4,114 research outputs found

    Cortical Gyrification and Sulcal Spans in Early Stage Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is characterized by an insidious onset of progressive cerebral atrophy and cognitive decline. Previous research suggests that cortical folding and sulcal width are associated with cognitive function in elderly individuals, and the aim of the present study was to investigate these morphological measures in patients with AD. The sample contained 161 participants, comprising 80 normal controls, 57 patients with very mild AD, and 24 patients with mild AD. From 3D T1-weighted brain scans, automated methods were used to calculate an index of global cortex gyrification and the width of five individual sulci: superior frontal, intra-parietal, superior temporal, central, and Sylvian fissure. We found that global cortex gyrification decreased with increasing severity of AD, and that the width of all individual sulci investigated other than the intra-parietal sulcus was greater in patients with mild AD than in controls. We also found that cognitive functioning, as assessed by Mini-Mental State Examination (MMSE) scores, decreased as global cortex gyrification decreased. MMSE scores also decreased in association with a widening of all individual sulci investigated other than the intra-parietal sulcus. The results suggest that abnormalities of global cortex gyrification and regional sulcal span are characteristic of patients with even very mild AD, and could thus facilitate the early diagnosis of this condition

    A murine model of variant late infantile ceroid lipofuscinosis recapitulates behavioral and pathological phenotypes of human disease.

    Get PDF
    Neuronal ceroid lipofuscinoses (NCLs; also known collectively as Batten Disease) are a family of autosomal recessive lysosomal storage disorders. Mutations in as many as 13 genes give rise to ∌10 variants of NCL, all with overlapping clinical symptomatology including visual impairment, motor and cognitive dysfunction, seizures, and premature death. Mutations in CLN6 result in both a variant late infantile onset neuronal ceroid lipofuscinosis (vLINCL) as well as an adult-onset form of the disease called Type A Kufs. CLN6 is a non-glycosylated membrane protein of unknown function localized to the endoplasmic reticulum (ER). In this study, we perform a detailed characterization of a naturally occurring Cln6 mutant (Cln6(nclf)) mouse line to validate its utility for translational research. We demonstrate that this Cln6(nclf) mutation leads to deficits in motor coordination, vision, memory, and learning. Pathologically, we demonstrate loss of neurons within specific subregions and lamina of the cortex that correlate to behavioral phenotypes. As in other NCL models, this model displays selective loss of GABAergic interneuron sub-populations in the cortex and the hippocampus with profound, early-onset glial activation. Finally, we demonstrate a novel deficit in memory and learning, including a dramatic reduction in dendritic spine density in the cerebral cortex, which suggests a reduction in synaptic strength following disruption in CLN6. Together, these findings highlight the behavioral and pathological similarities between the Cln6(nclf) mouse model and human NCL patients, validating this model as a reliable format for screening potential therapeutics

    Surface-Based tools for Characterizing the Human Brain Cortical Morphology

    Get PDF
    Tesis por compendio de publicacionesThe cortex of the human brain is highly convoluted. These characteristic convolutions present advantages over lissencephalic brains. For instance, gyrification allows an expansion of cortical surface area without significantly increasing the cranial volume, thus facilitating the pass of the head through the birth channel. Studying the human brain’s cortical morphology and the processes leading to the cortical folds has been critical for an increased understanding of the pathological processes driving psychiatric disorders such as schizophrenia, bipolar disorders, autism, or major depression. Furthermore, charting the normal developmental changes in cortical morphology during adolescence or aging can be of great importance for detecting deviances that may be precursors for pathology. However, the exact mechanisms that push cortical folding remain largely unknown. The accurate characterization of the neurodevelopment processes is challenging. Multiple mechanisms co-occur at a molecular or cellular level and can only be studied through the analysis of ex-vivo samples, usually of animal models. Magnetic Resonance Imaging can partially fill the breach, allowing the portrayal of the macroscopic processes surfacing on in-vivo samples. Different metrics have been defined to measure cortical structure to describe the brain’s morphological changes and infer the associated microstructural events. Metrics such as cortical thickness, surface area, or cortical volume help establish a relation between the measured voxels on a magnetic resonance image and the underlying biological processes. However, the existing methods present limitations or room for improvement. Methods extracting the lines representing the gyral and sulcal morphology tend to over- or underestimate the total length. These lines can provide important information about how sulcal and gyral regions function differently due to their distinctive ontogenesis. Nevertheless, some methods label every small fold on the cortical surface as a sulcal fundus, thus losing the perspective of lines that travel through the deeper zones of a sulcal basin. On the other hand, some methods are too restrictive, labeling sulcal fundi only for a bunch of primary folds. To overcome this issue, we have proposed a Laplacian-collapse-based algorithm that can delineate the lines traversing the top regions of the gyri and the fundi of the sulci avoiding anastomotic sulci. For this, the cortex, represented as a 3D surface, is segmented into gyral and sulcal surfaces attending to the curvature and depth at every point of the mesh. Each resulting surface is spatially filtered, smoothing the boundaries. Then, a Laplacian-collapse-based algorithm is applied to obtain a thinned representation of the morphology of each structure. These thin curves are processed to detect where the extremities or endpoints lie. Finally, sulcal fundi and gyral crown lines are obtained by eroding the surfaces while preserving the structure topology and connectivity between the endpoints. The assessment of the presented algorithm showed that the labeled sulcal lines were close to the proposed ground truth length values while crossing through the deeper (and more curved) regions. The tool also obtained reproducibility scores better or similar to those of previous algorithms. A second limitation of the existing metrics concerns the measurement of sulcal width. This metric, understood as the physical distance between the points on opposite sulcal banks, can come in handy in detecting cortical flattening or complementing the information provided by cortical thickness, gyrification index, or such features. Nevertheless, existing methods only provided averaged measurements for different predefined sulcal regions, greatly restricting the possibilities of sulcal width and ignoring the intra-region variability. Regarding this, we developed a method that estimates the distance from each sulcal point in the cortex to its corresponding opposite, thus providing a per-vertex map of the physical sulcal distances. For this, the cortical surface is sampled at different depth levels, detecting the points where the sulcal banks change. The points corresponding to each sulcal wall are matched with the closest point on a different one. The distance between those points is the sulcal width. The algorithm was validated against a simulated sulcus that resembles a simple fold. Then the tool was used on a real dataset and compared against two widely-used sulcal width estimation methods, averaging the proposed algorithm’s values into the same region definition those reference tools use. The resulting values were similar for the proposed and the reference methods, thus demonstrating the algorithm’s accuracy. Finally, both algorithms were tested on a real aging population dataset to prove the methods’ potential in a use-case scenario. The main idea was to elucidate fine-grained morphological changes in the human cortex with aging by conducting three analyses: a comparison of the age-dependencies of cortical thickness in gyral and sulcal lines, an analysis of how the sulcal and gyral length changes with age, and a vertex-wise study of sulcal width and cortical thickness. These analyses showed a general flattening of the cortex with aging, with interesting findings such as a differential age-dependency of thickness thinning in the sulcal and gyral regions. By demonstrating that our method can detect this difference, our results can pave the way for future in vivo studies focusing on macro- and microscopic changes specific to gyri or sulci. Our method can generate new brain-based biomarkers specific to sulci and gyri, and these can be used on large samples to establish normative models to which patients can be compared. In parallel, the vertex-wise analyses show that sulcal width is very sensitive to changes during aging, independent of cortical thickness. This corroborates the concept of sulcal width as a metric that explains, in the least, the unique variance of morphology not fully captured by existing metrics. Our method allows for sulcal width vertex-wise analyses that were not possible previously, potentially changing our understanding of how changes in sulcal width shape cortical morphology. In conclusion, this thesis presents two new tools, open source and publicly available, for estimating cortical surface-based morphometrics. The methods have been validated and assessed against existing algorithms. They have also been tested on a real dataset, providing new, exciting insights into cortical morphology and showing their potential for defining innovative biomarkers.Programa de Doctorado en Ciencia y TecnologĂ­a BiomĂ©dica por la Universidad Carlos III de MadridPresidente: Juan Domingo Gispert LĂłpez.- Secretario: Norberto Malpica GonzĂĄlez de Vega.- Vocal: Gemma Cristina MontĂ© Rubi

    Mapping Genetic Influence on Brain Structure

    Get PDF
    Neuroimaging is playing an increasingly crucial role in delineating pathological conditions that cannot be typically defined by non-specific clinical symptom. The goal of this thesis was to characterize the genetic influence on grey and white matter indices and evaluate their potential as a reliable “structural MRI signatures”. We first assessed the effects of spatial resolution and smoothing on heritability estimation (Chapter 3). We then investigated heritability patterns of MRI measures of grey and white matter (Chapters 4-5). We then performed a cross-sectional evaluation of how heritability changes over the lifespan for both grey and white matter (Chapter 6). Finally, multivariate structural equation modeling was used to investigate the genetic correlation between grey matter structure and white matter connectivity (Chapter 7), in the default mode network (DMN). Our results show that several key brain structures were moderate to highly heritable and that this heritability was both spatially and temporally heterogeneous. At a network level, the DMN was found to have distinct genetic factors that modulated the grey matter regions and white matter tracts separately. We conclude that the spatial and temporal heterogeneity are likely to reflect gene expression patterns that are related to the developmental of specific brain regions and circuits over time

    Cortical complexity as a measure of age-related brain atrophy

    Get PDF
    The structure of the human brain changes in a variety of ways as we age. While a sizeable literature has examined age-related differences in cortical thickness, and to a lesser degree, gyrification, here we examined differences in cortical complexity, as indexed by fractal dimensionality in a sample of over 400 individuals across the adult lifespan. While prior studies have shown differences in fractal dimensionality between patient populations and age-matched, healthy controls, it is unclear how well this measure would relate to age-related cortical atrophy. Initially computing a single measure for the entire cortical ribbon, i.e., unparcellated gray matter, we found fractal dimensionality to be more sensitive to age-related differences than either cortical thickness or gyrification index. We additionally observed regional differences in age-related atrophy between the three measures, suggesting that they may index distinct differences in cortical structure. We also provide a freely available MATLAB toolbox for calculating fractal dimensionality

    Using sulcal and gyral measures of brain structure to investigate benefits of an active lifestyle

    No full text
    Background: Physical activity is associated with brain and cognitive health in ageing. Higher levels of physical activity are linked to larger cerebral volumes, lower rates of atrophy, better cognitive function and lesser risk of cognitive decline and dementia. Neuroimaging studies have traditionally focused on volumetric brain tissue 17 measures to test associations between factors of interest (e.g. physical activity) and brain structure. However, cortical sulci may provide additional information to these more standard measures. Method: Associations between physical activity, brain structure, and cognition were investigated in a large, community-based sample of cognitively healthy individuals (N = 317) using both sulcal and volumetric measures. Results: Physical activity was associated with narrower width of the Left Superior Frontal Sulcus and the Right Central Sulcus,while volumetric measures showed no association with physical activity. In addition, Left Superior Frontal Sulcal width was associated with processing speed and executive function. Discussion: These findings suggest sulcalmeasuresmay be a sensitive index of physical activity related to cerebral health and cognitive function in healthy older individuals. Further research is required to confirm these findings and to examine how sulcal measures may be most effectively used in neuroimaging
    • 

    corecore