634 research outputs found

    Electrical impedance tomography: methods and applications

    Get PDF

    Electronic hardware design of a low cost tactile sensor device for physical Human-Robot Interactions

    Get PDF
    International audienceWe propose in this paper a low-cost method of Electrical Impedance Tomography (EIT) data acquisition from soft conductive fabric for the design of robots artificial skin. We use a simple multiplexer/demultiplexer circuit for retrieving the resistance field from the pair-wised electrical current injected and the output voltage measured from the conductive fabric. A microcontroller controls the current injection and voltage output patterns and the analog-to-numeric conversion from the tactile material. After explaining the EIT method, we present the electronics corresponding to the data acquisition and we analyze the material property. Results show that we can acquire and localize in real time spatial patterns of the tactile contact

    Electronic hardware design of a low cost tactile sensor device for physical Human-Robot Interactions

    Get PDF
    International audienceWe propose in this paper a low-cost method of Electrical Impedance Tomography (EIT) data acquisition from soft conductive fabric for the design of robots artificial skin. We use a simple multiplexer/demultiplexer circuit for retrieving the resistance field from the pair-wised electrical current injected and the output voltage measured from the conductive fabric. A microcontroller controls the current injection and voltage output patterns and the analog-to-numeric conversion from the tactile material. After explaining the EIT method, we present the electronics corresponding to the data acquisition and we analyze the material property. Results show that we can acquire and localize in real time spatial patterns of the tactile contact

    Electrical Impedance Tomography for Artificial Sensitive Robotic Skin:A Review

    Get PDF

    TACTILE SENSING WITH COMPLIANT STRUCTURES FOR HUMAN-ROBOT INTERACTION

    Get PDF
    This dissertation presents the research on tactile sensing with compliant structures towards human-robot interaction. It would be beneficial for robots working collaboratively with humans to be soft or padded and have compliant tactile sensing skins over the padding. To allow the robots to interact with humans via touch effectively and safely and to detect tactile stimuli in an unstructured environment, new tactile sensing concepts are needed that can detect a wide range of potential interactions and sense over an area. However, most highly sensitive tactile sensors are unable to cover the forces involved in human contacts, which ranges from 1 newton to thousand newtons; to implement area sensing capabilities, there have been challenges in creating traditional sensing arrays, where the associated supporting electronics become more complex with an increasing number of sensing elements. This dissertation develops a novel multi-layer cutaneous tactile sensing architecture for enhanced sensitivity and range, and employs an imaging technique based on boundary measurements called electrical impedance tomography (EIT) to achieve area tactile sensing capabilities. The multi-layer cutaneous tactile sensing architecture, which consists of stretchable piezoresistive strain-sensing layers over foam padding layers of different stiffness, allows for both sufficient sensitivity and an extended force range for human contacts. The role that the padding layer plays when placed under a stretchable sensing layer was investigated, and it was discovered that the padding layer magnifies the sensor signal under indentation compared to that obtained without padding layers. The roles of the multi-layer foams were investigated by changing stiffness and thickness, which allows tailoring the response of multi-layer architectures for different applications. To achieve both extended force range and distributed sensing, EIT technique was employed with the multi-layer sensing architecture. Machine and human touch were conducted on the developed multi-layer sensing system, revealing that the second sensing skin is required to detect the large variability in human touch. Although widely applied in the medical field for functional imaging, EIT applied in tactile sensing faces different challenges, such as unknown number and region of tactile stimuli. Current EIT tactile sensors have focused on qualitative demonstration. This dissertation aims at achieving quantitative information from piezoresistive EIT tactile sensors, by investigating spatial performance and the effect of sensor’s conductivity. A spatial correction method was developed for obtaining consistent spatial information, which was validated by both simulation and experiments from our stretchable piezoresistive EIT sensor with an underlying padding layer

    A Multi-Modal Sensing Glove for Human Manual-Interaction Studies

    Get PDF
    We present an integrated sensing glove that combines two of the most visionary wearable sensing technologies to provide both hand posture sensing and tactile pressure sensing in a unique, lightweight, and stretchable device. Namely, hand posture reconstruction employs Knitted Piezoresistive Fabrics that allows us to measure bending. From only five of these sensors (one for each finger) the full hand pose of a 19 degrees of freedom (DOF) hand model is reconstructed leveraging optimal sensor placement and estimation techniques. To this end, we exploit a-priori information of synergistic coordination patterns in grasping tasks. Tactile sensing employs a piezoresistive fabric allowing us to measure normal forces in more than 50 taxels spread over the palmar surface of the glove. We describe both sensing technologies, report on the software integration of both modalities, and describe a preliminary evaluation experiment analyzing hand postures and force patterns during grasping. Results of the reconstruction are promising and encourage us to push further our approach with potential applications in neuroscience, virtual reality, robotics and tele-operation

    Development of a practical electrical tomography system for flexible contact sensing applications

    Get PDF
    Tactile sensing is seeing an increase in potential applications, such as in humanoid and industrial robots; health care systems and medical instrumentation; prosthetic devices; and in the context of human-machine interaction. However, these applications require the integration of tactile sensors over various objects with different surface shapes. This emphasises the need of developing sensors which are flexible in contrast with the common rigid type. Moreover, flexible sensing research is considered to be in its infancy. Many technological and system issues are still open, mainly: conformability; scalability; system integration; high system cost; sensor size; and power consumption. In light of the above, this thesis is concerned with the development of a flexible fabric-based contact sensor system. This is done through an interdisciplinary approach whereby electronics, system engineering, electrical tomography, and machine learning have been considered. This results in a practical flexible sensor that is capable of accurately detecting contact locations with high temporal resolution; and requires low power consumption.The sensor is based on the principle of electrical tomography. This is essential since this technique allows us to eliminate electrodes and wiring from within the sensing area, confining them to the periphery of the sensor. This improves flexibility all while eliminating electrode fatigue and deterioration due to repeated loading.We start by developing an electrical tomography sensor system. This comprises of a piezoresistive flexible fabric material, a data acquisition card, and a custom printed circuit board for managing both current injection and data collection. We show that current injection and voltage measurement protocols respond differently to different positions of the input contact region of interest, consequently affecting the overall performance of the tomography sensor system. Then, an approach for classifying contact location over the sensor is presented. This is done using supervised machine learning, namely discriminant analysis. Accurate touch location identification is achieved, along with an increase in the detection speed and sensor versatility. Finally, the sensor is placed over different surfaces in order to show and validate its efficiency. The main finding of this work is that electrical tomography flexible sensor systems present a very promising technology, and can be practically and effectively used for developing inexpensive and durable flexible sensors for tactile applications. The main advantage of this approach is the complete absence of wires in the internal area of the sensor. This allows the sensor to be placed over surfaces with different shapes without losing its functionality. The sensor's applicability can be further improved by using machine learning strategies due to their ability of empirical learning and extracting meaningful tactile information. The research work in this thesis was motivated by the problems faced by industrial partners which were part of the sustainable manufacturing and advanced robotics training network in Europe (SMART-e)

    Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices

    Get PDF
    Flexible and wearable pressure sensors have attracted a tremendous amount of attention due to their wider applications in human interfaces and healthcare monitoring. However, achieving accurate pressure detection and stability against external stimuli (in particular, bending deformation) over a wide range of pressures from tactile to body weight levels is a great challenge. Here, we introduce an ultrawide-range, bending-insensitive, and flexible pressure sensor based on a carbon nanotube (CNT) network-coated thin porous elastomer sponge for use in human interface devices. The integration of the CNT networks into three-dimensional microporous elastomers provides high deformability and a large change in contact between the conductive CNT networks due to the presence of micropores, thereby improving the sensitivity compared with that obtained using CNT-embedded solid elastomers. As electrical pathways are continuously generated up to high compressive strain (∼80%), the pressure sensor shows an ultrawide pressure sensing range (10 Pa to 1.2 MPa) while maintaining favorable sensitivity (0.01–0.02 kPa–1) and linearity (R2 ∼ 0.98). Also, the pressure sensor exhibits excellent electromechanical stability and insensitivity to bending-induced deformations. Finally, we demonstrate that the pressure sensor can be applied in a flexible piano pad as an entertainment human interface device and a flexible foot insole as a wearable healthcare and gait monitoring device
    corecore