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Abs t r ac t  

We propose that  some aspects of task based 
learning in robotics can be approached using 
nativist and constructivist views on human 
sensorimotor development as a meta hor. We 
use findings in developmental psycho f' ogy, neu- 
rophysiology, and machine perception to  guide 
a robotic learning system's level of representa- 
tion both for actions and for percepts. Visually 
driven grasping is chosen as the experimental 
task since it has general ap licability and it 
has been extensively researc 1 ed from several 
perspectives. An implementation of a robotic 
system with a dexterous three fingered hand, 
compliant instrumented wrist, arm and vision 
is used to  test these ideas. Several sensorime 
tor primitives (vision segmentation and manip- 
ulatory reflexes) are implemented in this sys- 
tem and may be thou ht of as the "innate" 
perceptual and motor a 51 ilities of the system. 

Applying empirical learning techniques to  
real situations brings up some important issues 
such as observation s~a r s i t v  in high dimen- 
sional s aces, arbitrar; und"erlying vfunctional 
forms ofthe reinforcement distribution and r e  
bustness t o  noise in exemplars. The well estab- 
lished technique of non-parametric projection 
pursuit regression (PPR) is used to  accomplish 
reinforcement learning by searching for gener- 
al izat ioi~ directions determining projections of 
high dimensional data sets which capture task 
invariants. Additionally, the learning process 
enerally implies failures along the way. There- 

fore, the mechanics of the untrained robotic 
system must be able tolerate grave mistakes 
during learning and not damage itself. We ad- 
dress this by the use of an instrumented com- 
pliant robot wrist which controls impact forces. 

1 In t roduc t ion  

We propose that some aspects of task based learning 
in robotics can be approached using nativist and con- 
structivist views on human sensorimotor development 
as a metaphor. 

We use findings in developmental psychology and neu- 
rophysiology, as well as machine perception, to  guide the 
overall design of robotic system which attempts to learn 
sensorimotor binding rules for simple actions. Visually 
driven grasping is chosen as the experimental task since: 
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it is a generally applicable primitive action; allows for in- 
cremental gradation of complexity of the task; and has 
been extensively investigated by a number of research 
communities. 

Before one can talk about learning, we have to  put 
forward what the assumptions are about the system, 
i.e. what is "Innate." We postulate the following as in- 
nate: A set of data reduction mechanisms for processing 
sensory data; Costlbenefit (utility) functions as part of 
the task model which control the internal resources of 
the system; motivation in terms of importance of the 
succ&s/fail'ure in accomplishing the ta&; and memory 
mechanisms that include indexing and matching with 
already stored experiential data a i d  computation-of the 
frequency and saliency of the stored information. 

The learning is empirical in nature, and is done by 
having the robot observe itself in repeated interactions 
with the task environment. The resulting parameter 
binding rules then link the observed perceptual variables 
to appropriate operator action parameters during future 
executions of the task. 

The approach taken here gains direct inspiration from 
Piaget, Bower, Von Hofsten, Diamond and Held [Piaget, 
1952; Bower, 1982; Hofsten, 1986; Diamond, 1990; Held 
and Bauer, 19701 in the developmental psychology com- 
munities. Many researchers have looked at such ideas 
for robot learning, most notable are Drescher [Drescher, 
19861, who developed statistical approaches to  learning 
in boolean valued simulated worlds, Me1 [Mel, 19911, 
who takes a more neuromorphic approach using Sigma- 
Pi units, and Kuperstein [Kuperstein, 19881 who looked 
at simulated handlarm topographic maps and learning 
to coordinate them. Mason [Mason el al., 19891 has 
looked at action learning for manipulation planning via 
self-observation. 

Several sensorimotor ~rimitives (vision se~mentation - 
and manipulatory reflexes) are defined and implemented 
using this system and may be thought of as its "Innate" 
perceptual and motor abilities. In a visual scene, objects 
are represented parametrically by their position, orien- 
tation and gross shape parameters in a superquadric 
model. The execution of the motor activity is modelled 
by various parameterized actions such as approach to 
location, preshape hand, acquisition and lift. Collision 
retraction [Bower, 19821 and palmar traction grasping 
reflexes [Twitchell, 19701 are also used. 

1.1 Progressive Refinement  of Act ion  a n d  Per- 
ceptua l  Representa t ions  

We put forward and test the following working h - 
pothesis: inductive learning must happen incremental r y 
with respect to  the number of parameters to be charac- 
terized, otherwise the learning becomes intractable due 
to  the combinatorics of the task, given all possible pa- 
rameter values. 



As the system maturation proceeds (in our case as the 
tasks are getting more complex) the sensors deliver in- 
creasingly differentiated information (more perceptual 
~arameters)  about the world and the actuation. The 
action parameters of the system must correspondin ly d adjust. At the same time actions must progressively if- 
ferentiate into more refined actions with more control- 
ling parameters [Bower, 1982; Hofsten, 1986; Roy and 
Starkes, 19861. Each learning level guides exploration in 
subsequent learning levels, permitting the escape from 
the combinatorics of statistical learning with no prlor 
information. 

There are several tasks presented to  the system, each 
with pro ressively increasing complexity. In executing 
these tas f s ,  the system is learning to use more param- 
eters as the task and perceptual complexity increase. 
This complexity with respect t o  parameters mimics the 
maturation process in biological systems. At first, the 
system has very insensitive perceptual capabilities and 
correspondingly, the task cannot be very demanding. 
Hence, its actions are very primitive, but almost always 
successful. An example of this zeroth order task could 
be: Make a tactile contact anywhere in the reachable 
workspace with any object or support surface. At this 
level, the system learns about the characteristics of its 
reachable workspace. 

Let's consider a more complex task. There is a de- 
sired object in the workplace and the arm/hand must 
contact and move it, although it  need not grasp and lift 
it. Mastery of this level is equivalent to  a biological sys- 
tem that has learned to discriminate the object in the 
fore round from the background. The hand/arm system 
haseearned the constraint that the hand position and 
object position must match roughly in order to  change 
the state of the object. 

The next level of difficulty in the progression of tasks 
is one in which the system must grasp the object, al- 
though not necessarily lift it. This is similar to the pre- 
vious task, except that the hand object matching con- 
straint is much tighter since the [ and must enclose the 
object. The information from the previous task is used 
to guide the exploration in this level so that each grasp- 
ing trials has a higher probability of success. Thus, the 
system does not waste time attempting grasps far away 
from the location of the object which are information 
poor with respect t o  the current task. 

The next task is t o  grasp and lift the seen object. 
Again, the success constraint is progressively tighter and 
we bootstrap our exploration using the previous tasks. 

We model this empirical learning process as a multi- 
variate statistical regression. Projection Pursuit Regres- 
sion [Friedman, 19851 (PPR) developed specifically for 
use in high dimensional spaces (d >= 3) is used to  ap- 
proximate the distribution of reinforcement (success) in 
this parameter space. This technique also allows sallent 
variables for the successful outcome to  be identified if 
the space contains information poor parameters. Such 
techniques must be used in order to  work with the small 
sample sizes required in learning, since there is a cost as- 
sociated with completing each trial. Finally a method is 
proposed to index this domain information, allowing the 
reinforcement distribution to  be efficiently accessed for 
decision-making during future planning and real-time 
execution of the actions. 

What we seek is to  characterize the distribution of 
reinforcement in the attribute space. We view this dis- 
tribution as a prediction surface. Having such a pre- 
dictive mechanism yields several benefits. It is a tool 
for guiding task execution and subsequent learning be- 

Fig. 1: A schematic of a hypothetical simplified task 
setup for learning hand position selection based on ob- 
ject position for the purposes of this exposition. 0, 
refers to  the position of the object along the x-axis. Hz 
refers to the position of the hand along the x-axis. 
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cause it provides a means of compactly characterizing 
the peaks in reinforcement in the space of relevant sen- 
sorimotor attributes. We can partition this space into 
volumes which have a high predicted reinforcement. The 
iso-reinforcement surfaces of the volumes become deci- 
sion hypersurfaces whose projections onto the action pa- 
rameter axes can provide feasible, as well as preferable, 

I 
t- 

intervals for parameterizing a given perception/action 
pair. These intervals then have a high likelihood of suc- 
cess. In essence, this allows us to identify relevant con- 
straints for goal success in a given state. 

1 
Ham Lotauon 

- 

1.2 Data Reduc t ion  Mechanisms  a n d  Parame-  
te r ized  Envi ronments  

I - 

Since our paradigm is for parameterized worlds, it is 
important to define what is meant by this term. A pa- 
rameterized world is one whose configuration can be re- 
duced to some set of real-valued description vectors for 
the configuration of objects and relationships between 
them. This world also includes a set of stereotypical 
primitive parameterized actions whose execution behav- 
ior is a function of some finite set of parameters that de- 
scribe them. This fits quite nicely with current advances 
in computer vision as well macro-operators in planning 
and schema based descriptions of actions in the motor 
control literature. 

As an example in the perceptual domain, con- 
sider the superquadric part representation as devel- 
oped by [Gupta, 19891. Superquadrics are a general- 
ized form of parametric surfaces which can represent 
a wide variety of shapes. A 3D super uadric shape B in the scene is completely defined by t e parameter 
set (x, y, z ,  8,4, y ,  a,, a2, a 3 , ~ 1 ,  €2) which defines its p e  
sition, shape, and orientation. 

On the other hand, we might like to sense the po- 
sition and orientation of the robot wrist, which would 
be represented as Qwrist = (QI , 9 2 ,  Q 2 ,  Q3, Q4, Q5)= 
x ,  y, r ,  r , p ,  y) using the roll, pitch, yaw transformation L escription. 



1.3 Stat is t ical  Learn ing  a s  a Fo rm of Induct ion  
I t  is useful to  think of inductive learning as process of 

searching for regularities and structure in data sets. I t  
is a data reduction mechanism appl~ed t o  stored expe- 
riential information. The discovery of such re ularities f corresponds to the induction of a generalized ru es about 
the data set. Normally, the data set consists of a preclas- 
sified set of instance descriptions and class assignments 
that are typed in by a human expert. An autonomous 
system does not have this luxury. I t  must be capable of 
data reduction from a real-valued domain t o  the appro- 
priate level of granularity which permits the system to  
function effectively, yet not be over-represented. 

Most of the structure t o  be found in perceptual data 
consists of correlations between perceptual inputs and 
action parameters. Once this relationship is found, 
its degree of reliabilit must also be categorized if the 
knowledge extracted i!' rom the learning is t o  be opera- 
tionalized. The degree of reliability is also estimatable 
from the variability of the reinforcement measurements 
in the attribute space about the conditional expected 
va.lile. 

As an example, consider the simple task illustrated in 
fig. 1, which is the simplest pick and place. We define 
some simple sequencing order and parameterized actions 
to  accomplish this task. We take some number of mea- 
surements of the reinforcement for different parameter- 
ization~ of actions in the attribute space (see fig. 2(a)) 
and attem t t o  form a least-squares response surface as 
in fig. 2(bp) which is then used as an estimation func- 
tion for predicted reinforcement given new combinations 
of the sensorimotor attribute valuations. The form of 
this function is a non-parametric least-squared fit of the 
data or possibly, some other non-parametric means of 
characterizing modes and widths of the distribution. In 
either case, smoothing such a distribution allows a gen- 
eralization to novel instantiations over a given range by 
the properties of interpolation afforded by the regression 
fitting process. 

The relationships discovered between independent 
perceptual parameters and controlled action parameters 
can be expressed in terms of a functional motor mapping 
approximation Qj = ~ ( ~ r e d u e e d )  where Qi is a depen- 
dent actuator value and PredUeed is the reduced percep- 
tual state vector for that function, which is some subset 
of the attribute variables. The maximum reinforcement 
regions of the attribute space form constraints which 
can be used to generate action parameter binding rela- 
tions which describe feasible as well as locally maximal 
estimated reinforcement values. 

In order to  represent the regions of high reinforce- 
ment in an efficient manner, a 2n-tree representation of 
hyper-rectangular volumes in the n-dimensional param- 
eter space is used (fig. 3 (a)). This allows arbitrarily 
shaped regions t o  be represented as unions of hyper- 
rectangular volumes of varying size which are accessible 
using time efficient tree structure t o  store them. These 
regions are then merged as in fig. 3(b). Once we have 
an 2n-tree representation of the desirable regions, the 
question is how do we utilize and index this informa- 
tion in a useful and efficient manner? Since we have 
the information stored in a tree representation we can 
perform an associative search based on the attributes 
that are currently being observed. The result of such 
a process is illustrated schematically in fig. 4 where a 
given observation indexes throu h to  associated volumes 
in the parameter space and fin f s the orthographic pro- 
jection of that volume onto the motor attribute axis. 
We also reinterpolate along this volumes so that the ex- 

Fig. 2: p. The raw scatter plot of reinforcement values 
obtaine y executing an action with different percep- 
tual states of affairs. (0, is the horizontal and H ,  is 
the vertical). Each point in the plot has a reinforcement 
mass associated with it which is the result of the degree 
of success of the execution an action given some observed 
perce tual parameters. (b) The non-parametric regres- 
sion f! t to  measured data which attempts to  smooth and 
predict the reinforcement mass density over the entire 
domain of input parameters. 

Fig. 3: (a) The quadtree (22 -tree) reduction of the 
regression surface (b) The resulting constraint regions 
which represent the reduced empirically derived domain 
knowledge for the given substask. 

pected reinforcement and associated variances inside of 
the volumes are also easily available so as to  permit the 
computation of the local maxima within that volume 
and the variances about the expected values. 

2 Non-Paramet r ic  Regression 

2.1 Funct ion Learning 

Using regression allows one to  build up a predictive 
mechanism for future success as a function of what 
the robot is observing and the action parameterization. 
This amounts to learning the expectation of reinforce- 
ment value conditioned on the valuations of the percep- 
tual attributes from a series of noisy and sparsely spaced 
observations. This problem can be solved using mul- 
tivariate statistical regression techniques. If a smooth 
function well-approximates the underlying distribution, 
then we can extrapolate and interpolate this expecta- 
tion function to  novel sensorimotor instances. In other 
words, we have a system which is able to generalize with 
respect t o  the action parameters. 



Fig. 4: Execution-time indexing and retrieval of do- 
main knowledge after learning. The perceptual param- 
eter, along the 0, axis, in this case the location of the 
object, is mapped via an associative lookup to an allow- 
able interval in the Hz axis which determines where the 
robotic hand is placed 

Allowabls 
Inlarval lor 
Mdw Anributa 

The idea of learning a function by at a set of in- 
put/output pairs is not a new one in robotics. A 
common approach has been to use look-up tables with 
interpolation between measured points. Indeed, non- 
parametric statistical regression on a set of measure- 
ments my be considered to subsume these techniques. 
An early example of table lookup is Albus' CMAC poly- 
nomial hashing interpolation [Albus, 19721. More re- 
cently, Atkeson et.al.[Atkeson, 19911 have explored task 
level robotic learning using polynomial interpolation as 
well as non-parametric locally weighted regression with 
some success. Me1 [Mel, 19911 has used a connection- 
ist approach approximate functions of several variables. 
These approaches are interesting, but in general, suffer 
from high sample size requirements as the dimensional- 
ity of the input space increases. 

Many of the interpolation schemes are not designed t o  
be robust with respect to noise in the training samples 
and can be unduly influenced by this. Non-parametric 
regression locally weighted techniques [Cleveland, 19791 
as advocated by Atkeson [Atkeson, 19911 remedy the 
noise immunity problem to some extent. 

Observed Perceptual 
AnribuLe ValuaLia 

2.2 T h e  "Curse  of Dimensionality" 

Ox 

All of the above approaches suffer from the "curse of 
dimensionality." The "curse" can be defined as the need 
for exponentially larger sample sizes as the dimensional- 
ity of the input space increases. A common illustration 
is as follows [Huber, 19861. Consider a locally weighted 
regression or interpolation scheme which relies of 10% 
of the total samples for making an estimate of a given 
query point. Assume we are interested in the function 
over the domain of a unit 9-dimensional hypercube. If 
we assume uniform distribution of exemplars over this 

cube, then we must have 10% of the volume of this 9-d 
cube, i.e. (f;)' = . l ,  where fi is the fraction of the unit 
distance along each axis. Then fi = (.1)'19 FZ .77 which 
is a huge portion of domain. If we attempt to narrow 
fi, then the fraction of volume neccessary for the lo- 
cal fit rapidly decreases, and in order for it to  contain 
sufficient number of points for a reasonable estimate re- 

uires a huge number of samples. This is the reason 
&at most table lookup approaches have been applied 
primarily to  lower dimensional functions. This problem 
has been addressed by the statistical community in a 
number of interesting ways, the approach we will se- 
lect here is that of projection pursuit regression (PPR) 
as devised by Friedman et.al. [Friedman and Stuetzle, 
1981; Friedman, 19851. 

2.3 Projec t ion  Pu r su i t  Non-Paramet r ic  Re-  
gression ( P P R )  M e t h o d s  

We describe the Smooth Multiple Additive Regres- 
sion Technique (SMART) of Friedman [Friedman, 19851. 
Assume we have some underlying function f (21, . . . , x,) 
which we wish to approximate from some set of nolsy 
observations { (x I I , .  . . , x p l , ~ l ) r . .  . ,  (XI,, . . . 1xpn,~n))r  
(in our case y is either a success or a failure, although it 
could be a continous reinforcement value) where there 
are n observations. Each observation may also be scaled 
by some weightin factor wi. Assume the observations f come from the fol owing process: 

where u is a random variable with E[u] = 0 and E[f] = 
0. In regression we endeavor t o  estimate the conditional 
expectation 

The SMART method searches for an expansion of the 
form 

where gi(r)  is a smooth "ridge" function of scalar r .  
Here a is the unit direction vector which projects the 
various covariates and /3 is a scalar weighting coeffi- 
cient. The approach is therefore, to  simultaneously 
find some "good" projection directions of the data and 
smooth functions g i ( z )  which are the smoothed ver- 
sions of the set of valu'es {(zl, yl),  . . . , ( zn ,  y,)), where 
*. - - & T .  [xli, . . . , xDi]. By a good choice of direction 
vectors, weighting cdefficients and smooth functions, we 
mean those that minimize the unexplained variance of 
the case responses along those projections and mapped 
through the smooth functions. 

Since the gi(  's are the smoothed versions of all of the 
cases projecte d onto one dimension, achieving a lar e 
enough sample size is much less of a problem than metf- 
ods which form estimates over the raw high dimensional 
neighborhoods. 

The search for the parameter set minimizing those 
values is done using standard Gauss-Newton minimiza- 
tion techniques and by grouping the parameters, holding 
some fixed, and minimizing the others in turn, so that 
the residual error is always decreasing. 



P P R  can also be used to  solve classification problems 
[Friedman, 19851, that is t o  come up with an assign- 
ment rules conditioned on (XI ,  . . . , Xp) that minimizes 
the classification risk for a categorical response variable. 
That is, a variable which takes on only one of a set of 
discrete and unordered values. This is useful when only 
binary reinforcement (a thresholded success or failure) 
of the task goal is available. The risk of misclassification 
is defined in general as 

1..  is the loss for predicting Y = cj when in actu- 
al. 

ality its value is ci, p(i I X I ,  . . . , Xp) is the condi- 
tional probability that Y = ci given some valuation 
for the predictor variables. The lsj allows the incor- 
poration of the costlbenefit notion in the classifica- 
tion. p(i  ( X I ,  . . . , Xp) is the conditional probability. 
The conditional probabilities are then estimated and j* 
which minimizes the R is chosen as the class for a given 
future observation. 

2.4 Using Projection Pursuit for Attention 
Learning 

Attention learnin involves identifying salient vari- 
ables for a goal, or 1 earning what t o  attend to during 
given points of the execution of the task, this type of 
learning has been investigated by [Drescher, 1986; Maes 
and Brooks, 19901. A salient variable for a goal is one 
that has influence on the outcome of the task as mea- 
sured by the reinforcement function. In general the 
number of salient attributes for a given goal is much less 
than the total number of available perce tual attributes. 
Therefore, if we can have a system whic F, learns to  focus 
on only the attributes which are currently relevant, then 
we may more efficiently allocate sensing resources. 

We use the relative importance of variable measure 
Friedman, 19851 to  select relevant variables. This is de- fi  ned as the product of the variance of a predictor vari- 

able times the magnitude of expected sensitivity of the 
component in the ridge functions to  it. This is expressed 
as 

rj = U ~ E [ I  d U / d x j  I] (5) 

Therefore, P P R  may present some advantages with 
respect t o  interpolation schemes such as CMAC etc., as 
well as the robustness of non-parametric regression tech- 
niques without the problem of poor sample economy in 
higher dimensions, and may identify salient input at- 
tributes. Now, let us present an experimental example 
of the use of the technique. 

3 Experimental Protocol and Setup 

The experiment consisted of of learnin to  position 
the gripper in the plane given a visual o % servation of 
the centroid of the object in the plane from a top visual 
view (see fig. 5). 

3.1 Experimental Protocol 
A workspace was defined in which the object to be 

grasped may be placed a t  random. The object con- 
sists of a 112 lb. aluminum soda can (12 cm tall, 6 cm 
diameter) covered with white paper to simplify vision 
processing. The workspace consists of square 80cm by 
40cm area. A pair of numbers in the workspace interval 

Worki Frame 

I 

Fig. 5: Schematic of the planar object retrieval task 
from the top camera view. Here, the object frame 
(O,,Oy), the hand frame (H,, H y ) ,  and the contact/no 
contact are stored for each trial grasp. 

Object Frame 

Hand Frame 

I 

Y 

X_ 

is generated by a random number generator. The exper- 
imentor (human) manually positions the target object 
at  that position. The robot arm is retracted from the 
workspace and the CCD camera vision system acquires 
a top-view digitized image of the scene. The vision soft- 
ware then thresholds the scene based on sample mean, 
grows $-connected regions and culls the regions by a 
minimum area criterion to eliminate artifact and noise 
induced smaller regions. The surviving region (there 
should be one re ion since the is only one target ob- 
ject in the field o f view) is then used to  compute a su- 
perquadric fit and the centroid of this superquadric is 
stored as the position of the object. Since the task is a 
two dimensional one, a monocular camera view is used 
to  determine the location of the object in the plane. 

The grasping trial set coilsists of the following actions. 
The arm is retracted upwards and laterally out of the 
workspace to prevent visual occlusion. Another visual 
sample is taken and logged since the object may have 
moved due to interaction with the hand. The system 
then computes a bounding box of 40cm around the 1 e  
cation where object contact took place and chooses ran- 
dom location in that box from a uniform distribution. 
The robot then moves to  that location and begins a 
downward motion. This motion is terminated by one of 
two conditions. Either a wrist displacement is sensed at 
which point the grasp reflex is initiated (and that trial 
labelled a success) or a positional stop at 8cm above 
the table is reached. A wrist tactile event is logged as 
a tactile interaction with the object. If the positional 
stop is reached, then the arm missed the target and the 
given grasping trial is labelled a total failure and the arm 
again retracts and this step begins at another random 
point in the bounding box. Otherwise the grasp reflex 
occurs in the next step. If more than some maximum 



Fig. 6: The initiation of the grasp reflex. A deflection 
or rotation above the given threshold value detected by 
the wrist causes the arm motion to cease instantaneously 
and for the hand to immediately close, analagous to the 
triggering of a spinal-level reflex. 

number of grasping trial failures occur consecutively, an- 
other image of the scene is taken and the grasping trial 
set begins again. 

tion detected on or a desired position 
is reached with stop occurs 
then the grasp attempt is termed a failure since the fin- 
ger reached its maximum position without encountering 
the object. The outcome of this event logged and a grasp 
trial set step be ins again. If 2 of the 3 fingers are still 
contacting the o f ject, the finger states are logged, and 
the arm is retracted u wards for lOcm and the contact 
information saved. 1f t i e  object was not enclosed at the 
end of the trial, another image is acquired and processed 
and another grasp trial set begins. 

3.2 Hardware  S e t u p  
The experimental System consisted of a PUMA 560, 

instrumented compliant wrist and Penn Hand controlled 
and coordinated usin a common MicroVAXII with 
shared memory. The $enn Hand 
is controlled using a serial link to a 
troller which interprets commands 
configuration to desired forces or positions. The CCD 
camera output is digitized on the MicroVAXII and pro- 
cessed for a superquadric fit using on a SUN4/260 via an 
ethernet connection. The only real-time sensitive com- 
ponent of the system is the connection between the wrist 
and arm which occurs via the shared memory connec- 
tion within the Microvax. 

3.3 The Ins t rumen ted  Compl ian t  Wris t  
The compliant wrist serves two important functions. 

It controls contact forces on the hand and also serves 
to detect contact with the object durin data gathering. e; Since the Penn Hand is a somewhat de icate mechanism 
and the PUMA is capable of large forces, we must take 
care to control the forces exerted on it (especially its fin- 
gers) during impacts in the data gathering phase. This 

is accomplished b mounting an instrumented passively 
compliant wrist hindsay and Paul, 1991) behind the 
hand. The wrist has intrinsic low stiffness, which dis- 
sipates impact energy on contact, thus protecting the 
fingers from excessive forces. The wrist also serves to 
detect collisions with the object in uninstrumented ar- 
eas of the hand. Since all exposed areas of the hand 
cannot be sensorized, a contact in a non-sensorized area 
will still lead to a wrist displacement. 

4 Resul ts  

Figure 7 is a histogram for 303 grasping trials which 
were actually performed in the workspace. This figure 
illustrates arough outline of the shape of the hand, since 
a collision causes a wrist displacement, no matter where 
it occurs on the hand. One can view this figure as the 
resulting image of the hand as yielded by the object be- 
ing used as a probe to trace out the presence or lack of 
the hand. Notice that the width of the "fingers" of the 
histogram is approximately 6cm (which is the diameter 
of the can). Therefore the histogram also encodes in- 
formation about the target object as well as the hand 
itself. 

This gathered data from experimental trials was used 
to generate an augmented data set which consisted of 
simulating the process of positioning the object at 20 
uniformly distributed random points in a rectangular 
workspace of f l m  around the base of the robot. At 
each of the different locations, 100 points from the ex- 
perimental data were rotated by a random 0 in [O, 2 ~ ]  
and translated to the current simulated object loca- 
tion. This process yielded the 2000 simulated trial 
points shown in figure 8. Each instance is recorded as 
O,, O,, H,, H,, G, where (O,, Oy) is the perceived ob- 
ject location, (H,, H,) the hand position and G is either 
a 0 for no contact or a 1 for contact. This corresponds to 
randomly oriented the hand and moving it to a random 
point in a 40 cm by 40 cm interval around the object, 
and moving the hand downwards to see if it contacts the 
object. The larger points in fi indicate successes and 
the smaller points indicate fai ?. ures. 

The projection pursuit algorithm classification was 
attempted on this data (SMART Routines Version 
10/10 84 Friedman, 19841) and yielded the results de- 
pictedin li . 9. After training, the classification func- 
tion was ab f e to predict, given the perceived location of 
the object in the plane, whether placing the hand in a 
given location would yield a tactile percept with approx- 
imately .97 probability in a region f .8m of the base of 
the robot. It was also able to generalize to regions of the 
workspace where empirical information was taken as is 
illustrated by fig. 9 which shows the correct classifica- 
tion given that the object is in location (-.6m,Om) (see 
fig. 9 (a)) although this position was not in the learning 
set. 

5 Discussion 

The result shown above illustrates the usefulness of 
the approach, and also brin s up several important is- 
sues. First, the PPR methof exhibits an inductive bias 
which searches for invariances of arbitrary distributions 
under afFine transformations. However, since the fitting 
of the projected data uses a non-parametric smoother, it 
does not exhibit bias for preferring certain distributions 
over others (i.e. multimodal versus unimodal). This is 
advantageous in the case that the task being learned 
can be satisfied by several action valuations. Consider 
the task of mating a smooth part into a cylinder with 



Fig. 7: Histogram of centered data from 303 trial grasps 
in the workspace. It depicts the raw data centered at the 
perceived centroid of the target object and is the propor- 
tion of success to failure for summed over 50mm regions 
of the workspace. Notice that since the hand orientation 
was fixed for all trials, the histogram outlines the shape 
of the hand in the spherical grasp configuration 

both ends uncapped. The distribution of sucess rela- 
tive to the cylinder coordinate frame would have two 
peaks &a which would be characterized by the fit with 
enough samples. The correspondin tree representation 
of fig. 3 (b) would then capture t f e feasible bi-modal 
distribution of valuations for a iven cylinder position 
and could subsequently provide t k is domain information 
to a higher level spatial planner which could incorporate 
it into its plan building. This is in contrast to a con- 
nectionist type learning system which would not encode 
possible alternatives explicitly if they existed. 

It is clear that there are several important tradeoffs 
in the application of this technique. The first trade- 
off is between the width of the distribution of successes 
relative to the total size of the workspace in which the 
task is take place. If the width is too large relative t o  
the workspace or the sampled locations are too close 
together then the finding a projection direction vector 
which organizes the data and minimizes its variance is 
ill-condit~oned sinces the ensemble variance varies little 
as a function of the direction chosen. This was evidenced 
by the fact the the results for the fit on positions in 
the original workspace (40cm by 80cm) were poor given 
that the diameter of the distribution relative to the ob- 
ject center is approximately 40cm due to the physical 
hand width span. By augmenting this data set using 
empirical data as a base and increasing the domain size 
to f l m  of the robot the successful result shown here 
was obtained. At the other extreme, if the width of 
the distribution is too small relative to the workspace, 
then the sample economy of the learning process is very 
small, i.e. many trials have to be attempted for a suc- 

Fig. 8: The raw data (generated simulation using the 
empirically obtained data distribution). 

cess to be logged and therefore the learning process is 
very slow. 

6 Conclusion a n d  F u t u r e  Extensions 

This use of projection type regression techniques has 
shown promise in reducing the sample sizes necessary for 
generalization in continuous domains. Immediate exten- 
sions include using the prior information of this level to 
guide exploration in subsequent levels and attempting 
to learn the full grasping task, as well as learning to se- 
lect from amon different stereotypical grasps based on 
object shape. 8 ther issues to be investigated include 
adaptivity in terms of forgetting rules such as weight- 
ing each observation by an appropriate discount factor 
based on its recency. Also, other interactive schedules 
for varying the locations of data gathering based on am- 
biguities in the current fit would serve make the method 
more on-line in nature and should be pursued. 
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