99,333 research outputs found

    Affect and Metaphor Sensing in Virtual Drama

    Get PDF
    We report our developments on metaphor and affect sensing for several metaphorical language phenomena including affects as external entities metaphor, food metaphor, animal metaphor, size metaphor, and anger metaphor. The metaphor and affect sensing component has been embedded in a conversational intelligent agent interacting with human users under loose scenarios. Evaluation for the detection of several metaphorical language phenomena and affect is provided. Our paper contributes to the journal themes on believable virtual characters in real-time narrative environment, narrative in digital games and storytelling and educational gaming with social software

    Sensorimotor Learning Using Active Perception in Continuous Domains

    Get PDF
    We propose that some aspects of task based learning in robotics can be approached using nativist and constructivist views on human sensorimotor development as a metaphor. We use findings in developmental psychology, neurophysiology, and machine perception to guide a robotic learning system\u27s level of representation both for actions and for percepts. Visually driven grasping is chosen as the experimental task since it has general applicability and it has been extensively researched from several perspectives. An implementation of a robotic system with a dexterous three fingered hand, compliant instrumented wrist, arm and vision is used to test these ideas. Several sensorimotor primitives (vision segmentation and manipulatory reflexes) are implemented in this system and may be though of as the innate perceptual and motor abilities of the system. Applying empirical learning techniques to real situations brings up some important issues such as observation sparsity in high dimensional spaces, arbitrary underlying functional forms of the reinforcement distribution and robustness to noise in exemplars. The well established technique of non-parametric projection pursuit regression (PPR) is used to accomplish reinforcement learning by searching for generalization directions determining projections of high dimensional data sets which capture task invariants. Additionally, the learning process generally implies failures along the way. Therefore, the mechanics of the untrained robotic system must be able to tolerate grave mistakes during learning and not damage itself. We address this by the use of an instrumented compliant robot wrist which controls impact forces

    Robotic Sensorimotor Learning in Continuous Domains

    Get PDF
    We propose that some aspects of task based learning in robotics can be approached using nativist and constructivist views on human sensorimotor development as a metaphor. We use findings in developmental psychology, neurophysiology, and machine perception to guide a robotic learning system\u27s level of representation both for actions and for percepts. Visually driven grasping is chosen as the experimental task since it has general applicability and it has been extensively researched from several perspectives. An implementation of a robotic system with a dexterous three fingered hand, compliant instrumented wrist, arm and vision is used to test these ideas. Several sensorimotor primitives (vision segmentation and manipulatory reflexes) are implemented in this system and may be thought of as the innate perceptual and motor abilities of the system. Applying empirical learning techniques to real situations brings up some important issues such as observation sparsity in high dimensional spaces, arbitrary underlying functional forms of the reinforcement distribution and robustness to noise in exemplars. The well established technique of non-parametric projection pursuit regression (PPR) is used to accomplish reinforcement learning by searching for generalization directions determining projections of high dimensional data sets which capture task invariants. Additionally, the learning process generally implies failures along the way. Therefore, the mechanics of the untrained robotic system must be able to tolerate grave mistakes during learning and not damage itself. We address this by the use of an instrumented compliant robot wrist which controls impact forces

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think

    The Latent Relation Mapping Engine: Algorithm and Experiments

    Full text link
    Many AI researchers and cognitive scientists have argued that analogy is the core of cognition. The most influential work on computational modeling of analogy-making is Structure Mapping Theory (SMT) and its implementation in the Structure Mapping Engine (SME). A limitation of SME is the requirement for complex hand-coded representations. We introduce the Latent Relation Mapping Engine (LRME), which combines ideas from SME and Latent Relational Analysis (LRA) in order to remove the requirement for hand-coded representations. LRME builds analogical mappings between lists of words, using a large corpus of raw text to automatically discover the semantic relations among the words. We evaluate LRME on a set of twenty analogical mapping problems, ten based on scientific analogies and ten based on common metaphors. LRME achieves human-level performance on the twenty problems. We compare LRME with a variety of alternative approaches and find that they are not able to reach the same level of performance.Comment: related work available at http://purl.org/peter.turney

    Understanding the Internet: Model, Metaphor, and Analogy

    Get PDF
    published or submitted for publicatio

    Data Deluge in Astrophysics: Photometric Redshifts as a Template Use Case

    Get PDF
    Astronomy has entered the big data era and Machine Learning based methods have found widespread use in a large variety of astronomical applications. This is demonstrated by the recent huge increase in the number of publications making use of this new approach. The usage of machine learning methods, however is still far from trivial and many problems still need to be solved. Using the evaluation of photometric redshifts as a case study, we outline the main problems and some ongoing efforts to solve them.Comment: 13 pages, 3 figures, Springer's Communications in Computer and Information Science (CCIS), Vol. 82
    corecore