20,883 research outputs found

    Semantic Support for Computational Land-Use Modelling

    Get PDF
    Postprin

    Grid service discovery with rough sets

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.The computational grid is evolving as a service-oriented computing infrastructure that facilitates resource sharing and large-scale problem solving over the Internet. Service discovery becomes an issue of vital importance in utilising grid facilities. This paper presents ROSSE, a Rough sets based search engine for grid service discovery. Building on Rough sets theory, ROSSE is novel in its capability to deal with uncertainty of properties when matching services. In this way, ROSSE can discover the services that are most relevant to a service query from a functional point of view. Since functionally matched services may have distinct non-functional properties related to Quality of Service (QoS), ROSSE introduces a QoS model to further filter matched services with their QoS values to maximise user satisfaction in service discovery. ROSSE is evaluated in terms of its accuracy and efficiency in discovery of computing services

    Towards a service-oriented e-infrastructure for multidisciplinary environmental research

    Get PDF
    Research e-infrastructures are considered to have generic and thematic parts. The generic part provids high-speed networks, grid (large-scale distributed computing) and database systems (digital repositories and data transfer systems) applicable to all research commnities irrespective of discipline. Thematic parts are specific deployments of e-infrastructures to support diverse virtual research communities. The needs of a virtual community of multidisciplinary envronmental researchers are yet to be investigated. We envisage and argue for an e-infrastructure that will enable environmental researchers to develop environmental models and software entirely out of existing components through loose coupling of diverse digital resources based on the service-oriented achitecture. We discuss four specific aspects for consideration for a future e-infrastructure: 1) provision of digital resources (data, models & tools) as web services, 2) dealing with stateless and non-transactional nature of web services using workflow management systems, 3) enabling web servce discovery, composition and orchestration through semantic registries, and 4) creating synergy with existing grid infrastructures

    Supporting collaboration within the eScience community

    Get PDF
    Collaboration is a core activity at the heart of large-scale co- operative scientific experimentation. In order to support the emergence of Grid-based scientific collaboration, new models of e-Science working methods are needed. Scientific collaboration involves production and manipulation of various artefacts. Based on work done in the software engineering field, this paper proposes models and tools which will support the representation and production of such artefacts. It is necessary to provide facilities to classify, organise, acquire, process, share, and reuse artefacts generated during collaborative working. The concept of a "design space" will be used to organise scientific design and the composition of experiments, and methods such as self-organising maps will be used to support the reuse of existing artefacts. It is proposed that this work can be carried out and evaluated in the UK e-Science community, using an "industry as laboratory" approach to the research, building on the knowledge, expertise, and experience of those directly involved in e-Science

    Managing semantic Grid metadata in S-OGSA

    Get PDF
    Grid resources such as data, services, and equipment, are increasingly being annotated with descriptive metadata that facilitates their discovery and their use in the context of Virtual Organizations (VO). Making such growing body of metadata explicit and available to Grid services is key to the success of the VO paradigm. In this paper we present a model and management architecture for Semantic Bindings, i.e., firstclass Grid entities that encapsulate metadata on the Grid and make it available through predictable access patterns. The model is at the core of the S-OGSA reference architecture for the Semantic Grid

    DRIVER Technology Watch Report

    Get PDF
    This report is part of the Discovery Workpackage (WP4) and is the third report out of four deliverables. The objective of this report is to give an overview of the latest technical developments in the world of digital repositories, digital libraries and beyond, in order to serve as theoretical and practical input for the technical DRIVER developments, especially those focused on enhanced publications. This report consists of two main parts, one part focuses on interoperability standards for enhanced publications, the other part consists of three subchapters, which give a landscape picture of current and surfacing technologies and communities crucial to DRIVER. These three subchapters contain the GRID, CRIS and LTP communities and technologies. Every chapter contains a theoretical explanation, followed by case studies and the outcomes and opportunities for DRIVER in this field

    Supporting collaborative grid application development within the escience community

    Get PDF
    The systemic representation and organisation of software artefacts, e.g. specifications, designs, interfaces, and implementations, resulting from the development of large distributed systems from software components have been addressed by our research within the Practitioner and AMES projects [1,2,3,4]. Without appropriate representations and organisations, large collections of existing software are not amenable to the activities of software reuse and software maintenance, as these activities are likely to be severely hindered by the difficulties of understanding the software applications and their associated components. In both of these projects, static analysis of source code and other development artefacts, where available, and subsequent application of reverse engineering techniques were successfully used to develop a more comprehensive understanding of the software applications under study [5,6]. Later research addressed the maintenance of a component library in the context of component-based software product line development and maintenance [7]. The classic software decompositions, horizontal and vertical, proposed by Goguen [8] influenced all of this research. While they are adequate for static composition, they fail to address the dynamic aspects of composing large distributed software applications from components especially where these include software services. The separation of component co-ordination concerns from component functionality proposed in [9] offers a partial solution
    corecore