81 research outputs found

    Efficient Model-Based Reconstruction for Dynamic MRI

    Full text link
    Dynamic magnetic resonance imaging (MRI) has important clinical and neuro- science applications (e.g., cardiac disease diagnosis, neurological behavior studies). It captures an object in motion by acquiring data across time, then reconstructing a sequence of images from them. This dissertation considers efficient dynamic MRI reconstruction using handcrafted models, to achieve fast imaging with high spatial and temporal resolution. Our modeling framework considers data acquisition process, image properties, and artifact correction. The reconstruction model expressed as a large-scale inverse problem requires optimization algorithms to solve, and we consider efficient implementations that make use of underlying problem structures. In the context of dynamic MRI reconstruction, we investigate efficient updates in two frameworks of algorithms for solving a nonsmooth composite convex optimization problem for the low-rank plus sparse (L+S) model. In the proximal gradient framework, current algorithms for the L+S model involve the classical iterative soft thresholding algorithm (ISTA); we consider two accelerated alternatives, one based on the fast iterative shrinkage-thresholding algorithm (FISTA), and the other with the recent proximal optimized gradient method (POGM). In the augmented Lagrangian (AL) framework, we propose an efficient variable splitting scheme based on the form of the data acquisition operator, leading to simpler computation than the conjugate gradient (CG) approach required by existing AL methods. Numerical results suggest faster convergence of our efficient implementations in both frameworks, with POGM providing the fastest convergence overall and the practical benefit of being free of algorithm tuning parameters. In the context of magnetic field inhomogeneity correction, we present an efficient algorithm for a regularized field inhomogeneity estimation problem. Most existing minimization techniques are computationally or memory intensive for 3D datasets, and are designed for single-coil MRI. We consider 3D MRI with optional consideration of coil sensitivity and a generalized expression that addresses both multi-echo field map estimation and water-fat imaging. Our efficient algorithm uses a preconditioned nonlinear conjugate gradient method based on an incomplete Cholesky factorization of the Hessian of the cost function, along with a monotonic line search. Numerical experiments show the computational advantage of the proposed algorithm over state- of-the-art methods with similar memory requirements. In the context of task-based functional MRI (fMRI) reconstruction, we introduce a space-time model that represents an fMRI timeseries as a sum of task-correlated signal and non-task background. Our model consists of a spatiotemporal decomposition based on assumptions of the activation waveform shape, with spatial and temporal smoothness regularization on the magnitude and phase of the timeseries. Compared with two contemporary task fMRI decomposition models, our proposed model yields better timeseries and activation maps on simulated and human subject fMRI datasets with multiple tasks. The above examples are part of a larger framework for model-based dynamic MRI reconstruction. This dissertation concludes by presenting a general framework with flexibility on model assumptions and artifact compensation options (e.g., field inhomogeneity, head motion), and proposing future work ideas on both the framework and its connection to data acquisition.PHDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168081/1/yilinlin_1.pd

    Solving inverse problems for medical applications

    Get PDF
    It is essential to have an accurate feedback system to improve the navigation of surgical tools. This thesis investigates how to solve inverse problems using the example of two medical prototypes. The first aims to detect the Sentinel Lymph Node (SLN) during the biopsy. This will allow the surgeon to remove the SLN with a small incision, reducing trauma to the patient. The second investigates how to extract depth and tissue characteristic information during bone ablation using the emitted acoustic wave. We solved inverse problems to find our desired solution. For this purpose, we investigated three approaches: In Chapter 3, we had a good simulation of the forward problem; namely, we used a fingerprinting algorithm. Therefore, we compared the measurement with the simulations of the forward problem, and the simulation that was most similar to the measurement was a good approximation. To do so, we used a dictionary of solutions, which has a high computational speed. However, depending on how fine the grid is, it takes a long time to simulate all the solutions of the forward problem. Therefore, a lot of memory is needed to access the dictionary. In Chapter 4, we examined the Adaptive Eigenspace method for solving the Helmholtz equation (Fourier transformed wave equation). Here we used a Conjugate quasi-Newton (CqN) algorithm. We solved the Helmholtz equation and reconstructed the source shape and the medium velocity by using the acoustic wave at the boundary of the area of interest. We accomplished this in a 2D model. We note, that the computation for the 3D model was very long and expensive. In addition, we simplified some conditions and could not confirm the results of our simulations in an ex-vivo experiment. In Chapter 5, we developed a different approach. We conducted multiple experiments and acquired many acoustic measurements during the ablation process. Then we trained a Neural Network (NN) to predict the ablation depth in an end-to-end model. The computational cost of predicting the depth is relatively low once the training is complete. An end-to-end network requires almost no pre-processing. However, there were some drawbacks, e.g., it is cumbersome to obtain the ground truth. This thesis has investigated several approaches to solving inverse problems in medical applications. From Chapter 3 we conclude that if the forward problem is well known, we can drastically improve the speed of the algorithm by using the fingerprinting algorithm. This is ideal for reconstructing a position or using it as a first guess for more complex reconstructions. The conclusion of Chapter 4 is that we can drastically reduce the number of unknown parameters using Adaptive Eigenspace method. In addition, we were able to reconstruct the medium velocity and the acoustic wave generator. However, the model is expensive for 3D simulations. Also, the number of transducers required for the setup was not applicable to our intended setup. In Chapter 5 we found a correlation between the depth of the laser cut and the acoustic wave using only a single air-coupled transducer. This encourages further investigation to characterize the tissue during the ablation process

    Advances in Quantitative MRI: Acquisition, Estimation, and Application

    Full text link
    Quantitative magnetic resonance imaging (QMRI) produces images of potential MR biomarkers: measurable tissue properties related to physiological processes that characterize the onset and progression of specific disorders. Though QMRI has potential to be more diagnostic than conventional qualitative MRI, QMRI poses challenges beyond those of conventional MRI that limit its feasibility for routine clinical use. This thesis first seeks to address two of those challenges. It then applies these solutions to develop a new method for myelin water imaging, a challenging application that may be specifically indicative of certain white matter (WM) disorders. One challenge that presently precludes widespread clinical adoption of QMRI involves long scan durations: to disentangle potential biomarkers from nuisance MR contrast mechanisms, QMRI typically requires more data than conventional MRI and thus longer scans. Even allowing for long scans, it has previously been unclear how to systematically tune the "knobs" of MR acquisitions to reliably enable precise biomarker estimation. Chapter 4 formalizes these challenges as a min-max optimal acquisition design problem and solves this problem to design three fast steady-state (SS) acquisitions for precise T1/T2 estimation, a popular QMRI application. The resulting optimized acquisition designs illustrate that acquisition design can enable new biomarker estimation techniques from established MR pulse sequences, a fact that subsequent chapters exploit. Another QMRI challenge involves the typically nonlinear dependence of MR signal models on the underlying biomarkers: these nonlinearities cause conventional likelihood-based estimators to either scale very poorly with the number of unknowns or risk producing suboptimal estimates due to spurious local minima. Chapter 5 instead introduces a fast, general method for dictionary-free QMRI parameter estimation via regression with kernels (PERK). PERK first uses prior distributions and the nonlinear MR signal model to simulate many parameter-measurement pairs. Inspired by machine learning, PERK then takes these pairs as labeled training points and learns from them a nonlinear regression function using kernel functions and convex optimization. Chapter 5 demonstrates PERK for T1/T2 estimation using one of the acquisitions optimized in Chapter 4. Simulations as well as single-slice phantom and in vivo experiments demonstrated that PERK and two well-suited maximum-likelihood (ML) estimators produce comparable T1/T2 estimates, but PERK is consistently at least 140x faster. Similar comparisons to an ML estimator in a more challenging problem (Chapter 6) suggest that this 140x acceleration factor will increase by several orders of magnitude for full-volume QMRI estimation problems involving more latent parameters per voxel. Chapter 6 applies ideas developed in previous chapters to design a new fast method for imaging myelin water content, a potential biomarker for healthy myelin. It first develops a two-compartment dual-echo steady-state (DESS) signal model and then uses a Bayesian variation of acquisition design (Chapter 4) to optimize a new DESS acquisition for precise myelin water imaging. The precision-optimized acquisition is as fast as conventional SS myelin water imaging acquisitions, but enables 2-3x better expected coefficients of variation in fast-relaxing fraction estimates. Simulations demonstrate that PERK (Chapter 5) and ML fast-relaxing fraction estimates from the proposed DESS acquisition exhibit comparable root mean-squared errors, but PERK is more than 500x faster. In vivo experiments are to our knowledge the first to demonstrate lateral WM myelin water content estimates from a fast (3m15s) SS acquisition that are similar to conventional estimates from a slower (32m4s) MESE acquisition.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147486/1/gnataraj_1.pd

    Inexact Gradient Projection and Fast Data Driven Compressed Sensing

    Get PDF
    We study convergence of the iterative projected gradient (IPG) algorithm for arbitrary (possibly nonconvex) sets and when both the gradient and projection oracles are computed approximately. We consider different notions of approximation of which we show that the Progressive Fixed Precision (PFP) and the (1+ϵ)(1+\epsilon)-optimal oracles can achieve the same accuracy as for the exact IPG algorithm. We show that the former scheme is also able to maintain the (linear) rate of convergence of the exact algorithm, under the same embedding assumption. In contrast, the (1+ϵ)(1+\epsilon)-approximate oracle requires a stronger embedding condition, moderate compression ratios and it typically slows down the convergence. We apply our results to accelerate solving a class of data driven compressed sensing problems, where we replace iterative exhaustive searches over large datasets by fast approximate nearest neighbour search strategies based on the cover tree data structure. For datasets with low intrinsic dimensions our proposed algorithm achieves a complexity logarithmic in terms of the dataset population as opposed to the linear complexity of a brute force search. By running several numerical experiments we conclude similar observations as predicted by our theoretical analysis

    (An overview of) Synergistic reconstruction for multimodality/multichannel imaging methods

    Get PDF
    Imaging is omnipresent in modern society with imaging devices based on a zoo of physical principles, probing a specimen across different wavelengths, energies and time. Recent years have seen a change in the imaging landscape with more and more imaging devices combining that which previously was used separately. Motivated by these hardware developments, an ever increasing set of mathematical ideas is appearing regarding how data from different imaging modalities or channels can be synergistically combined in the image reconstruction process, exploiting structural and/or functional correlations between the multiple images. Here we review these developments, give pointers to important challenges and provide an outlook as to how the field may develop in the forthcoming years. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'

    LOCUS: A Novel Decomposition Method for Brain Network Connectivity Matrices using Low-rank Structure with Uniform Sparsity

    Full text link
    Network-oriented research has been increasingly popular in many scientific areas. In neuroscience research, imaging-based network connectivity measures have become the key for understanding brain organizations, potentially serving as individual neural fingerprints. There are major challenges in analyzing connectivity matrices including the high dimensionality of brain networks, unknown latent sources underlying the observed connectivity, and the large number of brain connections leading to spurious findings. In this paper, we propose a novel blind source separation method with low-rank structure and uniform sparsity (LOCUS) as a fully data-driven decomposition method for network measures. Compared with the existing method that vectorizes connectivity matrices ignoring brain network topology, LOCUS achieves more efficient and accurate source separation for connectivity matrices using low-rank structure. We propose a novel angle-based uniform sparsity regularization that demonstrates better performance than the existing sparsity controls for low-rank tensor methods. We propose a highly efficient iterative Node-Rotation algorithm that exploits the block multi-convexity of the objective function to solve the non-convex optimization problem for learning LOCUS. We illustrate the advantage of LOCUS through extensive simulation studies. Application of LOCUS to Philadelphia Neurodevelopmental Cohort neuroimaging study reveals biologically insightful connectivity traits which are not found using the existing method

    Diffusion MRI analysis:robust and efficient microstructure modeling

    Get PDF
    Diffusion MRI (dMRI) allows for investigating the structure of the human brain. This is useful for both scientific brain research as well as medical diagnosis. Since the raw dMRI data is not directly interpretable by humans, we use mathematical models to convert the raw dMRI data into something interpretable. These models can be computed using multiple different computational methods, each having a different trade-off in accuracy, robustness and efficiency. In this thesis we studied multiple different computational models for their usability and efficiency for dMRI modeling. In the end we provide the reader with methodological recommendations for dMRI modeling and provide a high performance GPU enabled dMRI computing platform containing all recommendations
    • …
    corecore