as shown in Fig. 7.11, where beams
are displaced in the horizontal and vertical planes at the same time. From the fits the standard
deviations, σx and σy, are obtained, and therefore the cross section, as shown in Eq. 7.1 [95, 96],

σ =
2πnclusters(∆x = 0,∆y = 0)σxσy

N1N2
, (7.1)

where nclusters(∆x = 0,∆y = 0) is the number of clusters reconstructed in the null horizontal
and vertical beam separations and N1 and N2 are the numbers of protons per bunch for beam 1
and 2, respectively. The cross section is derived from Eq. 7.1, for both 1D and 2D Van der Meer
scans, leading to the following values:

σ1D = (215.4± 0.6) · 10−24 cm2

σ2D = (218.6± 0.4) · 10−24 cm2

The low–level monitoring work described in this section was done together with Daniele Passaro,
whom I trained. More details about this topic can be found in Daniele’s Master thesis [97].
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Figure 7.10: Cluster count rate with background being subtracted and normalized with the number of
protons per bunch plotted as a function of (left) the horizontal and (right) the vertical beam separations.
The normalized cluster rate is fitted with a Gaussian function. Pulls are shown.

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8

-horizontal plane [mm]
∆ 

0.8−
0.6−0.4−0.2−

0
0.2

0.4
0.6

0.8
-vertical plane [mm]

∆ 
0

200
400
600
800

1000
1200
1400
1600
1800
2000]

22
 1

0
×

 N
2>

[H
z 

×
 r

at
e 

bb
-b

e-
eb

+
ee

/ <
N

1 

/ndf                    1485.673783/1752χ
Prob                                 0.000000

 0.355886±const           3.016523 
 2.355084±norm     1919.487820 
 0.000212±              -0.007842 

hor
µ

 0.000174±               0.142525 horσ
 0.000190±              0.007282 

vert
µ

 0.000159±              0.127189 vertσ

LHCb preliminary
Fill 8379

2D Van der Meer scan - VELO ECS counter, VELO_A, module M01, sensor 0

Figure 7.11: Cluster count rate with background being subtracted and normalized with the number of
protons per bunch plotted as a function of the horizontal and vertical beam separations. The distribution
is fitted with a two–dimensional Gaussian function.

7.11 µ scan

During the first data taking period of LHCb Run 3 commissioning, several tests were performed
to study the behavior of the detector, the DAQ chain, and the reconstruction sequence. One of
the key tests was the so called µ scan8, where the luminosity was constantly increased, bringing
the beams closer to each other [98]. This is a key test for both the VELO detector and its

8µ is defined as the average number of visible pp interactions per bunch crossing, and it is a measurable value.
ν is defined as the average number of pp interactions per bunch crossing and it is used mainly for simulation
purposes. The relation between µ and ν is µ ≃ 0.7ν.
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DAQ, including clustering, where the number of detector hits increases with luminosity, and
so does the number of SPs per event at the clustering input. During the test, the behavior of
the clustering was monitored in terms of both FiFo occupancies and number of reconstructed
clusters. No DAQ error was triggered due to the clustering. Furthermore, the µ scan represented
a unique opportunity to test the linearity of the cluster counts as a function of the increasing
luminosity. The firmware counters described in Sect. 7.10 were used to monitor the firmware
behavior. As the µ and thus the luminosity increased the number of reconstructed clusters also
increased linearly, as shown in Fig. 7.12. This is a key indication that neither the detector nor
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Figure 7.12: Cluster rate as a function of the number of visible interactions per bunch crossing, µ. µ is
measured within HLT1 processing using a set of counters that take as input the information of several
subdetectors, such as the number of VELO tracks, the number of vertices, the number of SciFi clusters,
the ECAL transverse energy and the number of Muon hits.

the firmware were approaching a saturate response as luminosity increased. The linear behavior
also shows the capability of the clustering firmware to measure the luminosity in a wide range
of µ values. Firmware cluster counts, read periodically via ECS, are currently being added to
the list of observables monitored during data taking to precisely measure the instantaneous
luminosity, representing an additional and complementary source of low–level monitoring.

7.12 First physics results

As described in Sect. 3, the clustering algorithm has several parameters that can be tuned to
improve its performance. During the design and optimization phases, these parameters were set
based on the analysis of several official LHCb simulation samples. Therefore, the first real data
collected are of paramount importance to check if the actual detector response is well described
by the simulation, and thus verifying if the clustering algorithm parameters are correctly tuned.
Figure 7.13 shows a comparison between the simulated number of isolated and neighbor clusters
per event as a function of the sensor pair and the real values, measured during the µ scan
(see Sect. 7.11), at different luminosities. As it can be observed, the simulation reproduces
the actual detector behavior quite accurately, in particular for modules in the forward and
backward regions of the VELO detector. Near the nominal interaction region (sensor pair ∼ 30),
the main data–simulation discrepancy is observed, with more clusters from SPs with neighbor
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being reconstructed with respect to clusters resolved from isolated SPs. Figure 7.14 shows
a comparison between simulated and real data cluster size distributions, for VELO modules
6 and 14, upstream (z = −212.50 mm) and on (z = −12.50 mm) the nominal interaction
point, respectively. As with the cluster–number comparison, real data have been collected
during the µ scan (see Sect. 7.11), at different luminosities. Real data show larger clusters
with respect to simulation, with this behavior visible both close and far away from the nominal
interaction point. Given the maximum cluster size limited to 3×3 pixel, it is important to
periodically monitor these low–level quantities, to ensure a good reconstruction quality. It is
worth mentioning that these data have been collected with a brand new detector that itself
needs to be commissioned and optimized. Therefore, we might expect these distributions to
change as detector thresholds and other parameters are optimized in the future. Given the good
simulation–data matching, the algorithm parameters seem to have been appropriately set for the
first period of LHCb Run 3 data taking, leaving space for further fine tuning that will improve
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Figure 7.14: Comparisons of data and simulation cluster size distributions in pixel units for (left) module 6
(z = −212.50 mm) and (right) module 14 (z = −12.50 mm). Simulated distributions are taken at µ=5.3,
whereas data distributions are within the 0.1 and 4.9 µ range.
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the algorithm response. The fact that the clustering algorithm was configured correctly is also
visible in the plots shown below. In addition to firmware, software, and structure tests, during
the Run 3 commissioning the first physics results were also obtained. Figure 7.15 shows mass
peak plots of D0+ → D0π+, D0 → K−π+ and J/ψ → µ+µ− decay channels, respectively9. To
produce these plots, a preliminary configuration of HLT2 was used. This configuration will be
fine–tuned during the rest of Run 3 data taking, to obtain the best reconstruction quality. All
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Figure 7.15: Invariant mass peaks of D0+ → D0π+, D0 → K−π+ and J/ψ → µ+µ−. A preliminary
configuration of the HLT2 tracking sequence is used. See Ref. [99].

9Since these are the very first mass plots obtained with a completely new detector and reconstruction software,
which are currently under commissioning, they are presented here only for illustrative purposes.
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subdetectors, from tracking to particle identification, DAQ systems, event building, and HLT
processing, have been shown to properly function in the upgraded LHCb environment, both in
terms of hardware and software. Apart from some tuning and optimization, that will be applied
as data are collected and analyzed, the new Upgraded LHCb experiment has demonstrated to
be capable of taking good–quality data, with a completely renewed detector, a new trigger–less
DAQ and a reconstruction, leveraging the heterogeneous–computing model.

7.13 Conclusions

This thesis describes a new two–dimensional cluster–finder algorithm capable of reconstructing
particle hits on a pixel detector in excess of 30 MHz input event rate, at the LHCb Run 3
instantaneous luminosity of 2 × 1033 cm−2s−1. The algorithm is designed to run online on
FPGA–based readout cards in order to take full advantage of the high degree of flexibility and
parallelization provided by modern FPGA chips. The corresponding firmware architecture is
implemented and optimized so that it requires a rather small amount of FPGA resources, both
in terms of logic and memory, while providing an excellent reconstruction quality. Despite being
of rather general applicability, both the algorithm and the firmware architecture are tailored
and optimized for the silicon pixel vertex detector, VELO, of the LHCb Upgrade experiment.

The FPGA VELO clustering is the first processing stage of the LHCb “Retina” project, which
aims at reconstructing tracks in real time, as a embedded system within the detector readout
cards. It is therefore characterized by the same high throughput and low latency capabilities
as all other “Retina” components. The first firmware prototype, written in VHDL language,
was developed and tested within the LHCb–Pisa laboratory, and it has shown to be capable
of reconstructing clusters on–the–fly at 30 MHz input event rate, when fed with LHCb–official
simulated input data from the most occupied VELO module. Precise and extensive tests have
been performed to ensure that the tracking performance of this novel system is indistinguishable
from a full–fledged software implementation of the clustering algorithm. This was made possible
by developing a C++ version of the algorithm, accurately emulating the firmware behavior, and
fully integrated within the LHCb simulation software stack.

The sparse–matrix technique adopted in the FPGA VELO clustering proved successful
in handling large detectors (order of 40 million pixels) with a modest amount of logic and
memory resources. In order to process data from a VELO module, the clustering architecture,
including isolation flagging, requires 132500 ALMs and 300 M20K memories, accounting for 31%
of logic and 11% of M20K memory resources of an Arria–10 GX 1150 FPGA chip, respectively.
Exploiting these resources, the firmware is capable of processing events with up to an average
of 32 SPs per VELO half–module, using a 350 MHz clock, which corresponds to a processing
speed of 0.96 GSpixel/s (or 7.7 GPixel/s). This is a significant advancement over the previous
state–of–the–art in HEP, where the best performing two–dimensional cluster–finding system
implemented in FPGAs, that can be found in literature, was developed for the Fast TracKer
processor with an eye to the trigger upgrade of the ATLAS experiment [81]. This system can
run at about 100 KHz input event rate, with the deployment of about 4 parallel firmware copies,
processing about 12.5 MPixel/s each.

Given its high throughput, the low amount of resources needed, and the excellent tracking
performance, the LHCb collaboration decided to adopt this new architecture as the default
option for Run 3 data taking. As a consequence, the clustering firmware has been integrated
within the VELO readout firmware, at no extra cost, and extensively tested, first on a test setup
and then on the production system. Moreover, the corresponding software decoding and the
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default reconstruction sequence have been adapted, both for GPU–based HLT1 and CPU–based
HLT2 architectures, to decode directly VELO clusters, instead of reconstructing them in software.
The algorithm and the corresponding firmware implementation have been fully commissioned
during the first data–taking period of LHCb Run 3, including bit–level comparisons between
the actual firmware output and the expected clusters to be reconstructed, given the input data.
A series of VELO closures have been successfully performed using the clustering firmware and
related decoding and reconstruction, obtaining the first Run 3 physics results with the FPGA
VELO clustering performed within the readout chain. The good simulation–data matching
also suggests that the algorithm parameters have been appropriately set for the LHCb Run 3
data taking, however there is still headroom for further fine tuning that might improve the
algorithm response and may be necessary based on the real data, as the detector response is
fully tuned and commissioned. During Run 3 commissioning period, the VELO DAQ system,
including clustering, was stress tested both at high input event rate and at high luminosity,
without showing any issue.

Performing cluster preprocessing on readout boards allows HLT1 to accept a 11% higher
rate of events10, as the ready–made hit coordinates accelerate the track reconstruction, also
yielding the additional benefit of about 14% reduction in data flow. Being implemented and
optimized for FPGAs, the clustering architecture also leads to a significant drop in electrical
power consumption, as the VELO clustering implementation on FPGAs requires O(50x) less
power than the GPU one. This is especially relevant for future HEP experiments, where
the demand for greener solutions will increasingly become an essential aspect of their design.
Improvements in both output bandwidth and HLT throughput are also beneficial for the entire
data acquisition and reconstruction chain, and will be increasingly so in the future when, instead
of just reconstructing clusters, heterogeneous systems will be able to produce more complex
objects, such as track primitives, in real time. The on–the–fly accessibility of all hits (or clusters)
on a complex detector such as the VELO also allows the additional potential offered by FPGA
reconstruction in real time to be exploited. In fact, the implementation of a FPGA–based system
for real–time luminosity measurement and beam monitoring at the LHCb interaction point,
transparently embedded within the detector readout cards, seems feasible already during the
current Run 3, thanks to the innovative work done in this thesis. Additional functionalities for
monitoring the operational status of the VELO sensors can be also implemented, addressing
spillover effects and sensor detection efficiency.

In conclusion, the work described in this thesis is a significant first step towards a new
computing paradigm in HEP, where offloading highly repetitive and parallelizable tasks to
dedicated accelerators is paramount to sustain the ever–increasing trigger and data acquisition
requirements. As recently demonstrated by several industrial applications, exploiting the
flexibility and computational power of heterogeneous computing infrastructures is one of the
most promising solutions to tackle high data volume–related issues, at low cost. This is key for
the physics program of the upcoming Runs, at even higher instantaneous luminosities, where
more and more data need to be collected, handled, and processed at the unprecedented speed
of 30 MHz, to measure with ever increasing precision many statistically limited observables,
probing the current understanding of fundamental interactions.

The work described in the thesis is the content of a paper that has been published in the IEEE
Transactions on Nuclear Science journal [100].

10This value is an underestimation of the actual HLT1 throughput gain as the GPU–based clustering implementation
expects SPs with the isolation flag, whereas the FPGA–based clustering computes it by itself.
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Appendix A

Field Programmable Gate Array

Field Programmable Gate Arrays (FPGAs) are semiconductor integrated circuits in which the
electrical functionality is customizable at configuration time. FPGAs represent a key component
in the heterogeneous computing paradigm and complement other technologies such as CPUs
and GPUs. FPGA devices target real–time computations where mixed precisions and different
vectorization factors are present. Another key feature of FPGA devices is the ability to drive
many and different types of I/O interfaces from PCIe busses to optical transceivers. All these
features make FPGA devices particularly appealing for HEP purposes where digital hardware
tailored to specific requirements is needed. FPGA chips are typically mounted on PCBs that
allow electrical communication between the chip and other components such as oscillators,
optical transceivers, PCIe busses, memory modules, sensors, programming headers, and power
delivery circuitry. The ensemble of all the components takes the name of FPGA–based board.
Figure A.1 shows the architecture of a modern FPGA chip (the Intel® Arria® 10 FPGA is
taken as an example), which has the following main components:

• Core Fabric Logic is made of a high number of interconnected logic units programmable
by the developer;

• M20K memory blocks can store up to 20 kbits in dedicated cells spread over the FPGA;

• Digital Signal Processing (DSP) blocks implement arithmetic logic such as floating point
sums and multiplications;

• PLLs generate clocks with desired frequency from an external clock source. PLLs are used
to drive both transceivers and internal logic;

• Transceiver Channels, Transceivers, and PCIe Hard IPs (Intellectual Properties) are located
at the edges of chip to ease data exchange with other components mounted on the board.

FPGA core logic

The core component of the FPGA logic is the Logic Array Block (LAB). LABs are composed of
basic building blocks named Adaptive Logic Modules (ALMs). Each ALM can be configured to
implement logic functions, arithmetic functions, and register functions. LABs can be configured
as memory LABs, in which case they take the name of MLABs. As shown in Fig. A.2, LABs are
surrounded by routing wires and switches, which are used to exchange signals between them.
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Figure A.1: Intel® Arria® 10 FPGA architecture [101].

Different types of interconnect are present in the FPGA chip. Local and Direct Link Interconnects
allow fast communication between close by LABs and within ALMs of the same LAB. Row and
column interconnects with variable speed and length allow data exchange throughout the entire
chip. Fig. A.3 shows the main constituents of an ALM. Each ALM contains two combinational
adaptive LUTs (ALUTs) and four registers. The two combinational (ALUTs) can be fed with up
to eight inputs allowing the implementation of various logic functions. ALMs can be operated in
the following modes:

• Normal mode, where two logic functions can be implemented using the eight ALM inputs.
Several combinations of two functions with independent inputs can be implemented, such
as two four–input, five–input, and six–input functions. Input signals can also be shared
between LUTs to create functions with a higher number of inputs;

• Extended LUT mode, where a single logic function can be created with up to seven
independent inputs;

• Arithmetic mode, where two sets of four–input LUTs are used along with two dedicated
full adders. The two adders can add the output of two four–input logic functions. A carry
chain is implemented between adders;

• Shared arithmetic mode, where a three–input sum can be implemented in the ALM,
configuring the ALM with four four–input LUTs.

Regardless of the operating mode, the ALM output can drive the local, row, and column routing
resources, directly from the LUT or adder output or using the registered values.
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Figure A.2: Intel® Arria® 10 FPGA LAB and MLAB structure with the LAB interconnects [102].

Memory and DSP

Besides LABs that can be configured as memory elements, FPGAs have dedicated embedded
memory blocks known as M20K blocks that can contain up to 20 kb. M20K blocks are ideal
for larger memory arrays while still providing a large number of independent ports, whereas
MLABs are ideal for wide and shallow memory arrays. Embedded memory supports the following
operation modes:

• single–port RAM, where only a read or a write operation can be performed at a time;

• dual–port RAM, where any combination of two port read–write operations can be performed,
both with single or dual clocks;

• shift register, where the memory block is used as a shift–register block to save logic cells
and routing resources;

• ROM, where the content of the read–only memory is written to it at compilation time;

• FiFo, where the memory block is used as a buffer with the first data coming out being the
first data written to it. Both single– and dual–clock FiFos can be implemented.

Alongside dedicated memory blocks, digital signal processing (DSP) blocks are also present
within the FPGA chip. These blocks are specifically designed to perform fixed–point and
floating–point arithmetic operations, such as additions and multiplications.
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Figure A.3: Intel® Arria® 10 ALM High–Level Block Diagram [102].

Clocks and I/O

Clock resources within FPGAs are organized in hierarchical clock networks and phase–locked
loops (PLLs). Global clock networks provide low–skew clock sources for ALMs, DSPs, embedded
memory, and PLLs, whereas regional clock networks serve as clock sources for logic contained
within limited chip regions. Periphery clock networks provide clock signals mainly for I/O
purposes. FPGA chips also contain configurable PLLs that can be used to create clock signals
with user–specific frequencies, reducing the number of oscillators required on the board. As
mentioned above, a key feature of FPGAs is the ability to drive many and different I/O interfaces.
I/O–specific locations within the FPGA chip are organized in banks, where the I/O standard of
each bank can be specified by the user. Each bank contains several lanes connected to I/O pins,
I/O PLLs, Serialiazer/Deserializer (SERDES) circuitry, and memory controllers. FPGAs also
contain hard IP that are cores with a fixed physical implementation, targeting a specific I/O
standard. Examples of commonly used hard IPs are PCIe and Ethernet standards.

Arria 10 resources

The characteristics described in the previous sections are common for the vast majority of FPGA
chips available on the market. The specific FPGA chip mounted on LHCb data acquisition
cards, which is the target device for the development of the architecture described in this thesis,
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belongs to the Intel® Arria® 10 family. In particular, it is a 10AX115S4F45E2SG chip. The
part number can be decoded as follows:

• 10A = family (Arria 10);

• X = family variant (with up to 17.4 Gb/s transceivers);

• 115 = device type (427200 ALMs);

• S = transceiver count (72);

• 4 = transceiver speed grade;

• F = package type (FineLine BGA);

• 45 = package code (1932 pins);

• E = operating temperature (0°C - 100°C);

• 2 = fabric speed grade;

• S = power profile (standard power);

• G = package material (RoHS).

Firmware design

The typical firmware development workflow for a FPGA is shown in Fig. A.4. Starting from a
series of specifications and requirements, the firmware is developed using a hardware description
language (HDL). HDL languages are used to describe the behavior of the actual hardware
using a high–level language. The algorithm described in this thesis has been implemented
using the VHDL language. Unlike CPU/GPU programming, FPGA programming involves
the reconfiguration of the electrical paths inside the chip. As a consequence, firmware design
requires the knowledge of the FPGA chip architecture and its components. A key step during the
development process is the simulation of the code behavior. For this purpose, the code is wrapped
within a test bench that provides all the required input signals. Firmware simulation allows the
verification of the behavior of the different firmware components by looking at individual signals
propagating inside the FPGA. The simulation tool used during this thesis is Siemens EDA®

QuestaSim® software. Once the simulated behavior matches the desired one, the firmware can
be compiled. Compilation consists of two main steps: the analysis&synthesis and place&route.
During analysis and synthesis, the compiler examines the logical completeness and consistency
of the code, while checking syntax errors. It also synthesizes and optimizes the design using
algorithms to minimize gate count, remove redundant logic, and use the device architecture as
efficiently as possible. Starting from the synthesis output, place&route operations are performed.
The firmware components are “fitted” within the FPGA chip using the available resources,
selecting the appropriate interconnection paths between them. The place and route procedure is
carried out having as constraints the clock frequencies at which the logic operates. As an output
of the fitting procedure, the logic and memory resources required by the firmware are measured.
The result of the fitting procedure is then analyzed using the time analysis tools that check if
timing violations are present. The compiler raises a timing violation to warn that it has not been
able to fit the design inside the FPGA while following the constraints given by the user for the
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specific use case (see Appendix B). The compiler used during the firmware development for this
thesis is Intel® Quartus Prime® software. As an output of the compilation, a bitstream code
is created that can be loaded into the FPGA to configure all required ALMs and interconnect
paths. The behavior of the firmware on the actual hardware can then be tested.

Specs/
Requirements

HDL
development

Simulation

Analysis& 
Synthesis

Place&Route

Time Analysis

Hardware
testing

Figure A.4: Firmware development workflow.
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Appendix B

Firmware timing violations

Timing analysis is one of the key steps in FPGA firmware design, as described in Appendix A,
and one of the main differences with respect to CPU or GPU programming [103]. Two timing–
related constraints usually need to be fulfilled by a firmware design: throughput and latency.
Throughput is the average rate at which valid output data are delivered per clock cycle, whereas
latency is the amount of time required to output valid data after the input arrives. At the bare
minimum, timing usually refers to the time it takes a signal to propagate from one flip–flop,
through some combinational logic1, to the next flip–flop, as shown in Fig. B.1. The key concept
behind timing analysis is that flip–flops and combinatorial logic do not have a zero–time response:
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Figure B.1: Block and timing diagrams showing (left) setup slack and (right) hold slack. TCO is the clock
to out time defined as the time it takes for a signal to propagate out of a flip–flop after a clock edge. TSU

is the setup time defined as the minimum time required for data to be valid before the latch edge for
successful latching. TH is the hold time defined as the minimum time required for data to be valid after
the latch edge for successful latching.

1Here combinatorial logic stays for operations done on data without storing them.
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once receiving a launch edge2 a flip–flop needs a certain amount of time to output its content,
this time is known as clock to out time TCO. In the same way, combinatorial logic requires some
time to output the result value, given the input, mainly due to the switching time of transistors.
Moreover, data to be stored in a flip–flop need to be valid some time before (setup time TSU )
and to remain valid some time after (hold time TH) the latch edge3. These considerations need
to be taken into account when designing a FPGA firmware in order to have stable and reliable
signal propagation within the FPGA chip.

The left timing diagram of Fig. B.1 shows the clock and data propagation between two
flip–flops running at the same clock speed, with emphasis on the setup time. The clock signal
requires TCLK1 time to propagate from the source to the REG1 source flip–flop. After a TCO

time, data stored in the flip–flop are sent to the output and received by the REG2 destination
flip–flop after TDATA time required to perform the combinatorial logic operations. As described
above, data out of REG1 need to be valid a TSU time before the arrival of the latch edge, taking
into account the TCLK2 time needed for the clock propagation from the source to REG2. This
leads to a time window known as setup slack defined as the difference between the time data
are required to arrive at REG2 and the time they actually arrive. The setup slack needs to be
a positive value to guarantee correct signal handling. If the setup slack is negative, there is a
so–called timing violation. The same type of argument can be made for the hold slack (right
diagram of Fig. B.1), since data need to remain valid at least TH time after the arrival of the
latch edge. The setup slack depends on the clock frequency, whereas the hold slack does not.

Given the design and the user–specified timing constraints, such as the clock frequencies, the
firmware compiler tries to place the components inside the chip and to route signals between
them so that timings are correct and no timing violation is present. If the firmware is not well
designed or optimized enough to match the clock frequency constraint, the compiler reports
the failing paths for which the setup or the hold slack are not positive, providing also tools to
understand the cause of the timing violation [104]. An example of the compiler timing violation
report is shown in Fig. B.2. Fixing timing violations can be a hard job, especially if done during
advanced firmware development stages. It might require rewriting entire parts of the code, for
example, moving from combinatorial to staged logic or introducing pipelining [105,106].

Figure B.2: Quartus® report on (top) setup and (bottom) hold timing violations. There is one entry for
each clock source showing the worst case slack value and the total negative slack (TNS) as the sum of the
timing violations of all failing paths running at that clock.

2The launch edge is defined as the clock edge that activates or launches the source register.
3The latch edge is defined as the clock edge that latches the data into the destination register.
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Appendix C

Bias in PV reconstruction

During the comparison studies between CPU and FPGA clustering algorithms on the cluster
and track reconstruction performance (see Sect. 6), a bias on the reconstructed value of the
primary vertex z position (zPV) was observed. The bias is limited to the low–efficiency and
low–resolution region −60 < zPV < 0mm, as shown in the left plot of Fig. C.1. The size of the
bias was about −3µm, corresponding to about 4% of the zPV resolution (see Fig. 6.28).

The origin of the bias was initially investigated in terms of search patterns and cluster
sizes. As discussed in Sect. 3, clusters from non–isolated SPs are reconstructed using a pattern
matching search algorithm with a cluster maximum size limited to 3×3 pixels. However, it was
found that the bias was not due to this characteristic of the clustering algorithm. Moreover, it
was also present when considering only clusters from isolated SPs that are not affected by the
cluster maximum size limitation. The origin of the bias was traced back to the first version of the
cluster coordinate rounding procedure. Cluster coordinates are encoded in the FPGA output, as
shown in Fig. 4.5, with two fractional binary digits, corresponding to a resolution of one fourth
of a pixel, both for x and y coordinates. In the first firmware and software implementations, the
coordinate values were truncated, instead of being rounded, as discussed in Sect. 3.4, causing
a bias on the cluster positions. The issue was then fixed and the bias is no longer present, as
shown in the right plot of Fig. C.1. This is just one example of the improvements on the physics
reconstruction quality obtained by studying in detail the algorithm behavior under different
conditions and fine tuning its parameters.
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Figure C.1: Comparison of the mean of the Gaussian fits to the residuals of the primary vertex position
between the CPU and FPGA clustering algorithms for all clusters, (left) with truncated cluster coordinates
and (right) with rounded cluster coordinates to the closest one–forth step.
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thesis, Università degli Studi di Siena, 2022, https://cds.cern.ch/record/2813167.

[46] D. Ninci, Ricostruzione di traccia in tempo reale su FPGA ad LHC, Master’s thesis,
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