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1. Introduction
Images have been an ever-present component of human civilisation for thousands of years
because of their unique ability to record and represent complex information in a form directly
interpretable by human intelligence. Whereas directly recorded images are ubiquitous in static
and moving formats, the enormous advances in engineering, physics, mathematics and computer
science in the last half-century has led to the increasing availability of indirect imaging methods.
Specifically, we refer to technologies where data g, belonging to some space Y , is measured and
the desired image f , in a different space X , is recovered by solving an inverse problem of the form

g=A(f) + e (1.1)

where A is the (possibly non-linear) mapping that models the generation of data from a given
estimate of f and e represents noise, arising from one or several sources of error.

Such image reconstruction problems arise in many areas of science, including geophysics, non-
destructive testing, atmospheric physics and, notably, in medical imaging which is the principal
focus of this article. Many different physical phenomena can be measured (representing the
space Y ) such as electro-magnetic, acoustic, and optical waves, as well as particle counting
processes, and many different physical parameters can be reconstructed (representing the space
X), including density, sound speed, attenuation coefficients, molecular relaxation rates, tracer
concentration, amongst many others. Modalities based on X-Rays (computed tomography) and
magnetic resonance (both of which led to the award of Nobel prizes for their development) are
well known examples present in every hospital.

With the success of such technologies has come the quest to push the boundaries of achievable
imaging in regard to speed, resolution and additional physical parameters. Although most
imaging techniques were originally envisioned as purely 2D methods, the relentless increase
in computing power has made 3D imaging routine. Nevertheless, the challenge to address so
called "4D" or even "5D" imaging (adding the dimension of time and/or spectral variations,
or potentially both) still presents difficulties, both in terms of computation time, and, more
fundamentally, in terms of adequate data acquisition within constraints such as patient tolerance
and safety. We will refer to these extensions as Multichannel Imaging (MCI).

A separate, but related, extension to conventional image reconstruction modalities is the
development of Multimodality Imaging (MMI). The key difference here is that the measurements
usually are of different physical phenomena, and/or the recovered images represent two or
more different physical parameters. The increasing interest in MMI is accelerating with the ever
increasing advances in systems and reconstruction techniques [1–3].

This article is a brief overview of some recent developments in these topics with a focus
on image reconstruction methods. The emphasis is on the various different incarnations of
synergistic reconstruction wherein several images are recovered simultaneously from several
data-sets where there are some common underlying properties that can be exploited during
the reconstruction process. Joint reconstruction is often considered for data-sets acquired
concurrently, i.e. sufficiently close together in time to be effectively simultaneous in comparison to
temporal variation in the images. We also briefly cover the joint reconstruction of multiple images
from data that was sequentially acquired, e.g. such as in dynamic imaging, follow-up studies or
many multi-modality cases.

The article is organised as follows. We provide brief definitions and terminology in section 2
as well as a taxonomy of applications. Section 3 on methods for “guided reconstruction”, where
a single image is reconstructed with regularisation based on one or more other images, will serve
as a gentle introduction to the main body of this review, section 4, where we provide an overview
of the dominant notions for synergistic reconstruction. We conclude this review in section 5 with
a discussion and point out important challenges and an outlook for the future of the field. For
completeness we summarise useful concepts from inverse problems and image reconstruction in
an appendix section A.
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2. A Taxonomy of Problems

(a) Basic Definitions
In this review we concentrate on scalar-valued images as most of the synergistic reconstruction
literature has been developed in this context. Some concepts could be generalised to (geometrical)
vector or tensor-based images (for instance for velocity or diffusion). We use the word “image"
both for the continuous function f(x) and the discretised version where the function is obtained
as a sum over basis functions bi(x)

f(x) =
∑
i

fibi(x) (2.1)

where x is a coordinate in space (most often three dimensional: x∈R3). Most authors use cuboid
basis functions (“voxels”). We will introduce multi-channel images below.

A commonly used generic setting for solving problem (1.1) is to solve an associated variational
problem

f∗ = argmin
f

[D(g,A(f)) + αΨ(f)] (2.2)

whereD is the data fit functional measuring a suitable distance between the observed data g and the
output of the modelA(f), and Ψ is a regularisation functional. The approach (2.2) is often referred
to as a variational regularization of the inverse problem (1.1). Under the Bayesian interpretation,
(2.2) is the negative logarithm of the product of the likelihood and the prior, i.e.

D(g,A(f))≡− log(P (g|A(f)) , αΨ(f)≡− log(P (f)) .

In MCI we consider a vector of measurements g ∈ Y :=
∏M
m=1 Ym, a vector of images f ∈X :=∏P

p=1Xp and the forward operator A :X→ Y mapping between these product spaces. Within
this description we distinguish

• Multi-Channel Single-Image (MCSI), which implies reconstructing a single image from
multiple channels, i.e. M > 1, P = 1.
• Single-Channel Multi-Image (SCMI), which implies reconstructing multiple images from

a single channel, i.e. M = 1, P > 1.
• Multi-Channel Multi-Image (MCMI) which implies reconstructing multiple images from

multiple channels, i.e. M > 1, P > 1.

In the case of MMI the various domain and range spaces are composed of different modalities
and quantitative image representations, and we may write all terms in stacked form:

g≡

(
g1
g2

)
A≡

(
A1

A2

)
f ≡

(
f1
f2

)
(2.3)

Each modality may be independently linear or nonlinear, well-posed, weakly ill-posed or strongly
ill-posed.

MCSI implies some redundancy in the set of measurements, but is advantageous when it gives
rise to a better posed inverse problem, e.g. in parallel Magnetic Resonance Imaging (MRI) [4], or in
inverse scattering problems with multi-frequencies [5]. As this review is on joint reconstruction of
multiple images, MCSI is not further considered, although of course it can occur as a sub-problem
in a multi-image context, such as Positron Emission Tomography (PET)/MRI.

Unless requiring reference to particular case details, we will use a single notation for all the
above:

g=A(f). (2.4)

(b) Guided Reconstruction
Closely related to the synergistic reconstruction problem in MCI or MMI is the possibility of using
one acquired modality or channel, with a robustly reconstructed image, as a prior for subsequent,
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usually less well-posed, image reconstruction problems. This constitutes a sequential process
where two different acquisitions are made, image 1 is reconstructed, and then image 2 guided
by image 1. Most often, the key idea is that image 1 has high resolution structural information
whereas image 2 is low resolution and/or a functional image.

Although (within medical imaging) the above concept is sometimes called anatomically-guided
image reconstruction or structure-driven image regularisation, we will refer to this approach as guided
image reconstruction in order to generalise to other applications. We describe the main techniques
in §3. A more detailed review of applications and methods can be found in [6]; see also [7] for
PET/MRI applied to neurology.

(c) Synergistic Reconstruction
In terms of the definitions given in § 2(a) we can list a number of applications, grouped according
to their similarity in regard to image reconstruction strategies:

• SCMI. Examples are acoustic speed and attenuation from Ultrasound (US) data [8],
absorption and scattering from unscattered photons only, or from photon intensity
only, in Diffuse Optical Tomography (DOT) [9], and attenuation and activity (i.e.
tracer concentration) estimation in PET and Single Photon Emission Computed
Tomography (SPECT) [10]. However, SCMI is usually a very ill-conditioned problem
with unsatisfactory results, often exhibiting non-uniqueness [11]. An exception is PET
with Time of Flight (TOF) where the extra information on the approximate location
of the activity along a line of response is sufficient to provide uniqueness up-to some
constant [12].
• MCMI : Multispectral Imaging. Modalities that can be classified as multispectral

imaging include multispectral Computed Tomography (CT) [13–19], multispectral
Electrical Impedance Tomography (EIT) [20,21], multispectral DOT [22], multispectral
Photoacoustic Tomography (PAT) [23] and Quantitative Photoacoustic Tomography
(QPAT) [24–26].
A common feature of multispectral imaging is the expression of f(λ) as a mixture of
component images zm

f(λ) =
∑
m

Em(λ)zm (2.5)

where λ is the energy/wavelength and the spectral signatures Em(λ) of the components
may be fully or partially known. Therefore these problems are often posed in two steps:
a channel by channel reconstruction for each λ followed by a spectral unmixing problem
solving (2.5) for z. If the prior is defined in terms of f it may introduce extra bias into
the recovery of z. Alternatively, the prior may be directly imposed on z; see [21,27,28] for
examples. A benefit of a one-step reconstruction procedure is that there is no propagation
of errors from the channel-wise tomographic inverse problem to the spectral unmixing
one. A drawback is that the full inverse problem may become nonlinear, which potentially
leads to a longer computation time.
• MCMI : Multi-Energy imaging. An example is the reconstruction of both attenuation and

tracer concentration from detection of both unscattered and scattered photons, the latter
having reduced energy. This has been demonstrated in both SPECT [29–31] and PET [32–
34].
• MCMI : Multi-Time Imaging. In dynamic/kinetic imaging the aim is to explicitly

separate different temporal variations as separate images. The time-series of images can
be reconstructed with e.g. a nuclear norm constraint [35]. The assumption is that the
number of separate temporal components is small and could be concisely expressed
using Principle Component Analysis (PCA), Independent Component Analysis (ICA)
or Non-Negative Matrix Factorisation (NNMF), for example. This can be extended to
allow outlier representations via the Low-Rank plus sparse approach [36]. Another strategy
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is to combine all temporal data into a single data frame and use its reconstruction in
a compressed sensing-style reconstruction [37]. Alternatively, the temporal behaviour
could be expressed as an approximately known function with some random components
modelled by a Kalman process [38], or it can be constrained to follow a (potentially
non-linear) kinetic model

f(t) =Φ(k, t) (2.6)

with k parametric images, similar to (2.5); see [39–41] for reviews. However, we are not
aware of any literature yet where there is a prior that couples the parametric images.
• MCMI : MRI imaging with multiple sequences also generate multiple images, with many

different applications and sometimes overlap with the aforementioned categories, e.g.
multimodal dynamical MRI [42], multiparametric MR [43], multi-contrast MRI [44–46],
and MR Fingerprinting which aims to estimate multiple images corresponding to
different tissue properties [47,48]; see also [49].
• Multi-Modality Multi-Image (MMMI) : The distinguishing aspect is that multiple

modalities may have very different physical measurements. Notable examples are PET
and MRI (PET/MRI) [50–52], PAT and US [53], geophysics applications with multiple
data (e.g. electromagnetic waves, seismic waves, radar, DC resistivity, groundwater flow)
[54–61].
• MMMI : Coupled Physics Imaging (CPI). These methods are so-named because the

measurement involves the cross-generation of one type of wave from another [62].
Examples include PAT and Optical Coherence Tomography (OCT) [63], quasi-static
elasticity imaging [64] and Acousto-Electric Tomography [65].

3. Guided Reconstruction
In this section we briefly describe the main methods that have been developed for guided
reconstruction, as many of these ideas can and have been extended to the synergistic case.

(a) The Continuous Setting
An obvious way to include information from an auxiliary image is to take a regularisation strategy
for one modality, f1 say, and introduce a local dependence on f2. For example, the form expressed
in eq. (A 6) can be extended to the form

Ψ(f1) :=

∫
Ω
w(f2(x))ψ(|∇f1(x)|)dx , (3.1)

→ Ψ ′(f1) = −∇ ·
(
w(f2(x))

ψ′(|∇f1(x)|)
|∇f1(x)|

)
∇f1(x) =−∇ · w(f2(x))κ(f1(x))∇f1(x) (3.2)

The choice for the weighting w(f2) could be quite general, and need not be strictly local. A
recurring concept is to make w ∈ [0, 1] an edge-indicator such as (A 9) computed on f2, i.e.

w(f2(x)) = exp (−|∇f2(x)|2/ε22) (3.3)

This form of prior favours a reconstruction of f1 where its edges are colocated with those of
f2; see figure 1(a). A more powerful approach may be also to encourage the direction of image
gradients to be aligned; see figure 1(b). This is similar to the Edge Enhancement Diffusion concept
outlined in (A 10)-(A 12). Again, the new concept is to control the flow of f1 based on the gradient
directions in f2 rather than only on those of f1 itself. For image reconstruction the methodology
was introduced by Kaipio et al. [66] by defining a tensor field, B(f2), that incorporates directional
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structure from f2:

Ψ(f1) =

∫
Ω
|∇f1|2B(f2)dx=

∫
Ω
|UT∇f1|2dx (3.4)

Specifically, for two-dimensional images, the choice

B = I − (1− β)ν̂ν̂T = τ̂ τ̂T + βν̂ν̂T =RKRT =UUT (3.5)

where R= [ν̂ τ̂ ] =

(
cos θ − sin θ

sin θ cos θ

)
is a rotation matrix, K=

(
β 0

0 1

)
is an anisotropy

matrix, U =RK1/2 and β ∈ [0, 1] is again an edge-indicator, leads to the diffusion flow

∂f1
∂t

=−∇ ·RKRT∇f1 =−∇̃ · K∇̃f1 . (3.6)

Here ∇̃=RT∇=

(
∂
∂ν̂
∂
∂τ̂

)
is the gradient in local “gauge” coordinates. This approach can be

generalised by using other local functions ψ resulting in the form

Ψ(f1) :=

∫
Ω
ψ(|UT∇f1|)dx , (3.7)

→ Ψ ′(f1) = −∇ · U

(
ψ′(|UT∇f1(x)|)
|UT∇f1(x)|

)
UT∇f1(x) (3.8)

= −∇̃ · K1/2
(
ψ′(|∇f1(x)|B)
|∇f1(x)|B

)
K1/2

︸ ︷︷ ︸
K̃

∇̃f1(x) . (3.9)

Of course here we can only give a glimpse into continuous regularisation for guided
reconstruction. Similar ideas exist for regularisers that do not fit (3.1) such as the total variation
[67] and the total generalised variation [68]; see for instance [6,69,70].

(b) The Discrete Setting
The above description is given in the continuous setting, but can be readily discretised. Here we
briefly describe some methods that are specific to the discrete case.

(i) Markov Random Field Priors

One prominent example is based on Markov Random Fields (MRFs) (A 14), where weights are
made dependent on f2 :

Ψ(f1) =
1

p

∑
i

∑
j∈N (i)

wij(f2)‖f1i − f1j‖
p . (3.10)

The simplest choice is to set the weights to zero across known edges (derived from f2), ideally
with some blurring to accommodate imperfect edge information [71]. Leahy & Yan estimated
both image values and edge-indicators by incorporating known edge information (obtained from
MRI) into an MRF prior that reduced the weights across edges, while encouraging continuous
edges [72].

To avoid having to determine the edges, the most popular choice nowadays to choose the
weights in (3.10) is called the Bowsher prior [73]. Here for every voxel i, only the n weights are
kept non-zero which correspond to the n smallest differences ||f2i − f2j ||.

Another choice for the weights, inspired by the kernel-method described in A(e), is to use a
similarity functionK between “features” computed on f2, potentially together with a dependence
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on the distance between the i and j voxels to enforce locality, e.g.:

wij(f2) =K(Ti(f2), Tj(f2)) exp

(
−||ri − rj ||2

2σ2s

)
(3.11)

with Ti(f2) a feature-vector computed at voxel i, ri the spatial coordinate of voxel i, and σs a
tunable parameter. This has been used with the Radial Basis Function (RBF) similarity function
(A 19) for multi-tracer PET by Ellis et al. [74], who sparsified the weights by keeping only the
nmax largest weights for each voxel, similar to the Bowsher prior1. Bland et al. extended this idea
by further adapting the weights over iterations by including Gaussian differences of the PET of
the previous update [75].

(ii) Kernel Methods

Wang & Qi have used the kernel method (see section A(e)) to represent the image as a linear
combination of transformed “features” computed on the guidance [76]. The image that needs to
be estimated can then be written in terms of a coefficient image ζ as

f1,i =
∑
j

K(Ti(f2), Tj(f2))ζj (3.12)

with K a similarity function (“kernel function”) between features Ti(f2) and Tj(f2). The kernel
matrixK(Ti(f2), Tj(f2)) was sparsified to improve computational performance and stability. The
reconstruction then becomes an optimisation problem in terms of ζ. This approach has been
used in MMI : see [76–78] (PET with MRI), [79] (SPECT with PET), [80] (fluorescence molecular
tomography with CT or MRI), [81] (DOT with CT), but also for MCMI : PET dynamic imaging
using static images as guide [76] or temporal features derived from the raw data [82].

One potential problem with kernel-based methods is that the kernel matrix can be too
restrictive such that “unique” features in the image that is reconstructed are suppressed. This can
be mitigated by limiting the spatial extent of the kernel function [83], or by adapting the kernel
matrix by using features computed on both the guidance and current estimate of the image. The
latter approach can also be called the “hybrid” kernel method [52].

(iii) Basis Function Selection

The basis functions (2.1) can be chosen based on the guidance, for instance increasing spatial
extent at locations where f2 is smooth.

An approach originating in the machine learning community is “dictionary learning”, where
images are written in terms of a dictionary, obtained from some training data. However, most
of the literature does not fit in the guided reconstruction category as it uses data from the same
modality for learning the dictionary, and/or adapts the dictionary from a current estimate of
the image. Tang et al. reconstruct PET images using a quadratic penalty encouraging similarity
with the previous iterate denoised using a pre-defined dictionary. The dictionary was trained on
various images, including MRI images from the same subject [84]. Tahaei et al. instead reconstruct
the PET image directly as a sparse combination of the dictionary [85]. The dictionary was learned
from an MRI image of the same subject, and then changed to allow different contrast and impose
non-negativity. Both papers show promising results, although somewhat surprisingly Tang et al.
obtained good results with a dictionary trained on a simple hollow sphere as well. Sudarshan et al.
extended the method of [84], by using a coupled dictionary encoding both PET and MRI images,
with the latter obtained from the same subject, adapting the dictionary at each iteration [86].

“Super-voxels” (or super-pixels) are another closely related concept for selecting basis
functions. They were originally developed for segmentation where voxels are grouped based on
similarity and spatial closeness. Multiple “layers” of different super-voxel realisations were later

1Note the relation between this approach and the discretised version of (3.3)
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proposed as an overcomplete basis for image registration [87]. Jiao et al. proposed creating super-
voxels from both a pre-computed MRI image and the gradient of the PET log-likelihood to avoid
bias in PET-only features [88].

4. Synergistic Reconstruction
This section reviews important concepts for synergistic image reconstruction. Some methods
are related to the concepts for guided reconstruction (see section 3) whereas some are directly
formulated for the synergistic setting.

(a) Joint MAP Estimation
In a Bayesian framework, a central concept for many synergistic image reconstruction approaches
is to formulate the multi-modality inverse problem (2.4) as a joint maximum a posteriori (JMAP)
estimate given by

(f1∗, f2∗) = argmin
f1,f2

[− logP (f1, f2|g1, g2) =− logP (g1, g2|f1, f2) + αΨ(f1, f2) + const] , (4.1)

where P (g1, g2|f1, f2) is the multi-modality likelihood. This is in contrast to the Bayesian
framework for guided reconstruction which would suggest a conditional a posteriori (CMAP)
estimate

f1∗ = argmin
f1

[− logP (f1|g1, f2) =− logP (g1|f1) + αΨ(f1|f2)] . (4.2)

While (4.1) is conceptually simple, it is in general difficult to specify a good multi-modality
likelihood. The situation significantly simplifies when certain conditional independences are
assumed (see [89] for more details), since then the likelihood factors as P (g1, g2|f1, f2) =
P (g1|f1)P (g2|f2) and the JMAP (4.1) becomes

(f1∗, f2∗) = argmin
f1,f2

[D(g1, A1(f1)) +D(g2, A2(f2)) + αΨ(f1, f2)] . (4.3)

In the special case of white Gaussian distributed noise in each modality, the JMAP then reads

(f1∗, f2∗) = argmin
f1,f2

[
1

2σ1
‖g1 −A1(f1)‖2 +

1

2σ2
‖g2 −A2(f2)‖2 + αΨ(f1, f2)

]
, (4.4)

which defines a natural statistical scaling between the two least squares terms. Such conditional
independence assumptions are used in almost all contributions based on the JMAP although often
not explicitly mentioned.

We mention also that similar questions arise w.r.t. the different image channels, including
scaling between terms and quantitative difference in images scales, as many (joint) priors depend
on image scale. In the optimisation literature pre-scaling between different dimensioned variables
is known as sphereing (referring to the ellipticity of the posterior covariance), but this is rarely
made explicit in the synergistic literature.

(b) Joint Sparsity
The variational synergistic reconstruction problem (4.3) needs a regulariser Ψ which encodes
the desired properties between the images f1 and f2. Choosing such a regulariser is a highly
nontrivial task and a good choice will generally depend on each individual application depending
on what properties f1 and f2 are expected to share.

In many applications it is desirable for f1 and f2 to have many common edges, i.e. edges
are more likely to occur at the same locations in f1 and f2 than it is for edges to occur at
different locations. If, in addition, both images are likely to have a small jump set, then this a
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Figure 1: Level Sets with coincident edges : left) intersecting at a point with different orientations;
centre) intersecting with parallel orientations but different curvatures; right) intersecting with
parallel orientations and the same curvature.

priori information can be encoded via the Joint Total Variation (JTV) [50,55,90,91]

JTV(f) =
∑
i

√
‖∇if1‖2 + ‖∇if2‖2 (4.5)

where ∇ifk denotes the spatial gradient of fk at location (e.g. voxel) i. This regulariser can be
readily extended to an arbitrary number of images by summing over all gradient norms. An
alternative but completely equivalent viewpoint is to define the joint total variation as the sum
over the 2-norm of the Jacobian of the vector-valued image f . In the context of colour image
processing, this regulariser is also called Vectorial Total Variation (VTV) [92,93].

An alternative to sparsity of the Jacobian is to consider joint sparsity of the wavelet
coefficients [94]. Since wavelets are highly localised one would expect this prior to be useful in
similar situations as described before for the joint total variation. Joint sparsity can also be used
in other over-complete basis settings such as “super-voxels”.

The notion of joint sparsity is not limited to explicitly given transforms such as the gradient or
the wavelet transform. For instance, when considering a dynamic sequence f1, . . . , fn it is often
desirable to promote a low rank of the Casoratti matrix

[f1(:), . . . , fn(:)] (4.6)

where we abused MATLAB notation for simplicity. Such low rank can be for instance promoted
with the nuclear norm [35,36].

(c) Joint Geometric Regularisation
The idea in joint geometric regularisation is to define a prior that enforces consistent geometric
structure between channels or modalities. Although similar to the motivation in § 3(a) the key
point is that it is optimised with respect to all images.

The Parallel Level Sets (PLS) prior [89,95] is defined as

ΨPLS(f1, f2) =

∫
Ω
ϕ

(
ψ (‖∇f1(x)‖‖∇f2(x)‖)− ψ (|〈∇f1(x),∇f2(x)〉|)

)
dx (4.7)

for strictly increasing functions ϕ,ψ. One can see that this prior achieves its smallest value if the
two gradients are co-linear (or parallel) at each point, i.e. for almost all x∈Ω there exists a scaling
factor β ∈R such that∇f1(x) = β∇f2(x) or∇f2(x) = β∇f1(x). See also [96] for a comprehensive
overview of this concept.

This generalised framework encompasses some previously used regularisers. For instance, if
φ(t) = t and ψ(t) = t2, then it measures the squared norm of the cross-product of ∇f1 and ∇f2,
which has been successfully used in the geophysics literature [55,56]. The gradient of ΨPLS w.r.t.
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f1 produces an anisotropic diffusive flow where the diffusivity depends on f2, and the gradient
w.r.t. f2 produces an anisotropic diffusive flow where the diffusivity depends on f1 so as to overall
favour the alignment of both image gradients [89].

There are also other priors which promote parallel level sets or parallel gradients. For instance,
the Total Nuclear Variation (TNV) [13,19,97,98] promotes sparsity in the singular values of the
matrix of gradients (the Jacobian) V(x) := [∇f1(x),∇f2(x), . . . ,∇fM (x)] at almost every x∈Ω.
One can see that the Jacobian has rank 1 if and only if all images f1, . . . , fM have pairwise
parallel level sets. An advantage of TNV compared to PLS is that the former is convex in the joint
argument (f1, . . . , fM ) whereas the latter is in general nonconvex. See also [6,96] for a deeper
discussion of the connections between TNV and PLS. The same idea has also been exploited for
higher-order regularization such as the total generalised variation, see [99] for more details.

In principle, the concepts of joint structure could be extended to higher order geometrical

features, for example using the "jet" of derivativesMJ : f 7→
{
∂f
∂xi

, ∂2f
∂xi1

∂xi2
, . . . ∂Jf

∂xi1
∂xi2

...∂xiJ

}
,

which is the basis of several approaches to analysing shape in images, including at multiple
scales [100,101]. For example, one could consider the definition of curvature γ = ν̂THν̂, where

ν̂ = ∇f
|∇f | is the local level set normal direction and H =

(
fxx fxy
fxy fyy

)
is the image Hessian [102].

Images with the same local curvature may have stronger corresponding structural similarity then
those with only local normal coincidences; see figure 1 (c).

(d) Regularisation exploiting Joint Statistics
Joint entropy is a measure of randomness characterizing the joint probability density function
P (f1, f2) of two random variables f1 and f2. The joint Shannon Entropy is given by:

S(f1, f2) =−
∫
Ω
P (f1(x), f2(x)) log(P (f1(x), f2(x)))dx . (4.8)

See figure 2 for an illustration. Joint Entropy and Mutual Information (i.e. the difference between
joint and marginal entropies) are routinely used in image registration [103].

Setting Ψ(f1, f2) = S(f1, f2) specifies a regularisation scheme that minimises the joint entropy
between f1 and f2. Qualitatively, entropy measures the "peakiness" of a probability distribution;
i.e. the more concentrated the distribution around cluster points the lower the entropy, and
minimising it will lead to images that have less uncertainty [104–109]. One drawback of the
definition in (4.8) is that it depends only on pixel intensity value and does not admit any
spatial correlation. This motivated Tang and Rahmim to extend the Joint Entropy concept to a
multi-resolution description based on wavelets [110].

Differentiation of S(f1, f2) can be made computationally efficient using Parzen kernel density
estimators to develop a continuous function based on the sample pixels in f1, f2 [106,108].
However (4.8) is extremely non-convex, and minimisation of joint entropy requires careful
attention such as applying multiple re-starts from different initialisations [107] which has
prevented its wider uptake as a regularisation scheme. As an alternative to Shannon entropy
the Burg entropy has been proposed [109] which is computationally more tractable whilst still
providing comparable results.

An approach combining joint feature-space clustering with image diffusion was developed
in [111]. Here a distance measure in P (f1, f2) defined a diffusivity that favoured intra-class
smoothing above inter-class smoothing. The method was applied to enhance multichannel MRI
images, but could in principle be used to regularise image reconstruction problems as well.

(e) Recycling of Guided Reconstruction for Synergistic Reconstruction
An alternative to joint reconstruction via joint regularization (4.3) is to alternate between guided
reconstructions. In its most generality let A(A, g, f, v) be an algorithm that takes data g, current
estimate f of the solution to the inverse problem Af = g and guide image v, then one can always
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Figure 2: Joint Probability measures of multiple images. Top row : two images f1, f2 and their
joint histogram. Bottom row : the result of applying edge-preserving diffusion to f1 and f2 and
their new joint histogram. The joint entropy of the bottom right is lower than the top right, and
the classes are more clearly separated.

create an algorithm to perform joint reconstruction by iterating

fk+1
1 =A(A1, g1, f

k
1 , f

k
2 ) (4.9)

fk+1
2 =A(A2, g2, f

k
2 , f

k+1
1 ) (4.10)

or choose a guide image based on previous iterates, v=B(fk) and update in parallel

fk+1
1 =A(A1, g1, f

k
1 , v) (4.11)

fk+1
2 =A(A2, g2, f

k
2 , v) . (4.12)

The algorithm A may be derived from an algorithm which solves a guided variational
reconstruction problem but it does not have to be. It is also possible to use different algorithms
A1 and A2.

This ad hoc approach has a number of advantages. First of all, this approach is highly modular,
meaning that any guided reconstruction algorithm can be recycled into a joint reconstruction
algorithm. Second, most guided reconstruction algorithms are better understood and have
favourable properties when compared with joint reconstruction algorithms. For example, many
guided variational reconstruction problems are convex and are independent of the scaling of the
guide image – two properties which joint variational approaches often lack.

That being said, it has also a number of disadvantages. Most importantly, there is no guarantee
that the sequence fk will converge and if it does, how the limit can be characterised. Second,
the sequence fk will depend on the actual implementation of the algorithm A like number of
subiterations, step size etc even if the algorithmA itself is well-characterised as converging to the
optimal solution of a guided variational regularisation problem.

This approach has been used for spectral CT [15] where the algorithm A was solving a
directional total variation regularised least squares problem and the guide image v is either
chosen to be a weighted average over the previous iterate or a randomly chosen image from
the previous iterate. See also the next section.
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(f) Optimisation-inspired Synergistic Reconstruction
As we will highlight in section 5, many joint reconstruction variational problems and algorithms
have unfavourable properties. For example, when solving (4.3) with joint total variation (4.5)
regularisation and grouped coordinate descent, the iterations read

fk+1
1 = argmin

f
D(g1, A1(f)) + α JTV(f, fk2 )

fk+1
2 = argmin

f
D(g2, A2(f)) + α JTV(fk+1

1 , f).
(4.13)

This algorithm (and the underlying variational problem) has two potential drawbacks. First, the
same regularisation parameter α is being used for both modalities. Second, since the regulariser
compares the magnitude of the gradients of the two modalities, the reconstruction will favour
the modality with the larger scale even though often they capture two very different physical
phenomena which should not be compared.

A way out of these problems is to change the iterations (4.13) and introduce a weighting µkj > 0

and one regularization parameter for each modality αj and iterate

fk+1
1 = argmin

f
D(g1, A1(f)) + α1 JTV(f, µk2f

k
2 )

fk+1
2 = argmin

f
D(g2, A2(f)) + α2 JTV(µk1f

k+1
1 , f) .

This approach has been studied for another algorithm (ADMM [112]) in the context of
PET/MRI [113] and with a weighted quadratic prior (similar to (3.11)) instead of joint total
variation for the same application in [114]. While this ad hoc modification potentially overcomes
the aforementioned problems, it has the drawback that it is unclear how to choose the parameters
µkj , αj and if the iterates fk converge.

A related but different approach are the infimal-convolution Bregman total variation
iterations [51]. Here the starting point are Bregman iterations based on the total variation
regulariser [115] which given an iterate fk and a subgradient pk ∈ ∂ TV(fk) read

fk+1 = argmin
f

1

2
‖Af − g‖2 + αDp

k

TV(f, fk) (4.14)

pk+1 = α−1
(
pk −A∗(Afk+1 − g)

)
. (4.15)

Bregman iterations are proven to converge to a total variation minimizing solution ofAf = g (1.1),
so early stopping is required in order to provide regularization; see for instance [116, chapter 6].

Bregman iterations can be extended to multiple modalities by replacing the Bregman distance

Dp
k

TV(f, fk) with a weighted sum of pairwise channel correlations

M∑
i,j=1

wijD
pkj
TV(fi, f

k
j ) . (4.16)

The resulting algorithm is coined "Color Bregman iterations" [117]. Its convergence is guaranteed
in some special cases; see [117] for more details. A problem with (4.16) is that it only promotes
positive correlations between the edges in channels and negative correlations are suppressed. In
order to circumvent this problem the Bregman distance of the total variation was replaced by the
infimal convolution of Bregman distances with opposite sign subgradients. Whilst no proof of
convergence for resulting iterations is known, these were shown in [51] to be competitive with
the state-of-the-art for joint PET-MR reconstruction.

(g) Joint-dictionary learning methods
Methods from §3.(b)iii can be extended to the joint problem.
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Sudarshan et al. recently extended their work on PET reconstruction guided by a joint-
dictionary using an MRI image from the same subject [86] to the joint problem for PET and
(undersampled) MRI data [118]. The proposed method uses a pre-trained joint dictionary for
PET and MRI magnitude images. The MRI phase image was not included in the dictionary nor
penalised, as it is usually sensitive to noise and phase wrap-around. The prior penalises the square
of the differences between both reconstructed images and their denoised images (obtained by
sparse coding). The method alternates between PET, MRI phase and magnitude reconstruction,
and sparse coding. The method performed well on simulated data. However, a practical difficulty
would be how to obtain high quality data for training the dictionary.

Song et al. proposed an algorithm for multi-contrast MRI that alternates three stages:
coupled dictionary learning (from random patches of current images), coupled sparse denoising
(of all patches), and k-space consistency (as a gradient-step of normal image reconstruction
with a quadratic penalty that encourages similarity between the denoised and reconstructed
image) [119]. An interesting point is that multiple dictionaries are used: a coupled dictionary for
all contrasts, and independent dictionaries for each contrast. The latter are used to encode residual
image features that do not fit the coupled dictionary. As with any adaptive dictionary learning
problem, this problem is highly non-convex and the authors acknowledge that the suggested
approach will at most converge to a local minimum, with no convergence proofs available.

5. Discussion and Outlook
In this article we have given a (somewhat personal) overview of the history and current state of
synergistic reconstruction, with an emphasis on medical imaging. We have attempted to frame
a common setting for commonly used methods and present some of the key concepts that arise
in quite different applications. Due to space constraints as well as consistency of readability we
have inevitably had to omit certain topics which we discuss here. At the same time we indicate
the current challenges which will motivate the outlook for research in the next several years.

We have implicitly assumed that images have been acquired and reconstructed in a consistent
coordinate system. This may not always be the case. In the case of multiple modalities, images
might have different natural sampling, or, more generally, different basis functions. It is possible
to insert the necessary transformations into the joint priors, although in practice most authors
choose the highest sampling for all images. If data-sets are not acquired at the same time,
misalignment due to motion can create difficulties with some methods more sensitive to
misalignment than others [120]. This leads to the topic of joint misalignment estimation and
reconstruction, with recent contributions in the guided context jointly estimating the image and
the misalignment modelled either via a convolution kernel [121] or a spatial transformation
[122,123]. If there is motion during the acquisition, it is possible to jointly estimate the image and
the spatial transformation between motion different states [124,125]. There is considerable scope
to combine this with methods from the image registration literature, such as joint penalties on
the image and motion fields [126] and synergistic image registration for multi-modality data with
the same underlying motion which benefits from different contrast and structures in the different
modalities [127,128].

There are also several open questions in regard to algorithm choices and their implementation.
Should (4.3) be solved with grouped coordinate descent or should all coordinates be updated in
parallel? What are efficient algorithms to solve (4.3)? Since the computational cost of separate
reconstruction of all channels/modalities scales linearly with respect to their number, one might
aim to have a similar computational cost for synergistic reconstruction. It is currently unknown
how existing methods theoretically scale in this regard. Another challenge is the non-convexity
of many JMAP approaches, with in some cases presence of local minima. In such a case, heuristic
update mechanisms are often used, for instance by using small steps in an alternating update
scheme such that artefacts do not arise.

There is an ever increasing trend towards learning based methods in imaging, which is also
seen in almost all branches of science and data analysis in general. See [129–131] for some
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reviews on learned image reconstruction methods and appendix §A(f) for a brief discussion
on the use of Neural Networks (NNs) as regularisers. There is however currently very little
research on applying these techniques to the multi-channel/modality problem, possibly due to
the relative scarcity of data and the difficulties in obtaining ground truth in the situations that
synergistic image reconstruction tries to tackle. Future research in this area is likely to emphasise
the unification of model-driven and data-driven methods.

A practical difficulty with synergistic methods, especially in multi-modality imaging, is the
need for software that can handle large amounts of data, is capable to accurately compute
the system models (2.3), and ideally allows easy experimentation with novel algorithms. It
is therefore often necessary to combine several software packages, ideally via an overarching
framework [132] or by writing interfaces to other packages such that they can be used in an
optimisation library such as [133–135].

Finally, although synergistic methods hold considerable promise to expand imaging into
application areas where ill-conditioning of the single channel/modality otherwise impedes
sufficient image quality, it also comes with its dangers. Like any regularisation, prior information
can generate bias. This can lead to cross-talk, creating structure in one image when it should only
be present in the other. Addressing this will need both prior design [28] and extensive studies to
validate these methods for each application.
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A. Mathematical Tools for Image Reconstruction
In this appendix we briefly outline some main concepts and methods used in image
reconstruction, which we frame in the context of ill-posed inverse problems. There is an ever
growing number of strategies for the design of regularisation functionals to ameliorate ill-
posedness using geometrical, statistical or learned approaches. We mention some key principles
here. For a general introduction to the regularization of inverse imaging problems, we refer the
reader to [116,136,137].

We note that there are some fundamental differences between the Continuous Setting and the
Discrete Setting which are related through (2.1). Any approach derived in the continuous setting
needs to be discretised to allow a computational implementation. However, some approaches
start directly from a discretisation, where the continuous functions are written in terms of basis
functions, normally as a linear combination as in (2.1). Regularisation can then proceed by
choosing appropriate basis functions, or by adding a penalty Ψ(f) on the coefficients, or both.

(a) Aspects of Optimisation
The fundamental algorithm to optimise the variational representation (2.2) is gradient descent
which, given an initial guess f (k), computes the iterative updates

f (k+1) = f (k) − τk
(
D′(fk) + αΨ ′(fk)

)
(A 1)

where τk is a step length which can be constant or varying with the iterations. Rather than an
explicit classical descent strategy, a more general approach is the Proximal Gradient Descent (PGD)
which takes the form of two steps

likelihood update step f (k+1/2) = f (k) − τkD′(f (k)) (A 2)

proximal step f (k+1) = proxτkαΨ

(
f (k+1/2)

)
(A 3)

where the proximal operator solves the auxiliary problem

proxτkαΨ (z) = argmin
f

{
Φz(f) :=

1

2
‖f − z‖2 + τkαΨ(f)

}
(A 4)

A possible approximate solution of the proximal step is via the evolution of a PDE induced by the
form of the regularisation functional [136]

∂f

∂t
=−Φ′f(k+1/2)(f) = f − f (k+1/2) + τkαΨ

′(f) (A 5)

(b) Regularisation and Image Diffusion
In the continuous setting, when following the classical approach (A 1), we require the gradient
Ψ ′ ≡ ∂Ψ

∂f , which corresponds to the first variation (Euler-Lagrange equation) if Ψ is defined in
variational form; e.g.

Ψ(f) :=

∫
Ω
ψ(|∇f |)dx → Ψ ′(f) =−∇ ·

(
ψ′(|∇f |)
|∇f |

)
︸ ︷︷ ︸

κ

∇f (A 6)

Furthermore, as suggested by (A 5), interpreting the iterative steps as a time evolution suggests
the interpretation of the minimisation of the prior as an image flow. In the choice given in (A 6)
this is of diffusion type, since the term on the right is a second order derivative, i.e.

∂f(x)

∂t
=∇ · (κ(x)∇f(x)) , (A 7)

where κ(x) plays the role of a spatially varying diffusivity. The local function ψ in (A 6) (usually
taken to be convex) admits many commonly used regularisation schemes including first order
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Tikhonov (ψ(s) = 1
2s

2) and total variation (TV) (ψ(s) = s). A particular function that we will refer
to in this article is the Perona-Malik function [138] in one of the forms

PM1 ψ(t) :=
ε2

2
log

[
1 +

t2

ε2

]
→ ψ′(t) =

ε2t

ε2 + t2
(A 8)

PM2 ψ(t) :=
ε2

2

[
1− exp

(
− t

2

ε2

)]
→ ψ′(t) = t exp

(
− t

2

ε2

)
(A 9)

with ε a threshold indicating a level below which small gradients are considered as noise. The

resultant diffusivities κ= ψ′(|∇f |)
|∇f | ∈ [0, 1] can be interpreted as edge-indicator functions.

We may also define a flow without it being the variation of a functional form. Weikert [102]
proposed using a tensor

∂f

∂t
=∇ · (D(Jρ(∇fσ))∇f (A 10)

where the (symmetric, positive semi-definite) structure tensor is constructed as

Jρ(∇fσ)(x) =Gρ ∗ (∇fσ∇fTσ ) =

[
Gρ ∗ f2x Gρ ∗ fyfx
Gρ ∗ fxfy Gρ ∗ f2y

]
, (A 11)

with eigensystem {ηk,vk} and

D= [v1 v2]

[
ζ1 0

0 ζ2

][
vT
1

vT
2

]
=

[
D11 D12

D12 D22

]
. (A 12)

Furthermore v1 ' ν̂,v2 ' τ̂ , with equality as σ, ρ→ 0. Then the Edge Enhancing Diffusion (EED)
approach is designed to reduce smoothing in the normal direction by an edge-indicator derived
from (A 9)

ζ1 = κε(|∇f |) = exp (−|∇f |2/ε2); ζ2 = 1 (A 13)

(c) Markov Random Fields
A fundamental concept in the discrete setting is the Markov Random Field (MRF) [139] :

Ψ(f) =
1

p

∑
i

∑
j∈N (i)

wij |fi − fj |p (A 14)

∂Ψ

∂fi
=

∑
j∈N (i)

wij |fi − fj |p−1 (A 15)

Sometimes the discrete MRF corresponds to the discretisation of a continuous functional; e.g for
p= 2 we have a quadratic form

Ψ(f) = 〈f, Lf〉 with Lij =

{
wij j 6= i

−
∑
j 6=i wij i= j

(A 16)

Taking a 4-connected neighbourhood with uniform weights wij = 1 corresponds to the
discretisation of the Laplacian L'−∇2 which is the gradient of the first order Tikhonov prior.
However, in general, it is not always possible to explain MRFs as discretisation of a continuous
model.

The MRF concept extends to a global one and the concept of Non-local regularisation [140]. For
example the Laplacian in the local mathematical sense of a second order derivative extends to the
Graph Laplacian [141–145]. The conjunction of an MRF with kernel-based methods (see § A(e)) is
related to the so-called bilateral filtering technique in image processing [146].
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(d) Sparsity
Sparsity has been a prominent concept in regularisation for several decades, closely connected to
the principles of Compressed Sensing [147]. It can be formulated in both continuous and discrete
settings. The assumption is that under some (possibly invertible) transform

ξ = T (f) ↔ f = T −1(ξ) (A 17)

the transformed parameters ξ have many/mostly zero or close to zero, which can be described
by specifying that the zero-norm L0 := |ξ|0, which simply counts the non-zero components in ξ,
should be minimised. However, since optimisation of L0 norm leads to a non-convex problem,
it is conveniently replaced by its convex relaxation given by the L1-norm. Possibilities for the
transform T include finite differences (gradient regularisation), wavelets, and NNs where T is
called an encoder and T −1 a decoder. Methods employing sparsity also allow the possibility that
the transform space is over-complete, i.e. the solution has a non-unique representation in the basis;
an example is the use of a dictionary learned from example solutions [148,149].

(e) Kernel Methods
Kernel Methods compute properties such as classifiers in terms of transformed feature vectors
obtained from one or more related images or training data [150]. The transformation can be a
(generally non-linear) mapping to a high dimensional space. The features may be obtained from
any abstraction model, such as patches, or geometric or statistical measures. The inner product in
the transformed space defines a similarity measure on the features. In practice, the transformation
is determined by specifying this similarity measure K, called the “kernel function”. Although
sparsifying tranforms and feature vectors are not synonymous, for simplicity of representation,
we use the same notation as (A 17)

K(Ti(f), Tj(f)) (A 18)

where Ti is now interpreted as the feature vector associated with pixel i and f represents the
image(s) on which the features are computed. A common choice for the kernel function is the
Radial Basis Function (RBF)

K(t1, t2) := exp

{
−||t1 − t2||

2

2σ2

}
. (A 19)

The “kernel trick” consists of computing linear functions of the transformed variables in terms
of K.

(f) Regularisation using Neural Networks
There are many techniques for combining inverse problems with artificial intelligence in general
and NNs particular; see [129] for a review.

Here we mention only one natural approach which is to replace the proximal operator (A 3)
by a learned operator such that

f (k+1) = FΘ

(
f (k+1/2)

)
(A 20)

where FΘ :X→X is a NN trained on suitable pairs of ground truth and approximately
reconstructed images, and where Θ represents the weights and other parameters of the network
architecture [151].

Alternatively we could consider the evolution (A 5) as an image update

f 7→ f + FΘ

(
f (k+1/2)

)
(A 21)

where FΘ now takes the form of a Residual Neural Net [152].
In neither approach is the update explicitly derived as the variation of a function which

leads to difficulties in corresponding convergence guarantees, and prevents an explicit Bayesian
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interpretation as the maximisation of a posterior. However, note that the Regularisation by
Denoising (RED) framework provides a general technique to interpret denoising algorithms as
variational methods under certain restrictions of their properties [153].
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