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Abstract 26	

The structure of the human brain changes in a variety of ways as we age. While a sizeable 27	

literature has examined age-related differences in cortical thickness, and to a lesser 28	

degree, gyrification, here we examined differences in cortical complexity, as indexed by 29	

fractal dimensionality in a sample of over 400 individuals across the adult lifespan. While 30	

prior studies have shown differences in fractal dimensionality between patient 31	

populations and age-matched, healthy controls, it is unclear how well this measure would 32	

relate to age-related cortical atrophy. Initially computing a single measure for the entire 33	

cortical ribbon, i.e., unparcellated gray matter, we found fractal dimensionality to be 34	

more sensitive to age-related differences than either cortical thickness or gyrification 35	

index. We additionally observed regional differences in age-related atrophy between the 36	

three measures, suggesting that they may index distinct differences in cortical structure. 37	

We also provide a freely available MATLAB toolbox for calculating fractal 38	

dimensionality. 39	

 40	

Keywords:   41	
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Introduction 43	

As we age, the structure of our brain changes in numerous ways, ranging from vascularization to 44	

cellular (Kemper, 1994; Raz & Rodrigue, 2006; Wiśniewksi & Terry, 1973). Age-related brain 45	

atrophy can be readily measured in vivo using magnetic resonance imaging (MRI). Many earlier 46	

studies have observed age-related differences in gray matter volume (e.g., Coffey et al., 1992; Ge 47	

et al., 2002; Jernigan et al., 1991; Passe et al., 1997; Raz et al., 1997; Resnick et al., 2000, 2003; 48	

Steiner et al., 1985). However, more recent studies have demonstrated that, in cortical regions, 49	

inter-individual differences in gray matter volume are more closely related to differences in 50	

cortical thickness, rather than surface area (Barnes et al., 2010; Hutton et al., 2009; McKay et al., 51	

2014; Storsve et al., 2014; Winkler et al., 2010). Converging with this, differences in cortical 52	

thickness have been shown to be related to aging, while inter-individual differences in surface 53	

area have been more strongly influenced by sex differences (Barnes et al., 2010; Fjell et al., 54	

2009a, 2009b; Herron et al., 2015; Hogstrom et al., 2013; Hutton et al., 2009; McKay et al., 55	

2014; Salat et al., 2004; Sowell et al., 2007; Storve et al., 2014; Thambisetty et al., 2010). These 56	

studies make clear that different metrics of gray matter will have different sensitivities in 57	

detecting age-related differences. With the increased focus on relatively short-term longitudinal 58	

studies (e.g., to assess the effects of behavioural interventions, such as exercise and meditation, 59	

on brain morphology; see Hayes et al., 2014; Tang et al., 2015), it is useful to have additional 60	

metrics of cortical structure that are sensitive to age-related differences. 61	

Here we considered how age affects cortical structure by using both cortical thickness 62	

and another metric, cortical complexity, measured using calculations originally designed to 63	

quantify the structure of fractals. Prior studies have demonstrated that cortical complexity is 64	

related to cognitive performance (Im et al., 2006; Mustafa et al., 2012; Sandu et al., 2014) and 65	

differs between several neurological patient populations relative to healthy controls (e.g., 66	
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Alzheimer’s disease: King et al., 2009, 2010; schizophrenia: Sandu et al., 2008; Nenadic et al., 67	

2014; Yotter et al., 2011; multiple sclerosis: Esteban et al., 2009; frontal lobe epilepsy: Cook et 68	

al., 1995; multiple system atrophy: Wu et al., 2010; William’s syndrome: Thompson et al., 69	

2005). Here we investigated age-related differences in fractal dimensionality of the cortical 70	

ribbon and parcellated regions of cortex in a large sample of adults across the lifespan, using 71	

structural images obtained from an open-access dataset. To conduct these analyses, we 72	

developed a MATLAB toolbox designed to use intermediate files produced in a standard 73	

FreeSurfer analysis, which we now freely distribute (see Supplemental Materials).  74	

Complex natural structures can be difficult to quantify. While fractal dimensionality 75	

analyses were initially developed for use with fractals, they were found to be useful in 76	

quantifying the complexity of ‘natural’ structures, such as the complexity of continental 77	

coastlines (Mandelbrot, 1967). Fractal dimensionality analyses have been shown to be useful in 78	

quantifying the natural complexity of the brain across multiple scales, ranging from molecular to 79	

whole brain (see Di Ieva et al., 2014, 2015, for comprehensive discussions). In these MRI 80	

studies, researchers specifically sought to use fractal dimensionality analyses to quantify the 81	

convolutional properties of the cortex (Cook et al., 1995; Free et al., 1996; Kiselev et al., 2003; 82	

Luders et al., 2004; Thompson et al., 1996). Recent studies have used fractal dimensionality to 83	

assess age-related differences in white matter morphology (Farahibozorg et al., 2015; Zhang et 84	

al., 2007). Im et al. (2006) found that whole-brain mean cortical thickness and fractal 85	

dimensionality shared approximately 50% of the variance (i.e., r2; also see King et al., 2010), 86	

suggesting that fractal dimensionality may relate to age-related brain atrophy, but also may be 87	

sensitive to other differences in gray matter structure that are not indexed by cortical thickness.   88	

Prior research has demonstrated that in addition to cortical thickness, fractal 89	

dimensionality co-varies with gyrification (King et al., 2009, 2010). As such, we additionally 90	
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examined age-related differences in gyrification index as a comparison. Briefly, the gyrification 91	

index measures the amount of cortical folding in a region of the brain. Gyrification index is 92	

calculated by estimating a smooth surface contour that wraps around the pial surface, where the 93	

gyrification index is the ratio of a regional surface area for the pial surface to this smoothed outer 94	

surface (i.e., a convex hull; for an illustration, see Figure 3 of Mietchen & Gaser, 2009, or Figure 95	

2 of Toro et al., 2008; also see Kochunov et al., 2012). Though age-related differences in 96	

gyrification have not been studied as extensively as those in relation to cortical thickness, 97	

Hogstrom et al. (2013) found clear evidence for age-related reductions in gyrification (also see 98	

Rogers et al., 2010), and that these differences were not correlated with decreases in cortical 99	

thickness, which they also observed. Thus, one of our aims was also to examine the relationship 100	

between fractal dimensionality, cortical thickness, and gyrification index, within a large sample 101	

of healthy adults across the lifespan.  102	

 Here we examined age-related differences in whole-brain and lobe-wise estimates of 103	

cortical complexity, as indexed by fractal dimensionality, in a sample of over 400 individuals 104	

across the adult lifespan. These results were compared with similar analyses testing for age-105	

related differences in cortical thickness and gyrification index, as well as the relationship 106	

between these more established measures and fractal dimensionality. Finally, we used a 107	

multivariate regression approach to directly compare these different measures of cortical 108	

morphology, and used regression models that included predictors from each of the three 109	

measures. We found fractal dimensionality to be more sensitive to age-related differences than 110	

either thickness or gyrification; we also observed regional differences in age-related atrophy 111	

depending on which cortical measure was used, suggesting that each measure may index distinct 112	

differences in cortical structure. We also provide a freely available MATLAB toolbox for 113	
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calculating fractal dimensionality, using intermediate files generated as part of the standard 114	

FreeSurfer analysis pipeline, and present benchmark analysis demonstrating its functionality. 115	

 116	

Procedure 117	

Dataset 118	

All MRI data was drawn from the IXI (“Information eXtraction from Images”) dataset, a 119	

collection of structural MRIs from 581 healthy adults across the lifespan (20-86 years old). The 120	

IXI dataset was collected in 2005-2006 from three sites in the UK (each with a different scanner 121	

system) and includes T1, T2, DTI, PD, and MRA images. Here we only used the T1-weighted 122	

structural images (apart from when calculating intracranial volume). The dataset is freely 123	

available from: http://brain-development.org/ixi-dataset/. The IXI dataset has been used in 124	

numerous studies investigating structural properties of the brain and related differences due to 125	

healthy aging (e.g., Ardekani & Bachman, 2009; Franke et al., 2010; Ganzetti et al., 2014; 126	

Koutsouleris et al., 2014; Robinson et al., 2010; Ziegler et al., 2012). Unfortunately, the criteria 127	

used to assess that these individuals were healthy adults without any neurological or psychiatric 128	

disorders is not provided. 129	

 Of these 581 adults for which there was imaging data in the IXI dataset, the analyses 130	

reported here are based on a sample of 427 individuals. Individuals were excluded based on three 131	

criteria: age not available (N=18), or if the gyrification index analyses failed to determine a 132	

suitable convex-hull surface for at least one hemisphere (N=6), or if the surface reconstruction 133	

failed visual inspection1 (an additional N=130). The full list of IDs for the individuals included in 134	
																																																								
1 These surface reconstruction errors are likely related to the images having insufficient signal 

intensity to differentiate gray matter from surrounding tissue and CSF, a problem that has been 

shown to be related to age (Salat et al., 2009). FD estimates would likely have been under-
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the analyses are listed in the appendix. Examples of surfaces that failed the visual inspection are 135	

shown in Figure A3. 136	

 Demographics (for the individuals that were included in the analyses) and scan 137	

parameters for the data from each of the sites are as follows. From the Guy’s Hospital sample 138	

(Philips 1.5T), data was used from 251 individuals (147 female), with ages ranging from 20-86. 139	

Scan parameters for the T1 volumes were: TR: 9.8 ms; TE: 4.6 ms; phase encoding steps: 192; 140	

echo train length: 0; reconstruction diameter: 240 mm; flip angle: 8°. From the Hammersmith 141	

Hospital sample (Philips 3T), data was used from 129 individuals (81 female), with ages from 142	

20-81. Scan parameters for the T1 volumes were: TR: 9.6 ms; TE: 4.6 ms; phase encoding steps: 143	

208; echo train length: 208; reconstruction diameter: 240 mm; flip angle: 8°. From the Institute 144	

of Psychiatry sample (General Electric 1.5T), data was used from 47 individuals (32 female), 145	

with ages from 21-78. Scan parameters for the volumes collected at this site are not available. 146	

 147	

Preprocessing of the Structural Data 148	

Prior to the fractal dimensionality analyses, the structural MRIs for all 581 scan volumes was 149	

processed using FreeSurfer 5.3.0 on a machine running CentOS 6.6 (Fischl, 2012; Fischl & Dale, 150	

2000; Fischl et al., 2002). FreeSurfer’s standard pipeline was used (i.e., recon-all) and no 151	

manual edits were made to the surface models As is typically done, gray matter was defined by 152	

segmenting the anatomical volume to determine the white matter surface (white-gray interface) 153	

and the pial surface (gray-cerebrospinal fluid [CSF] interface).  154	

 Gyrification index was calculated using FreeSurfer, as described in Schaer et al. (2012). 155	

Briefly, gyrification index is calculated by estimating a smooth surface contour that wraps 156	
																																																																																																																																																																																			
estimated for these individuals, and would have potentially led to over-estimation of age-related 

differences in FD.  
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around the pial surface, where the gyrification index is the ratio of a regional surface area for the 157	

pial surface to this smoothed outer surface (i.e., a convex hull).  158	

 159	

Calculating Fractal Dimensionality 160	

In fractal geometry, several approaches have been proposed to quantify the ‘dimensionality’ or 161	

complexity of a fractal. The approach here calculates the Minkowski–Bouligand dimension, 162	

which in most cases is also equivalent to the Hausdorff dimension (see Mandelbrot, 1967). 163	

Several algorithms have been proposed for calculating this dimensionality measure (see 164	

Fernandez & Jelinek, 2001), two of which have been implemented in the toolbox we developed 165	

for these analyses: the box-counting algorithm and the dilation algorithm. 166	

 The box-counting algorithm (Caserta et al., 1995; Mandelbrot, 1982) involves 167	

considering the 3D structure within a fixed grid, and counting how many grid ‘boxes’ (i.e., 168	

voxels) contain portions of the surface of the structure (Figure A2). The size of the grid is then 169	

increased, and the number of filled boxes is counted again. By using multiple box sizes and 170	

obtaining their respective counts, a relationship can be determined, which is related to the 171	

complexity of the structure. These two values will follow a power-law relationship, and the 172	

exponent will relate to the structure’s complexity, as illustrated in Figures 1 and 2B. Re-plotting 173	

the box size and related counts in log-log space and taking the additive inverse of the slope 174	

produces the fractal dimensionality of the structure. Thus, the corresponding equation is: 175	

 176	
Note, the box-counting method is similar to the line-segment method originally proposed to 177	

describe the complexity of intricate two-dimensional shapes (coastlines) (see Mandelbrot, 1967).  178	

FDf = ��log2(Count)

�log2(Size)
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 In Figure 1 we illustrate the procedure for calculating the fractal dimensionality of a 179	

complex 2D structure, here the coastline of Germany. Using the box-counting method, we 180	

determined the number of boxes that would fit the edge (‘surface’) of the structure using various 181	

sizes of boxes. Plotting the relationship between the number of counted boxes and the size of the 182	

boxes follows a power-law relationship, but re-plotting the values in log-log space yields a 183	

straight line. The slope of this line is the fractal dimensionality of the structure. Figure 1 shows 184	

that this procedure can be used for either the edge/‘surface’ of the complex structure, which we 185	

refer to as FDs, or can be calculated including the ‘filled’ space within the structure, which we 186	

refer to as FDf. 187	

 188	

 189	
Figure 1. Illustration of how fractal dimensionality is measured from a 2D structure.  190	

 191	
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 192	
Figure 2. Illustration of how fractal dimensionality is measured from a 3D structure. Panel 193	
A shows the filled boxes that are counted at each box size (corresponding to FDf), shown as axial 194	
slices from the middle of the brain and as 3D surface volumes, for the dilation algorithm. Panel 195	
B plots the number of counted, filled boxes at each box size (left), and re-plotted in log-log 196	
space. The fractal dimensionality is the slope of the line in log-log space. All brain images are 197	
shown from IXI002, 35 year-old female, from the IXI dataset. 3D surfaces are rendered using the 198	
pipeline described in Madan (2015). 199	

 200	

 Most prior studies of cortical complexity have used the box-counting algorithm (e.g., Im 201	

et al., 2006; King et al., 2009, 2010; Thompson et al., 1996). Here we also implemented the 202	
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dilation algorithm, where each box/voxel is replaced with a cube of a given box size (i.e., 203	

‘dilated’). This was implemented using a 3D-convolution operation (convn in MATLAB). 204	

Although prior studies have implemented dilation using spheres (e.g., Fernandez & Jelinek, 205	

2001; Free et al., 1996), we used a cube here as this makes the dilation algorithm a more precise 206	

version of the box-counting algorithm. Specifically, whereas the box-counting algorithm usually 207	

uses a fixed grid scan to count if the boxes are filled or not, using the dilation algorithm with a 208	

cube is functionally identical to computing the box-counting algorithm using a sliding grid scan 209	

(i.e., if the grid was shifted in alignment with the structure, and the average of all shifted counts 210	

was taken, see Figure 2A). While a sliding grid space has been used previously (e.g., Goñi et al., 211	

2013), the 3D-convolution operation but can be calculated much faster as it is less 212	

computationally demanding. 213	

 Here we used box sizes (in mm) corresponding to powers of 2 (e.g., de Souza & Pires 214	

Rostirolla, 2011; Fernandez & Jelinek, 2001; Hou et al., 1990), ranging from 0 to 4 (i.e., 2k [k = 215	

0, 1, 2, 3, 4] = 1, 2, 4, 8, 16 mm). For illustrative purposes, Figures 2 and A2 show the steps for 216	

each of the algorithms for the first participant in the IXI dataset, where the filled volume is 217	

counted (FDf), rather than just the surface (described further below). Figure 2A shows axial 218	

slices from the middle of the brain (i.e., the middle slice in native space), corresponding to the 219	

dilation algorithm at the box sizes we considered here. The 3D volumes corresponding to each 220	

level box size are also shown in Figure 2A. As described earlier, FD is calculated based on the 221	

number of boxes (voxels) that are filled at each box size. As shown in the left panel of Figure 222	

2B, as box size increases, this value decreases as volume of each box can contain more of the 223	

structure. After taking the log of both the box size and counting the boxes filled, we obtain the 224	

fractal dimensionality.  225	
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 To ensure that our obtained fractal dimensionality values were valid, we computed the 226	

dimensionality of a set of benchmark volumes, i.e., simulated phantoms. The details of these 227	

benchmark analyses are reported in the Appendix. In these analyses we also found that the 228	

dilation algorithm yielded slightly more robust fractal dimensionality values; thus, all of the 229	

fractal dimensionality results reported here were calculated using the dilation algorithm.   230	

 231	

Relationship with Intracranial Volume 232	

Mathematically, fractal dimensionality (FD) is scale-invariant and should not be related to 233	

intracranial volume (ICV); it is possible, however, that biological constraints may cause FD and 234	

ICV to be correlated, e.g., smaller ICV space results in a relative increase in cortical complexity. 235	

Here we sought to determine if FD is correlated with ICV, such that we can appropriately control 236	

for this relationship, if it exists. We estimated ICV using FreeSurfer (Buckner et al., 2004), 237	

which has been shown to correspond well with manual tracing (Sargolzaei et al., 2015). ICV was 238	

only weakly related to age differences [r(416) = –.190, p<.001], though was found to be 239	

correlated with sex [r(416) = –.572, p<.001].  240	

Analyses indicated that ICV correlated only weakly with either measure of fractal 241	

dimensionality of the cortical ribbon [ICV↔FDs: r(425) =.213, p<.001; ICV↔FDf: r(425) 242	

=.178, p<.001]. These relationships were not affected by additionally controlling for effects of 243	

sex and site [ICV↔FDs: rp(420) =.194, p<.001; ICV↔FDf: rp(420) =.167, p<.001]. As such, it 244	

does not appear that ICV and FD are meaningfully related. 245	

 246	

Data Analysis 247	

Previous studies have observed sex differences in cortical thickness (e.g., Herron et al., 2015; 248	

Sowell et al., 2007) and fractal dimensionality (Luders et al., 2004), but not gyrification 249	
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(Hogstrom et al., 2013). Additionally, it is likely that scanning the same individual at a different 250	

scanner site would yield differences in estimates of brain morphology (e.g., see Dickerson et al., 251	

2008; Han et al., 2006; Iscan et al., 2015; Jovicich et al., 2013). As such, all of the correlations 252	

reported were conducted as partial correlations, controlling for effects of sex and site. 253	

 254	

Results 255	

Cortical Ribbon 256	

We first examined correlations between the individuals’ age and the complexity of the cortical 257	

ribbon, i.e., unparcellated gray matter. In FreeSurfer, the cortical ribbon is output as an 258	

intermediate file during the analyses (ribbon.mgz). 259	

 260	

Cortical complexity. As shown in Figure 3A, cortical complexity, as quantified as the fractal 261	

dimensionality of the filled volume (FDf) robustly decreased as a function of age [age↔FDf: 262	

rp(425) = –.732, p<.001]. Convergent with prior findings (King et al., 2010), the relationship was 263	

weaker when we instead used the fractal dimensionality of the surface (FDs) [age↔FDs: rp(425) 264	

= –.719, p<.001]. Nonetheless, the two fractal dimensionality measures were highly correlated 265	

[FDf↔FDs: rp(425) = .982, p<.001]. Figure 4 shows the cortical surface for individuals with the 266	

high and low FDf values. By comparing these sets of cortical surfaces, it is qualitatively 267	

observable that these differ in cortical complexity. The surfaces for these individuals are 268	

viewable in an online interactive viewer at: http://brain3d.cmadan.com/IXI-FD/. 269	

 270	
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 271	
Figure 3. Fractal dimensionality (FDf) for the individuals in the IXI dataset. Panel A shows 272	
the scatter plot of age and FDf for the cortical ribbon, along with the correlation and slope. 273	
Scatter plots of age and FDf for each lobe, are shown in panel B, along with the respective 274	
correlations and slopes. 275	

 276	

 277	

Figure 4. Cortical surfaces for individuals with high and low FDf values, along with their 278	
demographic information. Surfaces for these individuals also viewable in an online interactive 279	
viewer at: http://brain3d.cmadan.com/IXI-FD/. 280	
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 281	

Other cortical measures. For comparison, we calculated the relationship between whole-brain 282	

mean cortical thickness and gyrification index. Cortical thickness estimates were calculated as 283	

the average of the distance from the white matter surface to the closest possible point on the pial 284	

surface, as calculated using the standard FreeSurfer pipeline. Using the output from FreeSurfer 285	

for each hemisphere, we averaged the mean cortical thickness for each hemisphere as a weighted 286	

average, accounting for hemispheric differences in surface area, yielding an estimate of whole-287	

brain mean cortical thickness; a similar procedure was used to estimate whole-brain gyrification 288	

index.  289	

As expected, both whole-brain mean cortical thickness and gyrification index decreased 290	

with age [age↔CT: rp(425) = –.603, p<.001; age↔GI: rp(425) = –.494, p<.001] (Figures 5A and 291	

6A), however, both of these relationships were qualitatively weaker than that found with fractal 292	

dimensionality of the filled volume. Nonetheless, cortical thickness and gyrification index were 293	

only weakly with each other, suggesting that the two cortical measures quantified unique sources 294	

of inter-individual variability [CT↔GI: rp(425) = .228, p<.001].  295	

 Next, we quantitatively evaluated how the two extant measures related to fractal 296	

dimensionality. While mean cortical thickness was strongly correlated with both measures of 297	

fractal dimensionality, it was more strongly correlated with the fractal dimensionality of the 298	

filled volume than of the surface [CT↔FDf: rp(425) = .865, p<.001; CT↔FDs: rp(425) = .783, 299	

p<.001]. Conceptually, the main difference between the two measures of fractal dimensionality 300	

is that FDf more directly incorporates the volume of the gray matter, suggesting that FDf captures 301	

more of the inter-individual variability in cortical volume and thickness than FDs. To test this 302	

relationship further, we tested if FDf captured age-related variability above that explained by 303	

mean cortical thickness, and vice versa. Using partial correlations, we found that FDf 304	
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significantly decreased with age, even after accounting for mean cortical thickness [rp(424) = –305	

.525, p<.001]. Mean cortical thickness did not decrease with age, above what could be explained 306	

by FDf [rp(425) = .087, p=.075]. However, despite both partial correlations being significant, 307	

these results suggest that FDf is a more sensitive quantitative measure of age-related brain 308	

atrophy than whole-brain mean cortical thickness. 309	

 310	
Figure 5. Mean cortical thickness for the individuals in the IXI dataset. Panel A shows the 311	
scatter plot of age and whole-brain mean cortical thickness, along with the correlation and slope. 312	
Scatter plots of age and mean cortical thickness for each lobe, are shown in panel B, along with 313	
the respective correlations and slopes. 314	

 315	

 Gyrification index was strongly correlated with both measures of fractal dimensionality 316	

[GI↔FDf: rp(425) = .626, p<.001; GI↔FDs: rp(425) = .702, p<.001]. Using partial correlations, 317	

we found that FDf was still strongly correlated with age, even after accounting for the 318	
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gyrification index [rp(424) = –.623, p<.001]. In contrast, gyrification index was not correlated 319	

with age, above what could be explained by FDf [rp(424) = –.066, p=.17]. Thus, whole-brain 320	

fractal dimensionality appears to better quantify age-related cortical atrophy than either whole-321	

brain cortical thickness or gyrification index. 322	

 323	

 324	
Figure 6. Gyrification index for the individuals in the IXI dataset. Panel A shows the scatter 325	
plot of age and whole-brain gyrification index, along with the correlation and slope. Scatter plots 326	
of age and mean gyrification index for each lobe, are shown in panel B, along with the respective 327	
correlations and slopes. 328	

 329	

Comparing our results with those in the extant literature, in a sample of 70 individuals 330	

(35 Alzheimer’s patients and 35 age-matched healthy controls), King et al. (2010) found the 331	

correlations between fractal dimensionality of the cortical ribbon (i.e., filled volume) and cortical 332	
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thickness and gyrification index to be r=.832 and r=.555, respectively. In a sample of over 400 333	

healthy adults across the lifespan, here we found these same correlations for cortical thickness 334	

and gyrification index to be rp=.863 and rp=.626, respectively. Thus, our calculations relating 335	

fractal dimensionality to other cortical measures appear to be in-line with prior findings, but also 336	

demonstrate that fractal dimensionality is more sensitive to age-related differences in brain 337	

morphology than either cortical thickness or gyrification index. The relatively weak correlation 338	

between thickness and gyrification also corresponds well to King et al.’s results, r=.184, whereas 339	

we found this relationship to be rp=.228. 340	

 341	

Regional Complexity 342	

It is well known that age-related cortical atrophy, as measured by cortical thickness, does not 343	

occur homogenously across the cortical surface. Recent cross-sectional and longitudinal studies 344	

that investigated age-related differences in cortical thickness have found that the two lobes most 345	

affected are the frontal and temporal lobes, while the occipital lobe is the least affected (e.g., 346	

Fjell et al., 2009a, 2009b; Hogstrom et al., 2013; Hutton et al., 2009; Salat et al., 2004; Sowell et 347	

al., 2003)2. Yet, the regional heterogeneity in age-related differences may vary depending on the 348	

metric used. For instance, Hogstrom et al. (2013) found that while frontal and temporal lobes 349	

were most correlated with age when cortical thickness was measured, the parietal lobe was most 350	

correlated with age when gyrification index was used.  Here, we compared the effect of age on 351	

cortical complexity, cortical thickness, and gyrification index for each lobe. 352	

 353	

																																																								
2 However, some longitudinal studies suggest that the frontal and parietal lobes are the most 

affected by aging (e.g., Crivello et al., 2014; Resneck et al., 2003; Thambisetty et al., 2010). 
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Cortical complexity. We calculated the fractal dimensionality of parcellations of gray matter 354	

corresponding to each lobe. This was done by using the Desteriux et al. (2010) parcellation 355	

protocol, built into the standard FreeSurfer pipeline (aparc.a2009s+aseg.mgz), where each 356	

of the 148 parcellated regions were dummy-coded by lobe. The provided MATLAB toolbox is 357	

designed to group together parcellated regions assigned the same dummy-coded label into a 358	

binarized volume prior to calculating the fractal dimensionality. As FDf estimates for each lobe 359	

were highly correlated across hemispheres [frontal: r(425) = .971, p<.001; parietal: r(425) =.913, 360	

p<.001; temporal: r(425) = .903, p<.001; occipital: r(425) =.877, p<.001], here we used bilateral 361	

structures for each lobe in subsequent analyses. As shown in Figure 3B, we found age-related 362	

decreases in fractal dimensionality to be highest in the frontal lobe [rp(420) = –.740, p<.001], 363	

followed by the parietal lobe [rp(420) = –.671, p<.001], while the temporal lobe was the least 364	

associated with age-related differences [rp(420) = –.555, p<.001].  365	

 366	

Other cortical measures. It was surprising that we found the temporal lobe to be least affected 367	

by age-related differences, as measured using fractal dimensionality analyses. However, this 368	

discrepancy could be due to the use of a different measure of age atrophy, rather than cortical 369	

thickness, or it could be because the individuals in the IXI dataset exhibited less temporal 370	

atrophy than is usually found. To distinguish between these two possibilities, we also calculated 371	

the mean cortical thickness for each lobe, and similarly correlated each of these sets of values 372	

with the individuals’ age. As shown in Figure 5B, differences in cortical thickness were most 373	

pronounced in the frontal lobe [rp(420) = –.634, p<.001], followed by the temporal lobe [rp(420) 374	

= –.574, p<.001].  375	

 As shown in Figure 6B, we additionally calculated the gyrification index for each lobe 376	

and found age-related differences to be greatest in the parietal lobe [rp(420) = –.535, p<.001], 377	
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and relatively comparable in the frontal and temporal lobes [frontal: rp(420) = –.443, p<.001; 378	

temporal: rp(420) = –.432, p<.001]. Thus, lobe gyrification correlated more weakly with age than 379	

cortical thickness, and was most pronounced in a different lobe. These results are consistent with 380	

prior findings. Hogstrom et al. (2013) similarly found weaker correlations with gyrification index 381	

than cortical thickness and found a similar pattern in terms of regional specificity. To provide 382	

further insight into these three measures, Figure 7 shows an example cortical surface along with 383	

the cortical morphology measures associated with each lobe. 384	

 385	

 386	

Figure 7. Cortical surface for participant IXI002 from the IXI dataset, colored by lobe 387	
parcellation, along with cortical surface measures.  388	

 389	

Regional heterogeneity. Given these different patterns of correlations between lobe-wise 390	

estimates of each cortical morphology measure and age, we sought to examine differences in 391	

how these lobe-wise estimates may correlate. For instance, if inter-individual differences in 392	

fractal dimensionality were more homogenous, i.e., more collinear, across the cortex relative to 393	

regional variability in cortical thickness. To assess this, we computed the pairwise correlations 394	

between all of the lobes using each of our three measures. Figure 8 reports these lobe-wise 395	

correlation matrices (i.e., corrgram; Friendly, 2002). 396	
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As shown in Figure 8, the pairwise correlations between lobes were relatively consistent, 397	

between the three measures, with all three showing slightly lower correlations for the frontal 398	

lobe. Averaging across regions (via Fisher’s Z-transform; see Corey et al., 1998) yielded 399	

comparable average correlations for both measures [cortical thickness: rp(420, N=6) = .814, 400	

p<.001; gyrification index: rp(420, N=6) = .798, p<.001; fractal dimensionality: rp(420, N=6) = 401	

.824, p<.001]. As a secondary approach, we also tested if a multivariate approach would be more 402	

sensitive to these potential differences in regional homogeneity by conducted principal 403	

component analyses (PCA) for each set of values (e.g., lobe-wise estimates of cortical thickness). 404	

The first principal component in each case explained between 83% and 86% of the variance (see 405	

Figure 8). Thus, it does not appear that any of the measures exhibits more or less regional 406	

specificity/collinearity than the others, based on lobe-wise parcellated regions. 407	

  408	

 409	

 410	
Figure 8. Lobe-wise homogeneity in cortical structure, as measured using cortical 411	
thickness, gyrification index, and fractal dimensionality (FDf). Triangular grids show pair-412	
wise correlations across lobes. Below each grid is the variance explained by the first principal 413	
component for each cortical measure. 414	

 415	
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Multivariate relationship with age 416	

These differences between regional cortical thickness, gyrification, and complexity suggest that 417	

fractal dimensionality analyses may quantify a different aspect of age-related differences in brain 418	

structure, rather than being merely a co-varying metric. To test this, we conducted a set of 419	

regression models, all with the dependant variable of age (controlling for effects of sex and site), 420	

using different sets of predictors related to cortical thickness, gyrification index, and fractal 421	

dimensionality (FDf). Here we report the amount of variability in age explained by each set of 422	

predictors (i.e., R2). Furthermore, we formally compare the fitness of the models using the 423	

Bayesian Information Criterion (BIC), which evaluates model fitness while penalizing models 424	

for having more parameters. As a rule of thumb, if the difference between BIC for two model fits 425	

is less than two, neither of the models’ fit to the data is significantly better (Burnham & 426	

Anderson, 2002, 2004). As absolute BIC values themselves are arbitrary, we subtract the BIC 427	

value for the best model considered from all BIC values and report ΔBIC for each of the models, 428	

as is common practice. As a result, the best model considered is ΔBIC=0.00 by definition. All of 429	

the models are listed in Table 1. 430	

In the first three models, we input whole-brain cortical thickness, gyrification index, or 431	

fractal dimensionality as the predictors, respectively. These three models directly correspond to 432	

the correlations shown in Figures 3A, 5A, and 6A. In the fourth model, we used all three—433	

whole-brain estimates of cortical thickness, gyrification index, and fractal dimensionality—as 434	

predictors to further test if there is independent variance explained by each metric, even after 435	

penalizing for the additional degree of freedom in the model. We found that whole-brain fractal 436	

dimensionality explained more variance (i.e., R2) than the other two single predictor models 437	

[FDf: 51.7%; CT: 33.5%; GI: 20.6%]. Combining the three measures of cortical structure led to a 438	

slight increase in the amount of variability explained [51.7%]; however this increase did not 439	
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produce a significantly better fit relative to its use of an additional parameter (i.e., ΔBIC between 440	

the lowest two models was greater than two). 441	

In the next set of models, we first used lobe-wise measures of cortical thickness, 442	

gyrification index, or fractal dimensionality, respectively (models 5-7). In the eighth model, we 443	

considered lobe-wise predictors for all three measures, yielding a total of twelve predictors. 444	

Again we found that the fractal dimensionality explained more of the variance in age than the 445	

other two measures, though there was still an additional benefit of combining all three measures. 446	

The lobe-wise regional estimates of fractal dimensionality also provided a small but significant 447	

improvement in predictive value relative to the whole-brain estimate (i.e., comparing models 7 448	

and 3). 449	

Many studies have found that age-related differences in cortical thickness are not linearly 450	

related to age; often a quadratic term is additionally included in the regression model (e.g., 451	

Crivello et al., 2014; Hogstrom et al., 2013; McKay et al., 2014; Sowell et al., 2003; Thambisetty 452	

et al., 2010; Walhovd et al., 2011), however, interpreting the beta coefficients must be done with 453	

caution (see Fjell et al., 2010). Hogstrom et al. (2013) also found significant quadratic 454	

relationships between age and gyrification index, suggesting that including these non-linear 455	

effects would be beneficial to include in our regression models here. To this end, we re-ran the 456	

above eight models, incorporating both linear and quadratic terms for each of the included 457	

predictors. 458	
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Model Model Parameters  Model Fitness 

 Relationship Regions Measure  N. Predictors Var. Explained (R2) ΔBIC 

1 Linear Whole-brain Cortical Thickness  1 33.55% 135.91 

2  (Cortical Ribbon) Gyrification Index  1 20.61% 211.88 

3   Fractal Dimensionality (FDf )  1 51.66% 0.00 

4   [ All 3 ]  3 51.72% 11.63 

5 Linear Lobe-wise Cortical Thickness  4 38.99% 117.64 

6  Parcellations Gyrification Index  4 26.35% 198.02 

7   Fractal Dimensionality (FDf )  4 53.22% 4.20 

8   [ All 3 ]  12 56.54% 21.23 

9 Linear & Quadratic Whole-brain Cortical Thickness  2 33.59% 141.71 

10  (Cortical Ribbon) Gyrification Index  2 20.62% 217.90 

11   Fractal Dimensionality (FDf )  2 52.13% 1.90 

12   [ All 3 ]  6 52.39% 23.86 

13 Linear & Quadratic Lobe-wise Cortical Thickness  8 38.66% 119.91 

14  Parcellations Gyrification Index  8 26.14% 199.23 

15   Fractal Dimensionality (FDf )  8 53.28% 3.69 

16   [ All 3 ]  24 59.53% 63.47 

Table 1. Multivariate regression models measuring the relationship between cortical thickness, gyrification index, and fractal 459	

dimensionality with age. Models with ΔBIC values with a difference greater than 2 suggest that the model with the lower value is a 460	

significantly better fit. See main text for further details.461	
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In nearly all of the eight cases, the models that included the quadratic component 462	

only slightly outperformed the equivalent models that only contained a linear component; 463	

this benefit was not sufficient to compensate for the additional parameters used (i.e., 464	

BIC). Across the 16 models, the linear-only whole-brain fractal-dimensionality model 465	

(model 3) explained the most variability in age, relative to the number of parameters it 466	

used. Specifically, it was able to explain 51.7% of the variance with only one parameter. 467	

The highest amount of variability explained, of all of the models considered, was 59.5%. 468	

Figure 9 summarizes our findings of age-related differences across the three 469	

structural measures, for the entire cortical ribbon and individual lobe-wise parcellations.  470	

 471	

 472	

 473	
Figure 9. Relationship between each cortical structure measure (cortical thickness, 474	

gyrification index, and fractal dimensionality [FDf]) with age, for the entire cortical 475	

ribbon and individual lobe-wise parcellations. Each bar represents the R2 for a 476	

quadratic regression model with age.  477	
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Considering the influence of age-related artifacts in MRI acquisition 478	

Recent research has demonstrated that head motion during MRI acquisition can lead to 479	

lower estimates of cortical thickness (Reuter et al., 2015). This is of particular relevance 480	

when investigating the association between brain structure and aging, as older adults tend 481	

to move their heads during MRI scanning more than young adults (Andrews-Hanna et al., 482	

2007; Salat, 2014; Van Dijk et al., 2012). Thus, MRI measurements of cortical thickness 483	

would be influenced by both objectively thinner cortex and age-related differences in 484	

head motion during MRI acquisition. Since the cortical complexity calculations presented 485	

here are based on the cortical ribbon (or subregions of it), it is likely plausible that FDf 486	

would also be affected by head motion. As a coarse approach to evaluate whether the 487	

age-related differences in cortical complexity would remain even without age differences 488	

in motion, we additionally computed fractal dimensionality from post-mortem structural 489	

MRIs (thus void of motion) from individuals who donated their brain to science, obtained 490	

from the Allen Human Brain Atlas. Currently there are MRIs available from eight donors 491	

(who did not have any psychological or neurological disorders), however FreeSurfer was 492	

unable to estimate the surface for one of the donors (H0351.1009). The seven donors 493	

used in these analyses, and their demographic details, are: H0351.1012 (31M), 494	

H0351.1015 (49F), H0351.1016 (55M), H0351.2001 (24M), H0351.2002 (39M), 495	

H0351.2003 (48F), H372.0006 (44M). The structural MRIs are freely available from: 496	

http://human.brain-map.org/mri_viewers/data (see Allen Institute for Brain Science, 497	

2013, for the MRI acquisition parameters). 498	
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 As before, we calculated six measures: fractal dimensionality (FDf), mean cortical 499	

thickness, and gyrification index across the entire cortical ribbon, and mean cortical 500	

thickness and FDf for each lobe.  501	

Even in this small sample, we did observe age-related decreases in FDf (Figure 502	

10A-B). Here we also found the rank-order of FDf values across lobes to be consistent 503	

with our findings in the IXI dataset (i.e., Figure 3B): frontal, temporal, parietal, occipital. 504	

As shown in Figures 10C-D, age-related differences in mean cortical thickness 505	

did not appear to decrease with age. As this is cross-sectional data from a small sample, 506	

this is not necessarily concerning. The rank-order of cortical thickness across the lobes 507	

did match with our findings in the IXI dataset (i.e., Figure 5B): temporal, frontal, parietal, 508	

occipital. Figures 10E-F show that we still did observe age-related declines in 509	

gyrification, and that the rank-order across the lobes was again consistent with our 510	

findings in the IXI dataset (i.e., Figure 6B): temporal, parietal, frontal, occipital. 511	

 Thus, this dataset provides preliminary evidence that age-related differences in 512	

cortical complexity (FDf) are present even when head motion cannot influence the MRI 513	

acquisition, and potentially also suggests that FDf may be more robust to age-related 514	

differences in brain morpohology than mean cortical thickness. 515	

 516	
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 517	
Figure 10. Mean cortical thickness, gyrification index, and fractal dimensionality 518	
(FDf) for the individuals in the Allen Human Brain Atlas dataset. Fractal 519	
dimensionality for the whole-brain and each lobe are shown in panels A and B. Mean 520	
cortical thickness and gyrification index for the whole-brain and each lobe are shown in 521	
panels C-F. 522	

 523	

Discussion 524	

Here we demonstrate that fractional dimensionality of gray matter is sensitive to age-525	

related differences in cortical structure and, in fact, can be more sensitive to age-related 526	

differences than other metrics of cortical integrity such as cortical thickness or 527	

gyrification. We also provide evidence that fractional dimensionality is not redundant 528	

with these other metrics; multivariate regression models that include multiple metrics 529	

provide the best ability to track age-related differences. Fractional dimensionality 530	
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therefore appears to be a useful metric for studies of cognitive aging, and with this in 531	

mind, we additionally provide a new toolbox to facilitate other researchers incorporating 532	

fractional dimensionality into their investigations of age-related cognitive differences. 533	

Previous research has shown that fractal dimensionality of the filled volume, e.g., 534	

cortical ribbon, is related to both cortical thickness and gyrification index (King et al., 535	

2009, 2010). However, our findings clearly show that fractal dimensionality also indexes 536	

other facets of cortical morphology that result in a stronger correlation with age: Age-537	

related correlations with each of the cortical measures were notably higher for fractal 538	

dimensionality [FDf: rp=–.732; CT: rp=–.603; GI: rp=–.494]. We speculate that one 539	

possibility is that measurements of cortical complexity are better able to capture 540	

differences in the organization of cortical regions than other measures such as cortical 541	

thickness. It is also likely that fractal dimensionality is less susceptible to some artifacts 542	

than other measures, making it more sensitive to age-related differences.  For example, 543	

while measures of cortical structure relate to age-related atrophy and cognitive abilities, 544	

they also are influenced by ‘nuisance’ factors such as hydration (Streitbürger et al., 2012) 545	

and head movement (e.g., Reuter et al., 2015). It is plausible that cortical thickness may 546	

be more readily influenced by these types of state changes than gyrification and cortical 547	

complexity. Thus, considering several metrics (e.g., thickness, gyrification, and 548	

complexity) will allow researchers to better index relevant differences in cortical 549	

structure. 550	

Our regional analyses present an additional interesting finding: the degree of age-551	

related differences in morphology are not consistent across measures. As others have 552	

found, the frontal and temporal lobes were more affected by age-related differences than 553	
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the parietal or occipital lobes, when measured using estimates of cortical thickness (but 554	

see footnote 1). However, age-related differences were most prevalent in the parietal lobe 555	

when measured using gyrification. There were some commonalities across measures: 556	

With both cortical thickness and gyrification, we found that the occipital lobe was least 557	

affected by age-related differences. We observed a different pattern with fractal 558	

dimensionality, where the temporal lobe was the least affected by age-related differences. 559	

These differences provides evidence that fractal dimensionality is not merely pooling 560	

information that otherwise would be quantified by cortical thickness or gyrificiation 561	

index, but is also capturing additional age-related differences in the cortical structure.  562	

In addition to correlating with age, fractal dimensionality has been shown to 563	

correlate with inter-individual variability in cognitive measures. In a cohort of over 200 564	

adults aged about 68 years old, Mustafa et al. (2012) found that individuals with greater 565	

whole-brain white-matter complexity had higher fluid intelligence scores and less 566	

evidence of age-related cognitive decline (also see Sandu et al., 2014). King et al. (2010) 567	

also provide evidence that fractal dimensionality of the cortical ribbon correlated with 568	

scores on a cognitive battery, and that this correlation was qualitatively stronger than 569	

comparable correlations using cortical thickness and gyrification index. Im et al. (2006) 570	

observed correlations between whole-brain fractal dimensionality and both IQ and years 571	

of education, though lobe-wise correlations were not significant. Interestingly, the 572	

correlations with education were slightly stronger than those with IQ, potentially 573	

suggesting an influence of education-related development on cortical complexity. These 574	

findings support the use of cortical complexity as a sensitive metric not only for age-575	
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related differences in brain structure but also for capturing relations between brain 576	

structure and cognitive function. 577	

We believe that fractal dimensionality provides an important additional measure 578	

of brain structures, providing us with a means to consider differences in the shape of 579	

structures, rather the size (e.g., volume, thickness). While here we measured changes in 580	

relatively coarse parcellations of the cortex (i.e., lobes), more fine-grained parcellations 581	

of cortical and subcortical regions can be calculated, and may be particularly useful when 582	

relating FD estimates to cognitive measures. As a proof-of-principle, in the Appendix we 583	

report age-related differences in volume and FDf for the hippocampus (see Figure A4). 584	

While some studies have been done comparing FD between healthy controls and patient 585	

populations, these were done using whole-brain measures and could also benefit from 586	

more fine-grained parcellations. It is also unclear how head motion may affect estimates 587	

of FD. To this end, we additionally provide our code as a MATLAB toolbox such that 588	

other researchers can also readily calculate fractal dimensionality in their analyses. 589	

 590	

MATLAB Toolbox 591	

Given the utility of fractional dimensionality, we provide a freely available MATLAB 592	

toolbox to calculate the fractal dimensionality of the cortical ribbon or parcellated regions 593	

of cortex, using intermediate files generated as part of the standard FreeSurfer analysis 594	

pipeline (ribbon.mgz, aparc.a2009s+aseg.mgz), or directly from other 3D 595	

volumes. The toolbox includes options to use different masking files (and related 596	

documentation on making the masks) and is implemented to use either the box-counting 597	

or dilation algorithms and to use either the filled volume or just the surface of the 598	



Cortical complexity from fractal dimensionality  32 

structure. The toolbox can easily be run on all of the participants in a FreeSurfer subject 599	

folder, or just on specified subject folders. The toolbox can be downloaded from: 600	

http://cmadan.github.io/calcFD/. 601	

The MATLAB toolbox also includes several functions designed to improve 602	

functionality, such as the automatic ‘cropping’ of the volume space to the smallest 603	

bounding box necessary to contain the volume (while leaving sufficient space for the 604	

dilation of the volume), improving computation time drastically. Example files are also 605	

provided to aid in using the toolbox for the user’s needs. All of the presented fractal 606	

dimensionality measures were obtained using the provided toolbox without any further 607	

modification. On our machine, the FD calculations, using the dilation algorithm on filled 608	

volumes (what most of the results are based on), took an average of 11 seconds per 609	

participant for the whole-brain and 96 seconds per participant to determine the FDf for 610	

each of the four bilateral lobes. As a general recommendation, we suggest using the 611	

dilation algorithm on the filled structures.  612	

613	
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APPENDIX 934	

Benchmark Performance 935	

To evaluate the performance of the fractal dimensionality calculations, ten simulated 936	

phantom volumes were constructed in MATLAB and saved in FreeSurfer’s native .mgz 937	

format, and are provided with the toolbox.  938	

The first two structures were a sphere with a diameter of 200 voxels and a cube 939	

with a width of 200 voxels. The next volumes were constructed to be a more complex 940	

structure, the Menger sponge. Briefly, a Menger sponge is a cube-based 3-dimensional 941	

fractal, where the cube is divided into a 9×9×9 grid and the middle sub-cubes from every 942	

face are removed, as well as the center-most sub-cube. Thus, of the 27 sub-cubes (i.e., 943	

93), only 20 remain. One iteration of this procedure is shown in Figure A1. This 944	

procedure can be infinitely iteratively repeated for each of the sub-cubes, theoretically 945	

producing a structure with infinite surface area, but zero volume. The Menger sponge is 946	

related to two 2-dimensional fractals, the Cantor set and the Sierpinski carpet. Here we 947	

constructed three Menger sponges, each with a width of 200 voxels: first-iteration, 948	

second-iteration, and fourth-iteration. (A cube can be considered a zero-iteration Menger 949	

sponge.) These five structures are shown in the upper row of Figure A1.  950	

 We additionally computed the fractal dimensionality of several more complex 951	

structures, as shown in the lower row of Figure A1. The first three of these structures 952	

were selected because they have been used as ‘standard’ benchmark objects in the 3D 953	

modelling and rendering literature: the Newell Teapot, Stanford Bunny, and Stanford 954	

Armadillo (e.g., Crow, 1987; Labatut et al., 2009). (Note, the teapot has a wall thickness 955	

and is hollow inside, i.e., it is not a ‘filled’ teapot.) A mug was included as a simple 956	
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everyday object. The “Fiber Cup” was included as a more complex object that was 957	

developed as a ground-truth phantom volume for DTI analyses. The structural volume 958	

used here was reproduced from Figure 1 of Fillard et al. (2011) as we were unable to 959	

obtain the original 3D volume. (The thickness of our volume does not match the original 960	

as it was reproduced from only a 2D image.) 961	

 962	

 963	

Figure A1. 3D renderings of the benchmark structures used. See main text and Table 964	
1 for further details. 965	

 966	

 Table A1 shows the benchmark statistics for each of these structures. Note, 967	

because we are calculating the surface area in voxels, the calculations are not the same as 968	

if the structures had surfaces with no thickness. For instance, in the cube, voxels that are 969	

part of the upper edge of a side should not be counted again as part of the top. As a result, 970	
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the surface area of the cube in voxels would not be 240,000 (i.e., 2002×6), but is instead 971	

237,608 (i.e., 2003−1983). Similarly, because surface area is calculated as ‘surface’ 972	

voxels, the SA/V ratio cannot become smaller than 1, i.e., every surface voxel counts 973	

towards the volume and there are no ‘inner’ voxels. 974	

 Though fractal dimensionality is usually calculated only based on the surface of 975	

the structure, King et al. (2010) found that additionally counting the ‘filled’ volume can 976	

lead to better measurements of age-related differences in cortical complexity, an 977	

approach that has also been used in a number of other studies (e.g., Esteban et al., 2009; 978	

Im et al., 2006; Kiselev et al., 2003). Here we computed two measures of fractal 979	

dimensionality, one based on only the surface structure (FDs) and one that also includes 980	

the filled volume (FDf). 981	

  982	
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 Geometric  Box-Counting  Dilation 
 

Structure L V SA V/SA  FDs FDf  FDs FDf 
           

Sphere 200 4,187,854 186,053 22.51  1.99 2.89  2.00 2.89 

Cube 200 8,000,000 237,608 33.67  1.97 2.97  2.00 2.92 

Menger-1 200 5,961,392 316,792 18.82  1.98 2.91  2.00 2.88 

Menger-2 200 4,447,440 517,016 8.60  2.02 2.81  2.03 2.78 

Menger-4 200 2,477,920 1,921,376 1.29  2.46 2.60  2.49 2.56 

           
Newell Teapot 225 1,119,692 90,899 12.32  2.03 2.81  2.02 2.81 

Stanford Bunny 221 2,211,262 167,897 13.17  2.03 2.81  2.01 2.82 

Stanford Armadillo 225 825,402 121,628 6.77  2.03 2.68  2.02 2.69 

Mug 220 1,113,980 340,802 3.27  2.14 2.53  2.13 2.56 

Fiber Cup  223 245,102 69,926 3.41  1.96 2.40  2.00 2.46 

Table A1. Benchmark statistics for each of the benchmark structures (shown in 983	

Figure A1). The geometric properties of each structure include the length of the longest 984	

dimension (L), volume (V), surface area (SA), and the ratio of volume to surface area 985	

(V/SA). Fractal dimensionality was calculated using four different methods, using either the 986	

box-counting or dilation algorithms, and either only counting the surface voxels of the 987	

structure (FDs) or also including the filled volume of the structure (FDf).988	
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 Theoretically, a cube should have fractal dimensionality values corresponding to 2 989	

and 3 for the surface and filled volumes, respectively. A sphere should have a surface 990	

fractal dimensionality of 2, and a filled fractal dimensionality slightly below 3. Our 991	

results match with these values well.  992	

 For the Menger sponge volumes, an nth iteration structure, which has infinite 993	

surface area and zero volume, should have a surface fractal dimensionality of 2.73. We 994	

can see that the higher-iteration Menger sponge structures have increasing surface fractal 995	

dimensionality values, but we could not generate higher-iteration structures of 996	

comparable resolution as brain volumes (i.e., constraints of voxel coordinate space). We 997	

also see that the filled fractal dimensionality decreases with higher iterations, as expected. 998	

 Though the theoretical fractal dimensionality values are not known for the 999	

remaining structures, their inclusion is intended to aid the reader in understanding how 1000	

fractal dimensionality relates to a structure’s complexity. Additionally, the simulated 1001	

phantom volumes for all ten structures are included with the toolbox, allowing them to 1002	

serve as benchmarks for future work. 1003	

 1004	

Formal comparison 1005	

To formally compare the two algorithms, box counting and dilation, we generated 3D box 1006	

structures that were based on a random subset of cubes in a 20×20×20 arrangement. For 1007	

each structure, we computed the filled fractal dimensionality (FDf) using both the box-1008	

counting and dilation algorithms. This was repeated for 10,000 simulated structures. 1009	

Generally, the algorithms were highly correlated in their fractal dimensionality 1010	

estimates and deviations were minimal in magnitude [r(9998)=.9997, p<.001; Difference: 1011	
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M (SD) = .0263 (.0096)]. Nonetheless, we did find that the box-counting FDf was nearly 1012	

always higher than the FDf obtained using the dilation algorithm, as shown in Figure A2. 1013	

Logically, this is due to a cumulative rounding error from the box-counting algorithm 1014	

using a fixed grid scan, while the dilation is effectively using a sliding grid scan. This 1015	

bias was higher for structures with more extreme levels of fractal dimensionality (i.e., 1016	

near to either 2 or 3). Based on this comparison, we used the dilation algorithm in the 1017	

reported cortical complexity analyses, though both algorithms are implemented in the 1018	

MATLAB toolbox. 1019	

 1020	

 1021	
Figure A2. Comparison between fractal dimensionality values (FDf) obtained using 1022	
the box-counting and dilation algorithms. Panel A shows axial slices and 3D volumes 1023	
representing the box-counting algorithm (compare with Figure 2A). Panel B shows a 1024	
formal comparison between the two algorithms. 1025	
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 1026	

IXI Dataset 1027	

IDs for the 427 individuals included in the analyses reported here: 002, 012, 014, 015, 1028	

017, 019, 020, 021, 022, 023, 024, 025, 026, 027, 028, 029, 030, 031, 033, 034, 035, 036, 1029	

037, 039, 040, 042, 043, 044, 045, 046, 048, 049, 050, 051, 052, 053, 054, 055, 056, 057, 1030	

058, 060, 061, 062, 063, 064, 065, 067, 068, 069, 070, 071, 073, 074, 075, 076, 077, 078, 1031	

079, 080, 083, 084, 085, 086, 087, 089, 090, 092, 097, 098, 102, 105, 106, 107, 109, 110, 1032	

111, 113, 115, 118, 119, 120, 121, 122, 123, 126, 127, 128, 129, 130, 131, 134, 135, 137, 1033	

138, 140, 141, 142, 143, 144, 145, 148, 150, 151, 153, 154, 157, 158, 159, 160, 161, 163, 1034	

164, 166, 167, 169, 170, 172, 173, 174, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 1035	

188, 189, 191, 192, 193, 195, 196, 197, 198, 200, 201, 202, 204, 205, 206, 207, 209, 212, 1036	

213, 214, 216, 217, 218, 219, 221, 222, 224, 225, 226, 227, 230, 231, 232, 233, 234, 237, 1037	

238, 239, 240, 241, 242, 244, 246, 247, 248, 249, 251, 253, 254, 255, 258, 259, 262, 264, 1038	

265, 266, 268, 269, 270, 275, 276, 277, 278, 279, 280, 282, 284, 285, 286, 287, 289, 290, 1039	

291, 294, 295, 296, 297, 298, 299, 304, 305, 306, 307, 308, 310, 311, 312, 315, 316, 318, 1040	

319, 320, 321, 322, 324, 325, 326, 328, 329, 332, 334, 335, 336, 338, 342, 344, 348, 350, 1041	

351, 353, 354, 356, 357, 358, 359, 360, 362, 363, 364, 365, 367, 368, 369, 370, 371, 372, 1042	

373, 375, 377, 378, 379, 380, 385, 386, 387, 388, 389, 390, 391, 392, 393, 396, 397, 398, 1043	

399, 401, 402, 403, 405, 408, 410, 411, 412, 414, 415, 418, 419, 420, 422, 427, 428, 431, 1044	

433, 434, 436, 437, 438, 439, 441, 442, 444, 445, 446, 447, 449, 450, 451, 452, 453, 454, 1045	

455, 456, 458, 459, 460, 461, 462, 467, 468, 469, 473, 474, 475, 476, 477, 478, 480, 482, 1046	

484, 485, 486, 487, 490, 493, 494, 495, 496, 498, 500, 502, 504, 505, 507, 508, 510, 516, 1047	

517, 522, 524, 525, 526, 527, 528, 531, 532, 534, 535, 536, 538, 539, 543, 544, 546, 547, 1048	
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548, 549, 550, 551, 553, 554, 558, 559, 560, 561, 562, 563, 565, 566, 567, 568, 569, 572, 1049	

573, 574, 575, 576, 577, 578, 579, 582, 586, 587, 588, 591, 592, 593, 594, 595, 598, 601, 1050	

603, 605, 606, 607, 609, 612, 613, 614, 616, 617, 618, 621, 625, 626, 627, 629, 631, 634, 1051	

639, 640, 641, 642, 644, 648, 652, 653, 662 1052	

 1053	

 1054	
Figure A3. Examples of issues with cortical surfaces that resulted in exclusion. Panel 1055	
A shows an example of the surface boundary being too inclusive and including tissue 1056	
surrounding the gray matter; panel B shows an example of the surface reconstruction 1057	
being too restrictive and missing portions of gray matter. 1058	

 1059	

Subcortical Volumes 1060	

As a proof-of-principle, we have calculated the age-related differences in the 1061	

hippocampus, as measured as using volume and FDf. Hippocampal volume was estimated 1062	
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using FreeSurfer, and the sum of the left and right hemisphere volumes was used in the 1063	

analysis. Prior to computing the partial correlation (controlling for sex and site), volume 1064	

was taken as the residual after regressing on ICV (e.g., see Walhovd et al., 2011). Fractal 1065	

dimensionlity (of the filled structure) was calculated based on the bilateral structure, 1066	

using the provided toolbox. We observed age-related differences in both hippocampal 1067	

volume and structural complexity [volume: rp(420) = –.342, p<.001; FDf : rp(420) = –1068	

.273, p<.001]. 1069	

 1070	

Figure A4. Hippocampal volume and fractal dimensionality (FDf) for the 1071	
individuals in the IXI dataset. Panel A shows the scatter plot of age and volume, along 1072	
with the correlation and slope; panel B shows age and FDf. 1073	


