10 research outputs found

    Time-based, Low-power, Low-offset 5-bit 1 GS/s Flash ADC Design in 65nm CMOS Technology

    Get PDF
    Low-power, medium resolution, high-speed analog-to-digital converters (ADCs) have always been important block which have abundant applications such as digital signal processors (DSP), imaging sensors, environmental and biomedical monitoring devices. This study presents a low power Flash ADC designed in nanometer complementary metal-oxide semiconductors (CMOS) technology. Time analysis on the output delay of the comparators helps to generate one more bit. The proposed technique reduced the power consumption and chip area substantially in comparison to the previous state-of-the-art work. The proposed ADC was developed in TSMC 65nm CMOS technology. The offset cancellation technique was embedded in the proposed comparator to decrement the static offset of the comparator. Moreover, one more bit was generated without using extra comparators. The proposed ADC achieved 4.1 bits ENOB at input Nyquist frequency. The simulated differential and integral non-linearity static tests were equal to +0.26/-0.17 and +0.22/-0.15, respectively. The ADC consumed 7.7 mW at 1 GHz sampling frequency, achieving 415 fJ/Convstep Figure of Merit (FoM)

    Time-Based Analog to Digital Converters.

    Full text link
    Low-power, small analog-to-digital converters (ADCs) have numerous applications in areas ranging from power-aware wireless sensing nodes for environmental monitoring to biomedical monitoring devices in point-of-care (PoC) instruments. The work focuses on ultra-low-power, and highly integrated implementations of ADCs, in nanometer-scale complementary metal-oxide-semiconductor (CMOS) very large scale (VLSI) integrated circuit fabrication technologies. In particular, we explore time-based techniques for data conversion, which can potentially achieve significant reductions in power consumption while keeping silicon chip area small, compared to today’s state-of-the-art ADC architectures. Today, digital integrated circuits and digital signal processors (DSP) are taking advantage of technology scaling to achieve improvements power, speed, and cost. Meanwhile, as technology scaling reduces supply voltage and intrinsic transistor gain, analog circuit designers face disadvantages. With these disadvantages of technology scaling, two new broad trends have emerged in ADC research. The first trend is the emergence of digitally-assisted analog design, which emphasizes the relaxation of analog domain precision and the recovering accuracy (and performance) in the digital domain. This approach is a good match to the capabilities of fine line technology and helps to reduce power consumption. The second trend is the representation of signals, and the processing of signals, in the time domain. Technology scaling and its focus on high-performance digital systems offers better time resolution by reducing the gate delay. Therefore, if we represent a signal as a period of time, rather than as a voltage, we can take advantage of technology scaling, and potentially reduce power consumption and die area. This thesis focuses on pulse position modulation (PPM) ADCs, which incorporate time-domain processing and digitally assisted analog circuitry. This architecture reduces power consumption and area significantly, without sacrificing performance. The input signal is pulse position modulated and the analog information is carried in the form of timing intervals. Timing measurement accuracy presents a major challenge and we present various methods in which accuracy can be achieved using CMOS processes. This ‘digital’ approach is more power efficient compared with pure analog solutions, utilized for amplitude measurement of input signals.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64787/1/naraghi_1.pd

    Power efficient, event driven data acquisition and processing using asynchronous techniques

    Get PDF
    PhD ThesisData acquisition systems used in remote environmental monitoring equipment and biological sensor nodes rely on limited energy supply soured from either energy harvesters or battery to perform their functions. Among the building blocks of these systems are power hungry Analogue to Digital Converters and Digital Signal Processors which acquire and process samples at predetermined rates regardless of the monitored signal’s behavior. In this work we investigate power efficient event driven data acquisition and processing techniques by implementing an asynchronous ADC and an event driven power gated Finite Impulse Response (FIR) filter. We present an event driven single slope ADC capable of generating asynchronous digital samples based on the input signal’s rate of change. It utilizes a rate of change detection circuit known as the slope detector to determine at what point the input signal is to be sampled. After a sample has been obtained it’s absolute voltage value is time encoded and passed on to a Time to Digital Converter (TDC) as part of a pulse stream. The resulting digital samples generated by the TDC are produced at a rate that exhibits the same rate of change profile as that of the input signal. The ADC is realized in 0.35mm CMOS process, covers a silicon area of 340mm by 218mm and consumes power based on the input signal’s frequency. The samples from the ADC are asynchronous in nature and exhibit random time periods between adjacent samples. In order to process such asynchronous samples we present a FIR filter that is able to successfully operate on the samples and produce the desired result. The filter also poses the ability to turn itself off in-between samples that have longer sample periods in effect saving power in the process

    Low Power Circuits for Smart Flexible ECG Sensors

    Get PDF
    Cardiovascular diseases (CVDs) are the world leading cause of death. In-home heart condition monitoring effectively reduced the CVD patient hospitalization rate. Flexible electrocardiogram (ECG) sensor provides an affordable, convenient and comfortable in-home monitoring solution. The three critical building blocks of the ECG sensor i.e., analog frontend (AFE), QRS detector, and cardiac arrhythmia classifier (CAC), are studied in this research. A fully differential difference amplifier (FDDA) based AFE that employs DC-coupled input stage increases the input impedance and improves CMRR. A parasitic capacitor reuse technique is proposed to improve the noise/area efficiency and CMRR. An on-body DC bias scheme is introduced to deal with the input DC offset. Implemented in 0.35m CMOS process with an area of 0.405mm2, the proposed AFE consumes 0.9W at 1.8V and shows excellent noise effective factor of 2.55, and CMRR of 76dB. Experiment shows the proposed AFE not only picks up clean ECG signal with electrodes placed as close as 2cm under both resting and walking conditions, but also obtains the distinct -wave after eye blink from EEG recording. A personalized QRS detection algorithm is proposed to achieve an average positive prediction rate of 99.39% and sensitivity rate of 99.21%. The user-specific template avoids the complicate models and parameters used in existing algorithms while covers most situations for practical applications. The detection is based on the comparison of the correlation coefficient of the user-specific template with the ECG segment under detection. The proposed one-target clustering reduced the required loops. A continuous-in-time discrete-in-amplitude (CTDA) artificial neural network (ANN) based CAC is proposed for the smart ECG sensor. The proposed CAC achieves over 98% classification accuracy for 4 types of beats defined by AAMI (Association for the Advancement of Medical Instrumentation). The CTDA scheme significantly reduces the input sample numbers and simplifies the sample representation to one bit. Thus, the number of arithmetic operations and the ANN structure are greatly simplified. The proposed CAC is verified by FPGA and implemented in 0.18m CMOS process. Simulation results show it can operate at clock frequencies from 10KHz to 50MHz. Average power for the patient with 75bpm heart rate is 13.34W

    NONUNIFORMLY SAMPLED DIGITAL SIGNAL PROCESSING FOR LOW-POWER BIOMEDICAL APPLICATIONS.

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Radioisotope identification with neuromorphic methodology: different solutions and evaluations

    Get PDF
    Early detection of radioisotopes plays an increasingly important role in the modern world. It allows the possibility of quick countermeasures when faced with potentially hazardous radioactive materials like dirty bombs, and nuclear leakage. This could secure the lives of the innocent in populated areas including airports, stadiums or ports. A light-weight compact handheld device could be used in this situation for the patrol team. However, the operating hours for these devices are normally constrained by the batteries they carry. More efficient al- gorithms or solutions are needed for this resource-constraint application to extend the battery life so that security patrol is not frequently interrupted by the recharge. Event-based processing is a novel technique that allows the computing unit to operate only when there is a key event while staying idle otherwise. Spiking neural network (SNN) is a promising candidate for event-based processing and also known as neuromorphic method- ology due to the biomimicry plausibility, which could be easily implemented and still offer comparable accuracy to its counterpart — artificial neural network (ANN), which is notoriously power-hungry. In this research work, it will be demonstrated that using SNN for radioisotope identification (RIID) is possible and capable of achieving the same or even better accuracy when compared with ANNs. Meanwhile, the power consumption of the proposed method on a field program- mable gate array (FPGA) shows that power reduction is highly significant compared with the old software implementation on a smartphone. The task has been delivered in two parts, we first attempted an unsupervised Spike-Timing- Dependent Plasticity (STDP) SNN implementation on SpiNNaker, an emulation platform for SNN. This demonstrates the capability of classifying radioisotopes using purely SNN compat- ible training methods and architecture. We then managed to implement a more complex bin-ratio ensemble SNN (BESNN) on FPGA with better performance. To achieve this implementation, a new SNN conversion method was created to facilitate the digital hardware implementation. This conversion flow allows the highly sparse weight matrix representation without sacrificing overall accuracy. In the meantime, the power consumption of the mentioned design has been characterised, which could be used to estimate the battery life of a handheld system while functioning. Even though this design has been validated on an FPGA, further squeeze for the power saving is possible if an application specific integrated circuits (ASIC) could be delivered. Furthermore, the analogue unit used in the design is a compromise given that the logarithm could not be done by a spiking neuron at the moment. This prevents an end-to-end application, which is preferred for higher integration and potentially more power conservation. According to our knowledge, applying neuromorphic methodology to address RIID represents uncharted territory, especially in the context of power characterisation, an aspect that has not been explored previously. This research work fills the gap that is present in the research field and also offers a functional low-power prototype for the handheld RIID device producer. This project pioneers the use of an event-based processing algorithm for radioisotope identi- fication, marking a significant advancement in the field. Leveraging Spiking Neural Networks (SNNs) on specialised hardware, the project establishes a comprehensive application flow, showcasing the efficacy and potential of SNNs in this domain. The implementation of an unsupervised STDP algorithm for radioisotope identification is also groundbreaking, introducing a local self-learning rule for complex tasks beyond handwritten digit recognition. Additionally, the bin-ratio ensemble project achieves remarkable accuracy, setting new bench- marks in the field. It represents the first ensemble SNN application in radioisotope identifica- tion, further enhanced by an innovative ANN-SNN conversion method with iterative pruning to reduce computational overhead. Furthermore, this research provides detailed insights into sparse SNN construction and char- acterises hardware implementation, shedding light on power and energy consumption con- siderations
    corecore