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Abstract

Tactile sensing is seeing an increase in potential applications, such as in hu-

manoid and industrial robots; health care systems and medical instrumentation;

prosthetic devices; and in the context of human-machine interaction. However,

these applications require the integration of tactile sensors over various objects

with different surface shapes. This emphasises the need of developing sensors

which are flexible in contrast with the common rigid type. Moreover, flexible

sensing research is considered to be in its infancy. Many technological and sys-

tem issues are still open, mainly: conformability; scalability; system integration;

high system cost; sensor size; and power consumption.

In light of the above, this thesis is concerned with the development of a flexi-

ble fabric-based contact sensor system. This is done through an interdisciplinary

approach whereby electronics, system engineering, electrical tomography, and

machine learning have been considered. This results in a practical flexible sen-

sor that is capable of accurately detecting contact locations with high temporal

resolution; and requires low power consumption. The sensor is based on the prin-

ciple of electrical tomography. This is essential since this technique allows us to

eliminate electrodes and wiring from within the sensing area, confining them to

the periphery of the sensor. This improves flexibility all while eliminating elec-

trode fatigue and deterioration due to repeated loading. We start by developing

an electrical tomography sensor system. This comprises of a piezoresistive flexi-

ble fabric material, a data acquisition card, and a custom printed circuit board

for managing both current injection and data collection. We show that current

injection and voltage measurement protocols respond differently to different po-

sitions of the input contact region of interest, consequently affecting the overall

performance of the tomography sensor system. Then, an approach for classify-

ing contact location over the sensor is presented. This is done using supervised

machine learning, namely discriminant analysis. Accurate touch location iden-

tification is achieved, along with an increase in the detection speed and sensor

xix
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versatility. Finally, the sensor is placed over different surfaces in order to show

and validate its efficiency.

The main finding of this work is that electrical tomography flexible sensor sys-

tems present a very promising technology, and can be practically and effectively

used for developing inexpensive and durable flexible sensors for tactile applica-

tions. The main advantage of this approach is the complete absence of wires in

the internal area of the sensor. This allows the sensor to be placed over surfaces

with different shapes without losing its functionality. The sensor’s applicability

can be further improved by using machine learning strategies due to their ability

of empirical learning and extracting meaningful tactile information.

The research work in this thesis was motivated by the problems faced by in-

dustrial partners which were part of the sustainable manufacturing and advanced

robotics training network in Europe (SMART-e).



xxi



Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Main Contribution . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Electrical Tomography Sensor System . . . . . . . . . 5

1.2.2 Optimal Current Injection and Voltage Measurement

Protocol based on the Region of Interest . . . . . . . . 5

1.2.3 Touch Position Identification using Discriminant Analysis 6

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . 6

1



CHAPTER 1. INTRODUCTION 2

1.1 Motivation

We experience the world around us by interacting with it using our senses. These

allow us to see, hear, smell, taste, and touch. Among these various sensory modal-

ities, tactile (touch) sensing assists us by providing an effective communication

channel for the exploration and manipulation of objects. Unlike the other senses,

which are located at specific body parts, touch is a sense that is spread all over

the human body. Furthermore, touch plays an important role in enhancing our

social interactions (66). In the book ”Touch” (63), Fields argues that ”touch is

ten times stronger than verbal or emotional contact...touch is not only basic to

our species, but the key to it”.

In recent times we have become accustomed to living in a society where we are

constantly interacting with several artificial systems. These assist us in our daily

lives and range from everyday apparatus, to medical devices, and more recently

robotic systems. However, for these devices to ubiquitously co-exist with humans,

interact safely, cooperate and communicate, they need to ”weave themselves into

the fabric of everyday life” as Mark Weiser envisioned more than two decades ago

(213). Since then, the research community has developed a great interest in this

idea. This can be seen in the research on wearable and ubiquitous computing

(71, 131, 36); internet of things (78, 211); in augmented reality (20); and contact

sensors (24). Nonetheless, effort is still being made to bring a smooth integration

of interactivity into devices that are already out there, and that were initially not

meant to be interactive (152, 217, 161).

Within the vision presented above, and inspired by the way humans interact

with the world through the sense of touch, we can deduce that it is desirable

that artificial devices possess some kind of tactile sensation. This would enable

them to interact and merge intelligently with humans (188). This idea is further

confirmed by the particular interest shown by the research community in the

development and integration of tactile sensors for this purpose in the last years

(47, 110).

Yet the way these sensors are meant to be embedded within the physical systems

is still a challenging task. This aspect would indeed dictate the overall perfor-

mance of the final system. In fact, conventional rigid sensing technologies are very

difficult, if not impossible, to shape around their host system. Also, these tend

to become increasingly vulnerable in the case of host movements, risking system

failure. These disadvantages become more serious when considering safety issues,



CHAPTER 1. INTRODUCTION 3

and incur additional maintenance costs.

Therefore, compared to traditional rigid sensors, recent advancements have ap-

peared in flexible/stretchable sensors. These are potentially easy to integrate into

different surfaces, and can be highly compliant with the host system, while still

providing good impact resistance, a reduction in costs, and tolerance to strains

(208).

For instance, let us consider the recent demand for service and industrial robots

which are capable of autonomously operating in unstructured environments along-

side humans (97, 49) (i.e. rehabilitation and assistive robots, medical robots,

humanoid robots, and general purpose robots). For such robots it is necessary to

have a tactile, or at least a touch sensing ability in order for them to have special

capabilities (190, 57), such as interpreting and understanding human intentions.

This can be provided by large area flexible patches or whole–body contact sensing

devices (126, 100, 51). For example, in (157) a contact sensor for application on

robotic fingers of a prosthetic hand is presented.

In medical application, contact sensors have been developed in recent years to

enhance the quality of interactions with patients. One example is in the context

of palpation and probing devices. A review of these can be found in (106).

Another example is found in interactive textiles that are responsive to touch and

other inputs from humans. Recently, Google is showing interest in developing

Jacquard (162), a technology in which novel textile materials are woven into

clothes to create human-responsive soft toys, furniture and clothes.

However, existing flexible contact sensor prototypes often present low accuracy

and reliability, which makes it difficult to effectively utilise them in many tasks.

Also, the presence of many internal structures (i.e. wires, flexible printed circuit

boards (PCBs)) withing the sensing area still makes them difficult to integrate

without interfering seamlessly with the host’s mechanics (47). An overview of

the most important tactile sensing requirements can be seen in Table 1.1.

With the above in mind, the work presented in this thesis aims to contribute

to this field by paving the way for the development of a flexible contact fabric

sensor system that can be practical, widely used, and easy to customise. Fabrics

are in fact low-cost, extremely flexible, bendable and conformable, and can pro-

vide with a natural feeling when placed over different materials, which improves

their integration.

The sensor presented in this work can be used to accurately detect contact loca-

tion, has low power consumption, and provides high temporal resolution of touch
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Task Mechanical Electrical
Engineering

Others

Contact Force Conformability Transduction
Principle

Manufacturability

Contact Location Flexibility Power Con-
sumption

Maintenance

Direction and Dis-
tribution of Force

Stretchability Communication
Systems

Reliability

Contact Image Sensor
Distribution

Data Acquisi-
tion

Costs

Temperature Sensor Number Local Computa-
tion

Data
Representation

Spatial and Tempo-
ral Resolution

Weight Data Transfer Sensor Fusion

Table 1.1: An overview of tactile sensors requirements

information. Also, aspects regarding the practical implementation and customi-

sation of the sensor are addressed with the aim of providing a framework that

eases the usage of this sensor.

The sensor is based on the principle of electrical tomography. This technique al-

lows us to eliminate electrodes and wiring from within the sensing area, confining

them to the sensor’s periphery. It also allows for improved flexibility, and a more

robust design whereby electrode fatigue and degradation due to repeated loading

is eliminated. This is expected to improve the overall life cycle performance of

the transducer. However, reconstructing touch inputs from measurements taken

at the boundary represents a challenge for achieving good performance using the

developed sensor system. Intelligent strategies for extracting contact information

are therefore required and also addressed in this thesis.

The main contributions of the work presented in this thesis are summarised in

the next section.

1.2 Main Contribution

In this thesis we present a number of contributions to the field of contact sens-

ing. These can be summarised by the following: the development of a system

for practical electrical tomography sensors; a study on optimal current injection
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and voltage measurement protocols, which aims at improving the performance of

tomography sensors; and classification of the position of touch inputs over the

sensor using supervised machine learning. The key contributions are presented

in further detail next.

1.2.1 Electrical Tomography Sensor System

Electrical tomography is an imaging technique that is mainly used for medical

applications. The principle is to measure the internal conductivity distribution of

a body through measurements taken only at its boundary. Although there exists

a number of hardware systems for electrical tomography imaging, few of these are

specific to contact sensor application and yet do not address all the requirements

for practical contact sensors which are: simple and low-cost hardware, high tem-

poral resolution; precise and consistent measurements.

Therefore, we propose to address all these requirements by developing an elec-

trical tomography sensor system along with all its elements: a custom Printed

Circuit Board (PCB) for performing adjustable current injection and voltages

measurements; data acquisition setup and multiplexing; and the transducer el-

ement. The design and development of the system along with its results are

detailed in Chapter 3.

1.2.2 Optimal Current Injection and Voltage

Measurement Protocol based on the Region of

Interest

A common issue in electrical tomography systems is their low spatial resolu-

tion. With particular attention to fabric sensors, in this work we contribute in

overcoming this drawback by showing that protocols respond differently to dif-

ferent positions of the Region Of Interest (ROI). This behaviour consequently

affects the overall performance of the electrical tomography sensor system. This

is shown through a comparative study on the performance of a novel type of

protocol and two other commonly used protocols, with regards to different ROI

locations. The response of the protocols is evaluated using performance metrics

that were obtained from data generated using simulation, and our sensor system

from Chapter 3.

We conclude this chapter by suggesting a practical approach for future works,



CHAPTER 1. INTRODUCTION 6

where we propose to dynamically switch between different protocols following

the identification of the ROI on the sensor. This work and its results are pre-

sented in Chapter 4.

1.2.3 Touch Position Identification using Discriminant

Analysis

Electrical tomography techniques present drawbacks such as high sensitivity to

noise, that jeopardise the applicability aspect and wide use of flexible contact

sensors. As a consequence, although electrical tomography fabric sensors are ide-

ally supposed to be easy to shape and applied over different surfaces, they are in

reality difficult to be implemented in a real world scenario.

To address this limitation, in Chapter 5 we present a method for touch position

identification for an electrical tomography flexible contact sensor. This is done

by using a supervised machine learning algorithm for performing classification,

namely discriminant analysis. This approach provides accurate contact location

identification, increasing the detection speed and the sensor versatility when com-

pared to traditional tomography approaches. Furthermore, we propose a novel

data collection process for robust training of the learning algorithm. Finally,

driven by the aim of proving a framework for a practical and versatile sensor,

we present a detailed study on how the system performance are dependent from

parameters as: number of training data; number of electrodes; dimension of the

sensor; and distance of the touch input from the electrodes. The sensor is then

applied in real case scenarios over different surfaces to show and validate its effi-

ciency.

1.3 Thesis Outline

Having highlighted the purpose and scope of the thesis, the next chapter provides

the introductory concepts and a literature review on flexible tactile and contact

sensors with their mechanical, electrical and data managements aspects. This is

followed by a literature review on fabric sensors, and their implementation for

tactile sensing applications. Electrical tomography is then presented along with

a literature on electrical tomography sensors. Finally, an overview on machine

learning approaches in tactile sensing applications is presented.

The contents of Chapters 3, 4, 5 consist of the main body of the thesis,
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the details of the previously mentioned contributions are herein presented. These

chapters begin with a chapter summary and end with a discussion around the

obtained results.

Chapter 3 presents our hardware design and methodology approach for the de-

velopment of an electrical tomography sensor system.

In Chapter 4, we study optimal current injection and voltage measurement pro-

tocols based on the position of a contact region of interest. The chapter includes

a study on a novel type of current injection and voltage measurement protocol

and performance metrics used for evaluating the system’s performance. For this

work we use the platform developed in Chapter 3 which allows us to study the

system in different configurations.

In Chapter 5 we present our method for touch position identification over our elec-

trical tomography flexible contact sensor based on discriminant analysis. This is

followed by an analysis of the results.

Finally, Chapter 6 concludes the thesis and discusses the findings and limitations

of this work, and proposes future directions for research on flexible tactile sensors.
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2.1 Chapter Summary

This chapter reviews the concepts and literature that are relevant to the work

presented in this thesis.

We start with a general overview of the field of flexible tactile and contact sens-

ing technologies. Here we cover their requirements and the different approaches

used in the field. This is followed by a literature review and discussion on piezore-

sistive fabric sensors, their manufacturing process, and their implementation for

tactile and contact sensing applications. Subsequently, we present electrical to-

mography imaging and its system architecture, along with an extensive litera-

ture review on recent works in electrical tomography tactile sensors. Finally, an

overview of machine learning approaches is also provided with particular focus

on their utilisation in tactile sensing and electrical tomography applications.

2.2 Flexible Tactile Sensors

Among the various sensing modalities, tactile (touch) sensing is particularly im-

portant since it is the link that enables physical contact with objects. Through

tactile and contact sensing, we can explore the properties of the physical world

surrounding us (210). Also, social interactions are strengthened through touch

(66).

The human organ responsible for the sense of touch is the skin. This is the largest

organ in our body, since the sense of touch is not located at any specific position

but is spread all over our body. Our sense of touch is controlled by a complex

network of nerve endings and sensory receptors in the skin, which is part of the

somatosensory system. The skin consists of different layers (Figure 2.1) which are

embedded with these sensory receptors, activated by different stimuli (30, 10, 92).

The main receptors are:

• mechanoreceptors: Meissner corpuscles, Merkel’s disks, Pacinian corpuscles

and Ruffini endings. They respond to mechanical stress on the skin;

• thermoreceptors: free nerve endings that respond to temperature;

• nociceptors: nerve endings that respond to damage leading to pain percep-

tion;

• proprioceptors: provide the sense of position.



CHAPTER 2. BACKGROUND 10

Figure 2.1: Touch receptors in human skin. Adapted from (94)

Therefore, when interacting and exploring the world, tactile sensing plays

a fundamental role by providing information such as: contact parameters re-

lated to the task performed, such as an object’s texture, shape, and temperature,

hardness, pain (85, 62); control parameters for manipulation, grasping ans slip

prevention (84, 113).

Such functionalities are behind the reason why the sense of touch is of extreme

importance in our daily lives. Consequently, research on artificial tactile sensing

has seen a growing interest in academic and industrial environments. This has

resulted in a substantial body of literature, for example in (51, 68, 191, 48, 67).

Figure 2.2 shows that the number of studies on tactile sensing has recently wit-

nessed an explosion of interest by the research community.

This growing interest is motivated by many factors, in particular the need to

introduce sensing technologies into several contexts, such as: safe human-robot

interaction; medical applications; the service and manufacturing industries; aug-

mented reality; and the internet of things. See Gallace et al. (67) and Lee (109)

for a review on tactile sensing technology developments and their application ar-

eas.

However, despite the amount of research and financial investments in this area,

the effective utilisation of these technologies in real applications is still an issue.

This is mainly due to the difficulties faced when integrating these sensing tech-

nologies into real world scenarios (177). In fact some research is dedicated for

approaches that allow to effectively utilise these sensors. In (81), the authors pro-

pose to use concentrated and multi-disciplinary efforts, from the material proper-
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Figure 2.2: Number of studies on tactile sensing. Search performed in February
2018 on Google Scholar based on the words ”touch sensor” and ”tactile sensor”.

ties point of view to the electronics and data communication systems. In (48, 177),

the authors suggest to work on facilitating the integration of tactile sensors by

improving their flexibility, modularity, costs and easiness of repair. Also, they

note that construction of the sensor should be relatively fast and simple.

From the above reasons, it is clear that rigid sensing devices cannot be easily

utilised for this purpose. They are not easy to integrate within their host system;

they are not compatible with the surface where they are placed on; and they

tend to impede the dexterity of the object itself when placed over machines with

moving parts. Also, their rigidity makes them vulnerable and the effort of making

them small and more compliant results in a complex and costly systems.

Flexible sensing devices on the other hand, present a new paradigm in sensing.

They can potentially be easily integrated into different surfaces, and can take the

shape of the host system without interfering with its mechanics. They can also be

low-cost and easy to replace. Therefore, these advantages can potentially impact

the integration of tactile and contact sensors into applications where this is still

not feasible today (67). We can sum up the main factors that are responsible for

the effective utilisation of tactile and contact sensing devices in real-life scenarios:

• Performance: transduction principle, sensitivity range, spatial and temporal

resolution, and ability to measure different types of stimuli.
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• Mechanical and physical aspects: weight, resistance to external factors,

placement, conformability of the sensor, wiring.

• Electrical aspects: power consumption, data acquisition and communica-

tion.

• Algorithms for tactile data utilisation: data processing, feature extraction.

• Engineering aspects: maintenance, reliability, and manufacturing costs.

Other characteristics of the tactile sensor may include self-diagnosis and relia-

bility, where “self-sensing” detection of failure can improve the effective utilisation

of the sensor. In the next sections we survey some of the main factors that were

discussed above.

2.2.1 Transduction Principle

The transduction method greatly affects the final response and performance of

the tactile sensor. Various transduction approaches exist:

1. Resistive/piezoresistive tactile sensors: these sensors experience a change

in resistance in the materials they are made of due to an external stimulus

which can be for example force/pressure. These sensors have usually a

medium-high bandwidth around tens of Hz (48), so they are useful when a

high temporal resolution is needed (for example in tactile feedback loops or

touch position detection).

2. Tunnel effect: Quantum Tunnel Composites (QTC) tactile sensors based

on this type of transduction have the capability of transforming themselves

from almost perfect insulators to conductors (25). This is done when they

are compressed, twitched or stretched.

3. Capacitive sensors: they are based on changes in the capacitance of the

sensing element (165). The capacitance is: C = ε0εRA/d, where ε0 is the

free space permittivity, εr is the relative permittivity, A is the area and d

the distance between the plates of the capacitor. Changes in the variables

present in the formula of C are used to measure strain, normal or shear

forces. Capacitive sensors are easy to use, however, they are difficult to

miniaturise since C depends on A linearly, so reducing the size of A would

reduce the capacitance and the Signal to Noise Ratio (SNR).
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4. Optical sensors: these sensors consist of a light source transmitter and

detector. They transduce the change in the detected light intensity to mea-

sure the external stimuli (124). These sensors present very good advantages

such as low wiring complexity, linearity, negligible drift. However they are

usually fragile and not easily conformable to different surfaces.

5. Piezoelectric sensors: the sensing principle behind this transduction method

if the ability of certain materials to generate a voltage in response to an

applied force (89). Some of these materials are suitable for dynamic tactile

sensing, due to their high bandwidth (48).

6. Ultrasonic-based sensors: they can be used to develop tactile sensors, for

example to detect contact events (9).

7. Magnetism-based sensors: they measure a change in flux density when an

external stimulus is applied (151). They present a good sensitivity and

linear response, however, these sensors are limited to be used with nonmag-

netic mediums.

2.2.2 Mechanical/Physical Aspects

The mechanical and physical characteristics of a tactile flexible sensor are ex-

tremely important for its integration. These features mainly include the sensors’s

mechanical flexibility and conformability; stretchability; spatial distribution; and

optimal placement of sensors.

Flexibility In this thesis we consider flexible sensors, therefore a detailed ex-

planation of flexibility is presented here.

For a tactile sensor to be defined flexible, it must be mechanically flexible, i.e.

bendable or/and stretchable, and able to conform to arbitrarily curved surfaces

such as the ones of a robot’s body, medical instruments such as smart catheters,

or, the human body.

Most available flexible sensors use miniaturised rigid sensing materials that are

enclosed in soft substrates (209, 204, 42). Despite being flexible, they are still

prone to failure when mounted over curved surfaces due to the presence of dif-

ferent internal structures which create fragility. Other solutions use standard

off-the-shelf components placed on flexible Printed Circuit Boards (PCB) (47).
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The sensor bendability depends on the thickness and the elastic modulus of

both the substrate and sensing layer. Given a sensor bent to a cylinder of radius

R, where the sensing layer and the substrate have thicknesses dsens and dsubs and

Young’s moduli Ysens and Ysubs, the strain on the top surface εtop can be calculated

as (194):

εtop =
dsens + dsubs

2R

(1 + 2η + χη2)

(1 + η)(1 + χη)
(2.1)

where η = dsens/dsubs and χ = Ysens/Ysubs.

The strain on the surface top of the sensor depends on the size of the discrete

sensing and electronic components. This strain can increase (thus reducing bend-

ability) when choosing materials that are too different between each other or too

thick.

Therefore, as a general rule, when electronic components are embedded within

the sensing area of a sensor, they increase its stiffness and therefore restrict the

overall bendability. As a consequence, flexible PCB–based solutions are suitable

only for covering body parts with large curvature but not for parts such as fin-

gertips of a humanoid or a surgical instrument like smart catheter.

Other approaches consist of developing flexible electronics by using thin plastic

substrates (180), however this still causes high costs, and expensive materials or

fabrication processes are required.

Tactile/contact sensors made of conductive woven–like fabrics are also an-

other type of approach. In fact, these solutions are low-cost, extremely flexible,

bendable and conformable to different surfaces. Also, they tend to have a more

”pleasant feeling” when used for human interactions. This topic will be further

discussed in Section 2.3 and will be at the basis of this thesis.

The ability to stretch is another factor to take into consideration when dealing

with flexible tactile sensors. This property can be achieved by either working on

the geometrical arrangement of small sensor patches, or by using intrinsically

stretchable materials as transducers. For example, in (169) and (40), micro-

channels filled with conductive liquid are embedded into a silicone substrate as

an interesting alternative to rigid wires and sensing components. However, it is

worth noticing that the presence of different structures inside the transducer can

still cause fragility, or a reduction in flexibility.
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Number, Shape and Placement of Sensors If working with many sensor

modules, their number and the way they are placed over the object’s surface

greatly influence the measurement precision and the final performance of the

system. Choosing the correct number of sensors and their position need to be

strategically done depending on the functional needs, and the type of input stim-

uli that need to be detected. This idea have been already exploited more than

two decades ago, where in (33), a statistical decision theory Bayesian approach is

used to determine the optimal number of sensing elements to be used for recogni-

tion and localisation operations. Recently, other works have been also presented

in this context. For example, in (142) a method for optimally placing tactile

sensing modules for grasping applications is presented.

In general, a higher number of sensors generally means higher precision in the tac-

tile information. However, increasing the number of sensing modules can increase

noise, wiring and costs (31). For example, in (149) a tactile sensor composed of

multiple scalable modules with a bus-based communication network is presented,

along with its placement on curved surfaces. A serial bus communication is used

to avoid excessive number of wires, but still this solution is not completely con-

formable to the object’s surface.

In case of contact sensing solutions that come as patches made of several modules,

the shape of each module contributes greatly to the final system performance.

Also, the arrangement of these modules determines the way they conform to

the host’s surface and possibly, the way they follow its movements. Examples

of hexagonal or triangular shapes can be found in (137, 141) and are shown to

influence the degree of bendability that wants to be achieved.

Wiring As already mentioned, wiring is one of the main challenges that need

to be addressed when developing flexible tactile sensors. In fact, excessive wiring

for power supply, data acquisition and transmission can be of impediment for

sensor integration in real world applications.

Intelligent routing and addressing schemes can help reduce the total number of

wires. For example, in (147), a tactile sensor design that allows data acquisition

from a patch of sensor modules using a single wire is presented. The wiring

reduction is achieved by designing the sensor array as an analog filter and the

tactile data from each module is addressed sequentially. As a consequence, the

temporal resolution of the sensor is decreased.

The effect of wiring can also be of obstacle when using inherently flexible materials
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as the in the case of piezoresistive fabrics. In (195), a flexible tactile sensor based

on piezoresistive fabrics is presented. Resistance measurement of small sensors

taxels is achieved by wovening stainless steel threads in the sensing element in

a matrix structure. However, while the sensing material is inherently flexible

and the wiring threads are compliant, this design still presents drawbacks when

scaling the sensor to bigger sizes (the number of woven stainless steel threads has

to increase in order to keep the same spatial resolution).

2.2.3 Electrical Aspects

Power consumption One important aspect to take into account is the power

consumed by the sensor unit. If the sensor is made by multiple modules, each

one would require power to operate, therefore if the number of modules increases

then the power consumption of the system as a whole increases as well. For ex-

ample, in (138) and (137) a current drawn of about 130 mA is reported per each

sensing module powered at 3.3 V. This increases greatly the power consumption

when adding several modules. Power consumption becomes an important factor

especially when dealing with battery-powered systems. Recent studies are also

focusing on promising technologies for self-power generation in tactile sensors.

These include flexible solar cells (119) and stretchable mechanical energy har-

vesters (156). Nevertheless, these technologies can be still considered at their

infancy.

Communication systems Communication systems are an essential part of a

tactile sensor. In fact, the raw sensed data need to be forward to higher levels

where they can be processed and decisions can then be taken. In this context, a

strategic communication framework and hierarchical architecture are needed to

have effective implementation of the contact sensors. For example, in (155), a

computational framework is achieved with an Artificial Intelligence (AI) approach

to manage the communication and electronic in the case of several sensor modules.

Data acquisition The main function of a Data Acquisition (DAQ) system is

the measurement or generation of real-world physical signals. Common commer-

cially available DAQ boards are multi-functional and they provide analog, digi-

tal, and timing Inputs and Outputs (I/O). They also present Analog-to-Digital

(ADC) and Digital-to-Analog Converters (DAC). As the name suggests, ADCs
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are used to translate analog electrical signals into their digital counterparts to be

interpreted by the computer. After the transducer transforms the physical signal

into a measurable electrical signal (such as voltage or current), the ADC samples

this analog signal at a specific rate and transforms it into a digital one. Vice

versa, DACs convert a digital code to an analog signal.

Usually, DAQ boards present one ADC only. When reading analog signals be-

tween multiple channels, internal multiplexers are used to switch between them

to sequentially connect each one to the single ADC. As one can imagine, fast

multiplexing systems generally result in measurements of multiple analog signals

that are more accurate.

The Number of Bits (NoB) is a fundamental parameter that measures the

dynamic range of an ADC. The NoB determines in how many levels the analog

values can be represented, so it determines the resolution of an ADC. This makes

2NoB different values for the conversion, therefore the more NoBs, the higher the

resolution of the measurement and so the smallest amount of change that can be

detected by the ADC.

The resolution of the conversion is also determined by the input range of the ADC

and the gain of the amplifier that precedes the conversion step. In fact, an instru-

mentation amplifier (PGIA) is used to amplify the signal before the conversion

so that it could use the full resolution of the ADC. This amplification depends

on the input range of the analog input channel. This can be usually programmed

by the user.

For example, an ADC with 16 NoBs can convert analog inputs into 216 possible

digital values, which are fairly spread across the predefined input range. There-

fore, for an input range of -5 V to 5 V, the resulting resolution of measurement

will be:

5V − (−5V )

216
= 160µV (2.2)

The rate at which the above processes are performed determines the sampling rate

of a DAQ system. This is a very important parameter to take into consideration

when dealing with time-varying signals, as the DAQ must be fast enough to

capture and convert small changes in the signal.

If dealing with multiple sensing modules, data acquisition can be an issue. In

fact, it is possible to either address each module serially to decrease complexity

(but increasing time), or in parallel (but decreasing the sensing rate (149)).
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Some in depth reviews of data acquisition techniques for general application in-

clude the following sources (14, 102, 212) and (153) a review is presented in the

context of tactile sensors.

2.2.4 Data Management Aspects

In this section we report the various techniques used to pre-process raw signals

and extract useful information from tactile data. In the context of robotics,

these information are used to perform complex tasks like grasping (98); or for

understanding the modality of touch and recognising emotions in social human-

robot interactions (44); one example in medical applications is to provide haptic

information during minimally invasive surgery robotic palpation (145).

Signal pre-processing Before processing the data and extracting important

indicators, pre-processing signals is a crucial step that aims at reducing back-

ground noise, filtering out the errors of measurement systems, and improve the

SNR. Common techniques for data pre-processing include mean-centring, unit

variance scaling and signal filtering.

It is worth noticing that, when acquiring time-series data, or data that are chang-

ing in time, it is generally not interesting to look at the systematic shift in the

data, which can in fact result from sensor drift. Hence, the trend of a signal

should be discarded before signal processing. This step allows to focus only on

analysing the fluctuations in the data. Furthermore, if data is collected from

different sensors, each segment of data could show different numerical ranges.

Therefore, it becomes necessary to standardise raw data. These steps can be

achieved by employing unit variance scaling and mean centring (205).

Filtering the signal (53) can also enhance the signal quality. This is performed

by removing undesirable frequencies from the signal, which reduces the interfer-

ence of noise. Band-pass, band-stop, low-pass and high-pass filters can be used

for signal filtering. Each of these filters works based on specific cutoff frequencies.

Another classification of filters is based considering the properties of the signal

that is being filtered. As the name suggests, analogue filters work on analogue

signals, while and digital filters are applied on digital ones. Digital filter can

also be subdivided into Finite Impulse Response (FIR) filters, and into Infinite

Impulse Response (IIR) filters. For a more thorough review of signal filtering, we

refer to (53, 212).
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Signal processing Signal processing is a step that is used in order to extract

meaningful information from the acquired data. This is usually performed so

that meaningful information about the real world physics are obtained. During

signal processing, important features or indicators can be extracted, constructed

or selected from the signal (121, 79).

Signals are processed in one of the three different domains: the time domain,

frequency domain, and time frequency domain. These approaches are application

specific and dependent on the available measurements and the nature of the signal.

• Time-domain analysis is applied directly on the signal time. Features are

computed from the time waveform, and they are usually statistics such as

the peak to peak interval, the mean, standard deviation, crest factor, root

mean square, skewness, kurtosis etc.

• Frequency-domain analysis is performed in the frequency domain of the

signal. Spectrum analysis using the Fourier Transform (FT) and the Fast

Fourier Transform (FFT) and commonly used. This analysis is advanta-

geous when compared to the time domain analysis because certain frequency

components of interest could be isolated, which can lead to more robust and

targeted features.

• Time-Frequency domain analysis, where the analysis is performed on both

time and frequency domains. In order to conduct this analysis, techniques

such as the short time Fourier transform (STFT) can be applied. The

advantage over the frequency domain analysis is the ability to handle non-

stationary signals.

In (74), the authors present their hardware, signal processing and classifi-

cation techniques in the context of tactile sensing systems for anthropomorphic

robot hands. A Polyvinylidene Fluoride (PVDF) piezoelectric tactile slip sensor

is used to collect data and recover an image of the applied pressure profile. STFT

is used to transform data from time domain into frequency domain. Then, prin-

cipal component analysis (PCA) generates input features for classification of slip

modalities (slip, no-slip, noise). The slipping is detected by the change of the

position of the signal over time. In this same work, contact detection and pattern

classification are performed by finding the local maximum of the reconstructed

image. This is done using a 3-by-3 mask on the image pixels, eliminating pixels

plateaus, applying normalisation of the image’s pixels with respect to the applied
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pressure, dimensionality reduction with PCA, and finally classification. This is

shown in Figure 2.3 These signal processing techniques were specifically applied

for grasping and manipulation of objects.

In (44), the authors use signals from touch sensor and vision sensors for identify-

ing how people show affection through touching a humanoid robot. Eight touch

sensors were placed on five areas of the robot: chest, face, back, and both arms.

A Microsoft Kinect vision system was used to obtain postural information from

the participants. Raw data from the sensors was processed to obtain features as

a combination between the tactile sensors readings and the kinect’s vision sys-

tems. These features were further processed to obtain statistical indicators and

classification was performed using ML techniques.

In the context of medical application, a tactile sensor for monitoring the human

skin conditions has been presented in (197). Here, the features for detecting dif-

ferent textures are extracted by calculating the temporal average of the absolute

output signal and, in the frequency domain, power spectrum density is performed

to capture vibration signals.

Figure 2.3: Classification system for contact patterns. Adapted from (74)

Most of the times, considering engineered features rather than the raw signals

themselves can greatly improve the data interpretation and classification. This

also helps reducing the amount of transmitted data and computational costs.

However, special care must be taken since features extracted with data processing

techniques can bring a loss of information regarding the input, therefore case

specific knowledge is required when performing these techniques.

After signal processing is performed, different algorithms are then used to

interpret the data, this is shown in the next paragraph. AI techniques are also

commonly used (see Section 2.5 for more details).

Algorithms for Data Representation Once tactile data are collected and

features are extracted, these need to be interpreted by the higher levels of a
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sensing system. This topic is still an open challenge in tactile sensing contexts

and several approaches are found in the literature for effective utilisation of tactile

data (182, 48).

Common ways of handling these features are inspired by computational tech-

niques developed in the area of computer vision. Here, after images are re-

constructed from tactile inputs over sensing elements, contact information are

extracted from the images. In (120) for example, different shapes of contact ob-

jects are distinguished based on pressure maps. A similar approach is shown in

(128), where a Scale-Invariant Feature Transform (SIFT) is used to detect and

describe local features in images from tactile data, and applied for object recog-

nition. SIFT applied on an image will return keypoints, where each keypoint has

an associated vector that describes the region around that point. This is shown

in Figure 2.4

When dealing with whole body sensors or multiple tactile sensing cells, represent-

ing contact data for the different areas provided with these tactile sensors is still

a research challenge. Humans in fact present what are called somatotopic inter-

nal maps. These are our way to create a correspondence between an area of the

body where a specific sensory information is detected, and a point on the central

nervous system. Similarly, research effort have been directed towards developing

frameworks that map the tactile sensory data into artificial somatosensory maps

(55). For example in (34), the authors propose a framework used to map sensing

elements placed over a robots into a 2D somatosensory map. A similar approach

is extended in (139). Here, the sensory modules present embedded light emit-

ting diodes which are translated as visual markers into a homogeneous 3D body

representation.

Figure 2.4: SIFT and creation of keypoint descriptors. Adapted from (125)
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Sensor Fusion In the same way humans combine sensory data from differ-

ent sources (61), the use of different complementary or even overlapping sensing

modalities (e.g. tactile, vision, kinesthetic) can improve the ”intelligent” be-

haviour or response of a system (127). A flowchart of a sensor fusion system can

be seen in Figure 2.5. Also, the information redundancy from multiple sensors

can reduce error and noise and increase robustness (115).

For example in (122) a fusion framework is developed for object recognition tasks

based on visual and contact sensor data. Multivariate time-series models are used

to represent the sequence of tactile data while covariance descriptors characterise

the image. A similar work is also presented in (193), where the authors addi-

tionally propose a grasp planning method based on the classified objects from

visual-tactile sensor fusion.

Figure 2.5: Flowchart of a sensor fusion system

2.3 Fabric Sensors

This section aims at giving particular focus on flexible contact sensors made of

conductive fabrics, which represent the approach at the basis of this thesis. This

particular type of sensors has got the attention of the community in tactile and

contact sensors and a lot of research is been conducted on the topic (52, 192, 35).

For example Google has recently shown interest in developing interactive textiles.

Jacquard (162), is a technology in which novel textile materials are woven into

clothes to create interactive textiles that can be used for manufacturing soft toys,
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furniture and clothes that are responsive to touch and other inputs from humans.

This is possible through the use of conductive threads and embedded electronics.

The conductive metals are very thin and can be combined with different types

of fibres. Because of this, they can be woven using traditional techniques and

equipment, and wash them just like any type of other clothes.

Also Nasa (1) has shown interest in electrically conductive fibres and worked with

Syscom Technology, Inc., a high-tech textile company, on the development of an

electrically conductive, low-weight, strong and flexible yarn under the name of

AmberStrand (Figure 2.6).

In fact, while present day flexible sensor designs still present challenges which

brings them far from real applications, fabric based solutions are low-cost, easily

customisable, flexible, bendable and conformable to different surfaces and they

can have a more ”real skin feeling” when used for human interactions.

Figure 2.6: AmberStrand conductive yearn under a millimetre scale

In this work we will use the terminology fabric to define a flexible material

which consists of a network of natural or artificial fibres (yarn or threads). Yarn

is a processed fibre produced by spinning wool, silk, cotton, hemp, or other mate-

rials to produce long fibres. Fabrics are formed by weaving, knitting, crocheting,

knotting, or felting (123). In the literature, related words as textile or cloth are

often interchangeable with fabric.

The term electronic textiles (e-textiles) is often found in the literature to indicate

those fabrics which feature off-the-shelf electrical components woven into them.

This transforms the fabric material into a kind of flexible breadboard. A review

paper on recent advances in the field of e-textiles can be found in (192). The
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terms smart fabric sensors or smart fabrics are also used in general to address

fabrics that present sensing properties (35).

The advancements in material processing and designing processes (164) are en-

abling the emergence of smart textiles to be used as multifunctional wearables,

allowing them for a seamless integration into their host systems. For example,

by using polymeric materials, it is in fact possible to realise sensors, actuators

and power sources and develop smart fabrics that provide good wearability, low

power consumption, low-cost, and eventually autonomy. A review of polymers

adopted for sensing and actuation applications is found in (52).

Piezoresistive fabric materials are often employed for realising flexible contact

sensors. Piezoresistive fabrics can be produced by coating individual fibres or the

entire fabric with electrically conductive polymers. These coated fabrics also have

other applications in the areas of electromagnetic interference shielding (101) or

chemical sensing (43). Another way to develop electrically conductive fabrics is

to replace some of the yarns in the fabric with integrated conductive fibres, for

example through a weaving process. However, compared to the integration of

conductive yarns by weaving, the advantage of coating is that it uniformly covers

the individuals fibres of the fabric producing good homogeneous conductivity.

This process still leaves almost unchanged the feel of the fabric itself and the

substrate properties such as density and flexibility. However, the coating mate-

rial and the substrate need to be specifically chosen to avoid incorrect adhesion

between the coating and the fibres.

A very common way of coating fabrics with electrically conductive polymers uses

Polypyrrole (Ppy, an organic conducting polymer) (77). This method is based on

the polymerisation of the pyrrole monomer and aniline directly on the substrate

(116).

Regarding the materials used as substrate, polyester is between the ones mostly

used (80, 116). Other approaches include nylon, cotton, wool (206, 99, 150).

Fabrics made of nylon-cotton with Lycra are used to produce very stretchable

piezoresistive materials. Methods for applying Ppy on these fabrics are reported

in (50) and are also patented by Milliken (107) and Eeonyx Corp. (15). In Figure

2.7, a scanning electron microscope (SEM) image of the polypyrrole coated textile

is shown.

The piezoresistive characterisation of a PPy-coated Lycra fabric is reported

in (50, 52). The tests are performed reporting the quasi-static resistance changes

vs. tensile strain and vs. compressive stress. Tests for temperature sensitivity are
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Figure 2.7: SEM image of the polypyrrole coated textile (with pyrrole
concentration of 0.8 mg/mL). On the left, 100 µm scale and on the right 10 µm

scale. From (116)

also reported showing that the Ppy-coated Lycra fabric sensitivity to temperature

is high. Experiments with conductive and non conductive weights were also

reported in (166) for a Velostat film, which is a carbon-impregnated polyolefin.

In both studies, the results showed that the resistivity of the sample materials

decreases when pressure is applied.

It is very important to note that in the case of flat textile materials, the resistivity

is not an intrinsic physical property, independent of the particular size or shape

of the raw material, but depends on the arrangement of fibres and yarns (203,

13, 12). Also, the manner in which the electrodes are arranged on the surface of

a flat textile product is of great significance for sample resistance measurement

results. In fact, the measuring electrodes can influence the effectively measured

resistance and therefore falsify the results. (203). Therefore the textile material

structure and its properties can be generalised but until a certain degree.

In the contact sensing literature, fabric sensors have been used in many ap-

plications. In (136) it is presented a textile, pressure sensor for integration into

clothing to measure pressure on human body. The sensor is made of a three-layer

structure forming a capacitance with a pressure sensing non-conducting dielectric

(Figure 2.8). The final spatial resolution is determined by an array of up to 32

assembled sensing modules individually connected by embroidered silver coated

yarn electrodes.

In (185) an in-shoe plantar pressure measurement system is developed which

uses an array of fabric pressure sensors. Fabric pressure sensors are developed by

embedding a knitted strain sensing fabric coated with carbon-black-filled silicon

into a top-and-bottom conversion layer. Then, the sensor is enclosed by silicon

rubber. The sensors are then connected with a line structure electrodes to con-
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Figure 2.8: Textile pressure sensor with 16 sensing elements embroidered with
conductive yarn. From (136), Copyright © 2006, IEEE.

struct a sensor array. A data acquisition system transmits wirelessly the data for

processing and parameters for gait analysis and calculated.

In (32), 54 fabric contact cells are embedded in a single sensor glove patch. The

contact cells are made of a piezoresistive Eeonyx fabric (15) and connection wires

are linked to each patch terminating in a DAQ unit. The drawback of the re-

sulting contact dataglove is that it not easy to customise. Also, each of the 54

taxels requires an individual input channel of the ADC (together with a fixed

pull-up resistor for measuring the voltage change), which greatly complicates the

hardware design and costs.

In (195), a similar approach is presented, where a contact fabric based sensor is

made of a piezoresistive material. In this work, the resolution can be adjusted

by changing the number of micro-mechanical taxels created by internally stitched

connecting wires.

The drawback of the above approaches is that, even if they use flexible fabric

solutions as transduction elements, the way the sensor patches are assembled

needs readings based on row–column wires. This makes the hardware complex,

possibly suffering of fragility and also creates designs that are customisable only

theoretically.

In this thesis we have decided to use a piezoresistive fabric manufactured by

Eeonyx, a leading textile company. The material is a LTT-SLPA bidirectionally

stretchy knitted fabric (72% nylon, 28% elastane). The individual fibres within
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the material are completely and uniformly coated with Ppy. The coating process

is patented process from Eeonyx (15), and is tailor-made for a tunable surface

resistivity and extremely durable fabric with a tensile strength of > 450N and

a tear resistance of 12 N, and approximate thickness of 0.38 mm, as reported by

the seller. In order to tackle the drawbacks that are present in literature, we

have applied a technique called electrical tomography on the piezoresistive fabric

material. This approach allows to develop a flexible contact sensor without any

internal wiring. Electrical tomography is presented in next section.

2.4 Tomography Systems

As already discussed in Section 2.2.2, the presence of different materials embedded

in a tactile sensor is usually one of the main cause in the reduction of their

flexibility and/or stretchability. Also, the number of wires that are necessary to

transmit data from multiple tactile modules can be an issue. An approach that

has been recently used to compensate for this drawback, which is the main topic

of this thesis, is electrical tomography (187). This technique allows to place the

electrodes only on the boundary of the active sensing area of a tactile sensor.

As a consequence, no wiring is present inside the sensor. Therefore, electrical

tomography-based sensors can be placed over different surfaces and robotic joints,

allowing them to easily move.

By definition, tomography is an imaging technique used to scan the body un-

der examination by sections, using of any kind of penetrating wave. This method

is adopted in many applications with different sensing modalities, the reason be-

ing the distinctive capability of each one of them to obtain different parameters.

For example, X-ray tomography is commonly used (87) together with positron

emission tomography (159) in medical applications.

Electrical Resistance (ERT), Impedance (EIT) and Capacitance (ECT) tomog-

raphy techniques measure the resistance conductivity or dielectric permittivity

distributions within an object from electrical boundary measurements (21). EIT

is mainly applied in clinical applications for patient monitoring (189) and pul-

monary and cardiac functionality (27). This is because EIT is a non invasive

and non-ionizing method which uses a low frequency or DC current to measure

conductivity changes, differently from other medical imaging techniques. Other

applications of EIT include damage detection (196) and pressure sore prevention

(103).
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Other sensing modalities include Wire-Mesh Tomography (WMS) used mainly in

gas-liquid flow measurements (46); Magnetic Induction Tomography (MIT) (129)

that measures electromagnetic properties of an object by using the eddy current

effect; Inductive Flow Tomography (IFT) for showing velocity distributions in

conducting liquids (111); Microwave Tomography (MWT) measures the dielec-

tric loss distributions from several microwave transmission arrangements (181);

and Ultrasound Tomography (UST) utilises ultrasound waves as physical phe-

nomenon for imaging (60).

In this work we are mainly concerned with contact sensing systems that use EIT

or ERT techniques. Therefore, from now on we will refer to them as electrical

tomographic methods. These are considered ill-posed non linear inverse prob-

lems, where the aim is to reconstruct the conductivity distribution of the body

under study from measurements taken at electrodes placed the boundary. The

reconstructed conductivity is then showed in an image by applying an inverse

reconstruction algorithm. The quality of the reconstruction depends on many

factors, which are the type of reconstruction method, the hardware system, noise

and the properties of the body under examination. Some of these are reviewed

in next.

The concept of inverse problem analysis can be illustrated with a simple exam-

ple, in Figure 2.9: let’s assume we want to understand the 3-D shape of on abject

by lighting it from one certain direction and studying its 2-dimensional shadows.

These will only contain a small portion of information of the object’s 3-D shape.

However, capturing extra shadows from different directions will increase the total

information we have, enabling us to estimate the shape of the object in a more

accurate way. In a similar way electrical tomography reconstructs an image of

the conductivity distribution of a conductive body by using electric current and

measuring voltages on the boundary. Many different reconstruction algorithms

exist for the production of these images. A non-exhaustive review of these is pre-

sented in the next section. More in depth discussion on the topic can be found

in (222, 5, 117).

2.4.1 Reconstruction Methods

Most algorithms for the reconstruction of the internal conductivity in electrical

tomography fall into one of two categories: linear approximations and iterative
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Figure 2.9: A picture from the book: Gödel, Escher, Bach: An Eternal Golden
Braid by Douglas R. Hofstadter.

reconstruction techniques. However, these always provide inexact results due to

the ill-posed non-linear nature of electrical tomography. In fact, these reconstruc-

tion procedures represent a compromise between accuracy and computation time

required for their solution. The same methods can also be divided into static

(216) and differential (dynamic) imaging (3). Static reconstruction commonly

involve slow iterative solutions. Dynamic methods instead, are fast and non-

iterative and only reconstruct dynamic conductivity changes between two time

steps.

Linear approximations techniques generally use a priori information of the sys-

tem and assume that the small variations in the electrical conductivity from the

initial estimate can be considered as linear. This produces fast linear reconstruc-

tion algorithms. Back-projection (19) is one example of these techniques, which

has been initially developed in 1984 (18) and has seen many variants in the last

years (17, 174). This method takes inspiration from X-ray computed tomographic

reconstruction where the equipotential volume between a pair of electrodes is pro-

jected on the whole boundary of the body. One-step linear Gauss–Newton (GN)

solver has been also widely used in electrical tomography (222). This solver

works so that a minimisation technique is applied on the difference between the

measured data and predicted data to obtain the approximate solution. The pre-
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dicted data is obtained by computing a Finite Element (FE) model of the system.

However, as the regularisation smooths the conductivity changes, there is a deteri-

oration in the spatial resolution, affecting the ability to reconstruct sharp changes

in the conductivity, so that these approaches present low spatial resolution.

Alternatively, non-linear iterative methods (222) are based on iterative inver-

sions of the forward problem, which maps the voltages on electrodes for a given

conductivity distribution based on the system’s FE model. For example, Newton-

Rapson algorithm (117) is a numerical minimisation method that searches for a

conductivity distribution that minimises the difference between the measured

boundary potentials and those obtained in the forward model by computing the

FE model of the system. However, even if these non-linear iterative methods ap-

proaches generally produce less errors in the reconstruction, they present higher

computational costs which makes them time-consuming and non suitable for real

time tomography systems.

The above reconstruction techniques use only the data at a specific time and

do not consider the possibility of a certain dependence between the conductiv-

ity changes over time. Instead, if the conductivity does not change too quickly,

then it is reasonable to expect that past and future measurement are correlated

to the current image and can contribute in adding more information in the re-

construction. By incorporating this knowledge, more accurate solutions can be

provided. In electrical tomography, this is performed through Kalman filter algo-

rithms (207). Kalman filter is a method for tracking and estimation (95), that is

used in electrical tomography to estimate an image at each instant from current

and previous data.

Other methods based on AI techniques have also been proposed and will be re-

viewed in Section 2.5.2.

2.4.2 Electrical Tomography System Architecture

A typical EIT system consists of one or more current sources, a switching mech-

anism for generating current injection patterns and a data acquisition unit for

potential measurements. A generic tomography system architecture schematic is

shown in Figure 2.10.

Current Sources In general tomography applications, low frequency AC sig-

nals are commonly used as current source. These signals eliminate long-term
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Figure 2.10: Electrical Tomography System Architecture.

polarisation effects in the electrodes and allow to measure the capacitive and re-

sistive components of the conductive body. However, this method also requires

synchronous analogue detection circuits and low-pass filters that not only signifi-

cantly complicates hardware design (and increase costs), but also consumes more

power and affect real-time sampling performance, which is disadvantageous for

contact real-time applications.

DC currents are commonly used when a simple hardware is desirable and because

of their simple implementation in battery-powered mobile hardware. In bidirec-

tional DC currents, the current to the electrode is maintained constant during

each half cycle. The current waveform is then a zero-mean square wave, and volt-

age measurements can be taken during the “flat” parts of the cycle once static

electromagnetic conditions have been reached. The hardware is therefore more

simple, because that the measurements can be treated as DC signals. In addition,

this approach eliminates long-term polarisation effects at the electrodes. Unidi-

rectional DC current excitations have also been used for flexible contact sensors

applications (200). This approach requires only a single data measurement at

each cycle instead of two required in the bidirectional method, doubling sampling

rates.

There are different protocols for performing current injection and potential

measurements (29):

• Multi-source protocols require multiple current sources that are simultane-

ously used for current injection while potential measurements are taken at

all boundary electrodes. They have the capability to produce very accurate
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image reconstructions, because they can produce high precision signals by

avoiding the use of multiplexers. However, they also need as many indepen-

dent current sources as there are electrodes. This is not practical as such a

system is expensive and complex to build.

• Bipolar protocols protocols are those in which a single current source and

sink are used to inject current through a single pair of electrodes at a time,

while potential measurements are taken at all remaining electrodes pairs.

The bipolar protocol that is most commonly used is termed the adjacent or

neighbouring method, shown in Figure 2.11. In this method, current is injected

through a pair of adjacent electrodes while the resulting potentials are measured

at all other adjacent electrode pairs. This is systematically rotated through all

adjacent electrode pairs while potential measurements are taken from all remain-

ing adjacent electrode pairs. Different bipolar protocols have been developed in

the electrical tomography literature, they will be discussed in Chapter 4.

Figure 2.11: Adjacent method: first and last step of the current injection and
voltage measurement sequence are shown for a 16 electrodes system.

A way of improving performance in terms of resolution and robustness to

noise in the reconstructed image is to add electrodes in different locations within

the conducting domain (201). In this scenario, the best improvements can be

obtained by adding electrodes in the central area of the sensor, where low current

density flow is expected. In (199), the authors present internal electrodes that

can be used for both current injection and voltage measurements. However,

in the context of flexible contact sensor applications, this approach introduces
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connection wires inside the sensor, which is not advantageous.

It should be mentioned that sometimes voltages can be applied as driving signals

instead of currents (82, 228). This approach tends to simplify the electronics,

however it also creates more sensitivity to electrode misplacement and modelling

size errors, as discussed in (88).

Voltage readings Voltage readings can be measured in either single-ended or

differential mode. In case of single-ended measurements, the voltages are read

with respect to ground potential. When measuring voltage between an electrode

pair in differential mode, this is advantageous because it reduces the dynamic

range of the sensed signal, which, in turn, reduces the dynamic range require-

ments for the ADC and therefore increases the resulting resolution. However,

this approach also increase the common mode noise (175). This drawback can

be contrasted by using instrumentation amplifiers with a high common-mode

rejection ratio (CMRR).

In order to avoid incorrect measurements due to electrode impedance mis-

match, voltage measurements are usually not collected from electrodes used to

inject current. Also, if the current injection and voltage measurements are sym-

metrical, the reciprocity principle (73) shown in Figure 2.12, implies a decrease in

the number of independent measurements. This principle states that the voltage

difference VCD on electrode pair (C, D) with electrode pair (A, B) as the ones used

for current injection I, will be equal to VAB measured on electrode pair (A, B)

with electrode pair (C, B) used for current injection; therefore they can only be

regarded as a single independent measurement. Therefore, the mutual impedance

Z calculated as V/I will be the same. Because of the above there is a reduction

in the total number of information available for the image reconstruction.

Figure 2.12: Reciprocity principle

To conclude this section, the choice of the correct electrical tomography in-

strumentation depends on the application. In general however, precise instrumen-

tation plays an important role in the quality of the final result. In fact, the source
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of errors in electrical tomography applications depends greatly on the way the

hardware is implemented. This will be discussed in further detail in Chapter 3.

2.4.3 Electrical Tomography Sensors

Recent studies (187) have focused on the application of electrical tomography

techniques on thin, stretchable and piezoresistive materials in order to create

contact sensors. In this way, an image of the touch inputs over the sensor can be

reconstructed from the boundary voltages.

Electrical tomography-based sensors are advantageous since they do not have

that rigid network within the active sensing area, which makes them inherently

stretchable. Therefore, they can be placed over surfaces with different topologies

without losing their functionality.

However, electrical tomography-based sensors also present drawbacks, such as:

low spatial resolution, which limits their ability to discriminate between close

touch inputs (83); and medium temporal resolutions, in the range of 30-45 Hz

(187). Such drawbacks will be further addressed in this thesis.

In (196) the researchers used Carbon Nano-Fibre (CNF) plates constructed by

embedding CNFs in epoxy, for structural health monitoring. The conductivity

of the final material depends on the formation of paths for current circulation

within the fibres. By applying electrical tomography, the material was able to

detect small damages within itself by identifying conductivity changes, which re-

sulted in self-sensing capabilities. However, the current path flowing through the

conductive particles network depended on fibre-to-fibre contact. This can result

in a compromised accuracy of the damage location reconstruction.

In (96) the authors developed a flexible rubber mixed with conductive carbon

particles. This material however was not very stretchable, presented high hys-

teresis, and small changes in conductivity due to pressure. Its initial resistivity

was low, leading to acceptable reconstructions of the conductivity distribution.

Nagakubo et al. (144) used a pressure sensitive rubber sheet together with a sec-

ond sheet showing higher resistivity changes due to pressure. The second sheet

was placed on conductive rubber. In this way, when pressure was applied, the

resulting combination of materials resulted in a amplification of the resistance

changes. By applying electrical tomography, a stretch distribution tactile sensor

was developed, able to detect inputs such as rubbing and pinching.

Yao et al. (219) used a silver plated nylon elastic fabric, that was able to stretch
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in two directions and change its conductivity depending on the applied pressure.

The pressure sensor responded to the application of different weights, however

results showed that there was not a perfect proportionality between the applied

weights and the reconstructed images.

In order to better respond to pressure and decreasing sensitivity to stretching

stimuli, Silvera-Tawil et al. (186) applyied electrical tomography on two different

fabric materials. One of them, placed at the bottom, was a fabric from Eeonyx

presenting electrodes placed at its boundary. The second thin, silver-plated highly

conductive and stretchable fabric from Less EMF Inc., was fixed on top of the

first material. In this way, the resulting two-layer sensor had reduced resistivity

changes due to stretch and still presented resistivity changes when pressure was

applied. In order to improve the detection of concurrent pressure points, the sec-

ond layer was made as a keypad with non-connected fabric squares. Also, another

soft fabric was fixed on top to coat the sensor.

Alirezaei et al. (8), realised a pressure-sensitive stretch-insensitive contact sen-

sor using an approach similar to (186) but they used conductive copper sulphide

bonded nylon thread as a bottom layer. The structure was placed on top of a

non-conductive fabric presenting high stretchability. The use of wavelike yarns

eliminated changes in conductivity when the sensor was stretched because the

total length of the threads was remaining constant. The main problem was that

the conductivity change was non-linear with pressure. The authors tested the

approaches on flat and 3-D surfaces.

Chossat et al. (40) developed an electrical tomography-based soft contact sensor

by using a soft silicone rubber containing microchannel filled with conductive

ionic liquid. The advantage of using a matrix type sensor is that the current

flows in a more predictable manner. The ionic liquid used in this case is a Room

Temperature Ionic Liquid (RTIL). The problem of using silicone rubber however

is that is gas-permeable and can present enclosed bubbles. The experimental re-

sults showed that the spatial resolution of this approach depends on the density

of the channels in the network and not on the number of electrodes.

A way to deal with problems of carbon filled silicone is found in, (221) where

the authors used a carbon-filled liquid silicone rubber that changed its resistance

distribution when a mechanical stimulus was applied. A main concern with this

material however is its lack of real time properties due to its rebound elasticity

after it is deformed, which causes slow recovery of the sensing signals.
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2.5 Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) that focuses on

learning from data. In 2011, a report from the McKinsey Global Institute (133)

has foreseen ML techniques as the drivers of the next big wave of innovation.

Nowadays, the adoption of ML techniques in the fields of robotics, human-robot

interactions (168), and medicine (148) has lead to an increase of breakthrough

results in these areas (215).

ML techniques usually require a large amount of data for them to be effective,

this used to be an obstacle in the way of their success. Recently however, data

has become more abundant, and the computational competencies of our systems

are advancing which is resulting in more efficient use of ML approaches in a wide

range of applications.

Machine learning can be split into two main types, supervised and unsuper-

vised learning, although other types exist such as semi supervised learning and

reinforcement learning. In supervised learning, data (usually multidimensional),

is provided along with labels. The task of the ML algorithms becomes to learn

how to predict the label outputs from the provided data. Unsupervised learning

algorithms instead deal with data that do not have labels. In this case, the algo-

rithm learns to partition the data into different clusters. See (143, 41) for more

detail on ML approaches.

Supervised learning is the type of machine learning that is most common and

that has been most successfully applied (108). In (58), the author presents key

advice on successfully applying ML approaches, specifically supervised learning.

The author emphasises the importance of feature selection/engineering on the

predictive performance of the algorithms.

Some broad classes of supervised learning algorithms exist. Connectionist

methods describe interconnected networks. Here, Artificial Neural Networks

(ANN) stand out and are considered as universal function approximators (223).

Recently, advancements in ANNs allowed their efficient utility when using mul-

tiple hidden layers (108). These networks are known as Deep Neural Networks

(DNN). Another class of ML is Bayesian methods. These usually refer to proba-

bilistic graphical methods and are mainly utilised in the presence of uncertainty

(105). Approaches that have been used for tactile sensor data are Markov Mod-

els as Hidden Markov Models (HMM) (23). Also, in this class stochastic filtering

approaches have been used for this kind of data. These methods are Kalman
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filters and Particle filters and their respective variants (225). Finally, we point

to ensemble methods, bagging and boosting (56) which are a combination of dif-

ferent approaches. An example of such methods are the combination of multiple

decision trees, or what is know as random forests. A simplified explanation of this

method is that it tries to leverage different decision trees and use the aggregated

results for improving prediction accuracy (114).

2.5.1 Machine Learning in Tactile Sensing Applications

ML strategies are used in tactile sensing applications due to their ability of ex-

tracting meaningful information when the underlying sensing phenomenon is par-

ticularly complex. Challenging assignments in tactile sensing are in fact discrim-

ination of materials, interpretation of touch modalities or reconstructing tactile

information when dealing with non-linear or intricate transduction behaviours.

ML techniques can deal with these assignments by empirical learning.

For example, in (158) position and orientation of an object is estimated from

tactile data using particle filters. In (176), a Support Vector Machine (SVM)

regression supervised ML algorithm is used for estimating gesture signal over a

fabric-based tactile sensor. Similarly, in (70) a PVDF piezoelectric film is used

to build tactile sensor arrays on a rigid PCB substrate. The data output is then

organised into a 3D tensorial representation containing space–time tactile infor-

mation. A pre-processing approach is performed to reduce the dimensionality

of the tensors, allowing computational simplification. Then a Regularised Least

Square (RLS) and SVM pattern-recognition approaches are applied to treat raw

data in tensor form. The data was collected from different touch modalities from

70 participants.

In (178), low resolution images obtained from contact sensors mounted on a

robotic finger tip during object manipulations are used to identify objects. Here,

k-means algorithm is used on training data as unsupervised clustering method to

create a ”feature vocabulary”, which is then used to train a bag-of-words classifier.

This classifier treats image features as if they were words, to learn a codebook

histogram. Through this approach, the robot is able to discriminate between a

large set of objects.

In (16), material classification is performed using deep learning applied on spatio-

temporal signals of a flexible tactile sensor. The authors compare the Convolu-

tional Neural Network (CNN) to SVM classifier, showing improved performance
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in the classification when using CNN. However, a limitation of this work is the

large dataset required for training the CNN. Material classification is also per-

formed in (90) using bayes trees based on surface texture and in (93) using self-

organizing neural networks maps (SOMs) according to shape and size of explored

materials using tactile sensors.

It is worth noticing that the accuracy of the results of the ML approaches

presented above relies heavily on the type of features used for training the leaning

algorithm. These features are mostly chosen by experts in the area, therefore

application specific knowledge is always required.

2.5.2 Machine Learning in Tomography Applications

In the case of tomography systems, ML approaches can be generally divided in

three main ares: approaches that use ML techniques to solve the tomography

reconstruction inverse problem; ML techniques used to classify the reconstructed

tomographic images; and ML approaches that use tomography raw data to extract

information regarding the input stimuli. This is shown in Figure 2.13.

Figure 2.13: Machine learning techniques in tomography systems

ML for solving the tomography reconstruction problem One early work

on using ML techniques for solving the tomography reconstruction problem is

found in (2). Here, a linear reconstruction algorithm using ANN was directly
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applied on tomographic forward problem, without any additional assumption or

analysis. However, it was reported that this approach still makes the ANN solver

sensitive to boundary mismatch and noise in the measured data.

In (135), the authors propose to first apply a linear tomographic reconstruction

algorithm on the voltage data. Then, after the resulting images are reconstructed,

they apply ANNs to enhance this solution, reducing the effects of noise and mod-

elling errors. They compare the results with those from a linear solver (one-step

GN), a nonlinear iterative method (PDIPM), and a method were ANN are used

as a fully replacement for the inverse solver. Results show that the approach of

the authors is less sensitive to noise when compared to the other methods.

Another approach using genetic algorithms can be found in (86). In (134), the

authors propose to use a Particle Swarm Optimisation (PSO) method to train an

ANN to solve the reconstruction problem.

A review paper presenting a more detailed discussion on ML techniques for solv-

ing the tomographic inverse problems can be found in (163), with particular

applications to brain activity interpretation.

ML for classifying tomographic images In this approach tomographic re-

constructed images are used as features during training of the ML algorithms.

This is a particular application of the techniques discussed in Section 2.5.1.

In the literature, one example of this approach is shown in (186), where the au-

thors use a ML classification method to distinguish between eight different types

of touch applied by humans to a mannequin arm where an electrical tomography-

based flexible sensor was placed. Results show that the modality of touch was

correctly classified in approximately 71% of the tests. In this work, the set of

features used to classify the different touch modalities was a combination between

data extracted from the tomography-based sensor, and other data coming from

joint sensors placed over the mannequin arm. However, this approach still relies

on solving the tomography inverse problem by using the FE physical model of

the sensor, keeping the drawbacks of high sensitivity to electrode misplacement

and to noise that have been discussed earlier in this thesis. Furthermore, as the

model is constructed based on the sensor shape and placement over the man-

nequin arm, the approach presented in this work would not be feasible in case

of movements of the arm. Another similar approach is found in (226). Here, a

wearable tomography system for hand gesture analysis is presented. Impedance

reconstruction of a user’s arm is performed by applying a linear back projection
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algorithm on tomographic data. Then, a SVM classification algorithm is used to

classify different hand gestures based on the reconstructed impedance.

ML on raw tomographic data In (140), the authors use ANNs for the es-

timation of key parameters from electrical capacitance tomographic data, in the

context of multiphase flow processes. Simulated and real data were used to pro-

vide more data variety and generality. The raw data is then pre-processed with

Principal Component Analysis (PCA) and used to train multi-layer perceptron

networks. The networks were then tested with unlearned data showing how the

ANNs are able to determine key flow process parameters, with fast response and

good tolerance to instrumentation noise.

A very recent approach applying supervised machine learning techniques in the

context of electrical tomography for bladder volume monitoring, has been pub-

lished in March 20018 (59). In this work, electrical tomographic data sets were

obtained from computational models and experiments and fed into SVM and

k-NN classifiers, showing a minimum and maximum classification accuracy of

73.16% and 100%, respectively. Then, the SVM classifier was shown to be out-

performing the k-NN with 81.66% accuracy on previously unseen simulated data.

In the context of flexible contact sensors based on electrical tomography, one of

the first approaches in literature is found in (176). The authors use an SVM re-

gression approach to recognise gesture over a fabric sensor. Five discrete pressure

inputs are applied to the fabric material in position intervals at 2.5 cm each and

8 measurement voltages are recorded at each time. One of the problems in this

work is that, for the way the sensing materials are arranged, when the applied

pressure is very small, the resistance between layers becomes large, so the mea-

surement becomes impossible or very noisy. For solving this problem, the authors

use a pressure dependent adaptive noise filter.

In (227), the authors present an approach based on ML and tomographic scanning

that can be applied to electrically conductive objects. Here, discrete position clas-

sification and continuous tracking of a user’s input are performed, with a mean

distance error of 9.1 mm. This is tested on several materials but not on piezore-

sistive fabrics. Also, one important limitation of this approach is that it requires

a high number of measurements for the creation of the features, which decreases

the system speed.

In (45), the authors use a CNN architecture on tomography raw sensor data to

classify different spatio-temporal gaits. Their experimental tomography system
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is a floor which contains 116 plastic optical fibres distributed around 3 angles

of the floor. When footstep pressure is applied, the intensity of the transmitted

light is modulated. The optical fibres angular projections constitute the base of

the tomographic approach of the work. A linear SVM classifier is used to discard

the unnecessary signals with the lowest classification performance, and then the

constructed features are used to train the CNN.

In (166), the authors adopt a neural learning approach that is a Self-Organising

Map (SOM) and apply it to recover contact sensory information from a Velostat

sensing material. In this case, the authors use the SOM approach to reconstruct

the conductivity changes from data acquired from tomographic scanning. They

show that this approach is able to reconstruct images of different applied weights,

as well as their spatial topography. Also, the approach shows 10 times increased

speed when compared to general FE-based reconstructions.

In this work we are mainly interested in this last approach. Here, by applying

ML directly on tomographic raw data, there is no need for generating an image

that has to be further interpreted by the learning algorithm. Therefore, effective

results with minimal computational requirements can be achieved. This is further

discussed in Chapter 5.

2.6 Discussion

The aim of this chapter was to provide the relevant background necessary for

the work presented in this thesis. We discussed the main requirements and the

different approaches used in the field of flexible tactile sensing technologies, with

particular focus of piezoresistive fabric sensors for contact sensing. Electrical

tomography imaging was described along with its system architecture and imple-

mentation for the development of electrical tomography-based contact sensors.

Then, machine learning approaches in the field of tactile sensors were reviewed

together with their utilisation for tomographic applications.

We therefore conclude this chapter with the following note. For a contact

sensor system to be effectively implemented in real world scenarios, many factors

should be taken into consideration. The sensor should be simple to conform to

the various shapes of the host’s surface. Due to the repeated contacts with the

environment, the sensor can be damaged, so faulty parts should be easy to repair

or replace. Factors like the choice of the transducer, power consumption, and sen-

sor placement are of great importance. Signal processing techniques are generally
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used to improve the signal and extract important features. Algorithms for tactile

information extraction can also be applied. Still, existing flexible tactile sensor

prototypes often present low accuracy and reliability, complicate integration, so

that their effective utilisation and implementation largely remains impractical

nowadays.

In this thesis we aim at tackling some of the above issues by presenting our

approach for the development of a flexible fabric-based practical contact sensor

system.
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3.1 Chapter Summary

This chapter demonstrates our development of an electrical tomography sensor

system. We start by discussing the drawbacks of using tomography imaging

techniques and cover some of the existing tomographic sensor systems.

We then show our methods which include our sensor system along with all its

elements: current injection and voltage measurement; data acquisition setup and

multiplexing; and the transducer element. Moreover, our image reconstruction

and data processing approach, along with a simulation study are presented. Fi-

nally, experimental results are provided along with a discussion about the system

configuration and performance.

3.2 Introduction

As mentioned in Chapter 2, electrical tomography presents advantages for de-

veloping flexible contact sensors. Nonetheless, tomographic imaging presents a

major drawback as described by Holder in (83). It is an inverse problem where

the aim is to reconstruct the conductivity distribution of the body under study

from measurements taken at the boundary. Thus, it is mathematically severely

ill-posed, non-linear, and is very sensitive to small changes in potential at the

boundary measurements. Therefore, the image reconstruction of the internal

conductivity is apt to errors, and so tomography sensor systems suffer from low

spatial resolution. However, the spatial resolution can be improved by increasing

the number of electrodes (198). This is because more information is made avail-

able for solving the inverse problem. Yet this solution affects the time required

for performing data collection, and therefore decreases the temporal resolution.

Also, improving the image reconstruction by adding more electrodes depends on,

and is limited by the precision of the measurement instrument.

The general approach to compensate for such drawbacks is to develop systems

that are: precise, whereby they present a good Signal to Noise Ratio (SNR) and

exhibit consistent measurements; present a high temporal resolution; and are

less sensitive to noise (175). Furthermore, in order to develop practical flexible

contact sensors it is also desired to develop low cost uncomplicated systems that

require low power consumption. In Section 2.4.2 we give a general introduction

on hardware architecture in electrical tomography systems, and discuss some

of the challenges and choices that are involved when considering their design
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and implementation. Moreover, in the next section we focus on reviewing the

existing tomography systems in order to better position our methodology and

contribution.

3.2.1 Existing Tomography Systems

Since the appearance of the first electrical tomography systems in the early 1980s

(83), the instrumentation used has been constantly evolving thanks to the ad-

vances made in analogue and digital electronics. One of the most well known

tomography systems was developed in Sheffield back in 1987 (29), and is between

the most widely used due to its simplicity and reliability. It presents an archi-

tecture using 16 electrodes that are addressed with 4 multiplexers, and operates

under a single source, single frequency current of 51 kHz, 5 mA peak-to-peak. The

system collects data points for each image to be reconstructed at around 10 Hz. A

series of tomography instruments have been produced by the Russian Academy of

Sciences (AoS) for breast cancer detection (39, 38). The instruments use a single-

source AC current at 50 kHz that is applied over 256 electrodes positioned over the

tissue being measured. A 1-to-256 multiplexer is used to inject current on one of

these electrodes, while two single remote electrodes are placed at the extremities

of the patient to complete the circuit. Here, the increased number of electrodes

introduces limitation in the real-time performance of the system, with a full data

scan for image reconstruction acquired every 20 seconds. In (76), the authors

use a system with 32 electrodes that implements Frequency-Division Multiplex-

ing (FDM). Currents are simultaneously injected at different frequencies, and the

resulting voltages are measured in parallel. Then, each voltage is associated to

its current frequency by means of a Fourier transform. In (214) a high temporal

resolution tomography system for industrial applications is presented. It is used

to inject a switched DC current pulse into the electrode pairs, and to measure

the voltage waveform with parallel data acquisition taken during the half part

of each injection cycle. The problem with such a system is that the switching

pulse decreases measurement time, therefore limiting measurement sensitivity. In

(200), a DC current is applied to a fabric flexible sensor based on tomographic

imaging for human-robot social interactions. A single source DC current is used

for simplifying implementation, which has also been used in other works such as

(7), and (144). The hardware is supplied with a 12 V power supply, and a single

variable DC current source is implemented. The current is multiplexed across 16
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Model Type N. el. Specifications

Sheffield System (29) AC single source 16 4 mux

frame rate = 10 Hz

Russian AoS (39, 38) AC single source 256 1 mux

frame rate = 0.05 Hz

EIT FDM (76) Multifrequency AC 32 Fourier decomposition

ERT system (214) Switched DC 16 1 ms reconstruction

Parallel data acquisition

ERT system (200) single source DC 16 frame rate = 45 Hz

Power loss= 22 mW

EIT system (219) single source 2 kHz AC 16 Power loss= 175 mW

Table 3.1: Comparison between different existing tomography systems

electrodes, and potential measurements are taken from all channels. A temporal

resolution of 45 Hz is reported alongside a power consumption of roughly 22 mW.

In (219), a 16 electrode system for tomography contact sensors is developed. A

single source current of 10 mA at 2 kHz is multiplexed across the electrodes and

injected into a resistive material of 1 Ω/sq. This results in a power loss of about

175 mW.

The above approaches have been summarised in Table 3.1.

Although the approaches present in the above mentioned literature overcome

some of the drawbacks of using tomographic systems, none of them address all

the requirements mentioned in the previous section, and which are necessary for

developing practical flexible contact sensors. In this work, we aim to do that

by addressing all these requirements. A detailed discussion of our methodologies

and development is presented next.

3.3 Methods

3.3.1 System Design and Development

Our aim is to develop an electrical tomography sensor system that is practical to

implement with a simple hardware that reduces costs and power consumption.

Also, it is necessary for the system to be able to provide a data frame rate in the

range of 30-50 Hz, adequate for many dynamic scenarios found in tactile applica-
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tions that require real-time sensing (as real-time distributed pressure monitoring

applications, including gait detection). Therefore, we develop our system while

considering the following aspects:

1. Single source DC currents, whereby the current is multiplexed across the

electrodes are preferred over multiple source currents. This simplifies hard-

ware, reduces costs and power consumption (104).

2. Voltage measurements are to be taken on all electrodes, discarding the ones

from current carrying electrodes to reduce the effect of contact impedance

mismatch. Voltages acquired in differential mode are preferred as this in-

creases the dynamic range of the ADC and the measurement resolution.

3. An adjustable switching system between different current injection and volt-

age reading protocols is advantageous. This is further discussed in Chap-

ter 4.

4. The system’s Signal to Noise Ratio (SNR) is considered adequate if in the

range of 45-60 dB. In electrical tomography systems, SNR is used to judge

the system performance in terms of quality of the signal and consistency

of measurements (65, 22). It is a ratio between the desired signal and the

level of the unwanted background noise:

SNR = −20 log10

|E[Vi]|√
V ar(Vi)

(3.1)

Where E[Vi] is the mean of multiple measurements on each channel and

V ar(Vi) is the variance of these measurements.

The hardware system for electrical tomography sensor applications presented

in this work has been designed and developed between the Centre for Robotics

and Autonomous Systems at the University of Salford, and the Research Centre

”E. Piaggio”, University of Pisa.

This sensor system can be divided into 3 main elements as shown in Figure 3.1

and which are: current injection and voltage measurement; data acquisition setup

and multiplexing; and the transducer element. These elements are detailed in the

next subsections.
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Figure 3.1: Block diagram of our electrical tomography experimental platform
for current injection and voltage measurement.

3.3.1.1 Current Injection and Voltage Measurement

We have designed and developed a custom Printed Circuit Board (PCB) for

performing current injection and voltages measurements. This is illustrated by

block 2 in Figure 3.1, and can be seen in Figure 3.2 along with its schematic.

It presents a power supply connector; a 2-multiplexers mechanism connected

to a Howland current pump that serves as a constant current generator; a sensor

block for connecting with the sensor electrodes; and a connection for interfacing

with a Data Acquisition card (DAQ). The PCB works by allowing for a sequential

injection of a constant unidirectional DC current between electrode pairs, using

a time-division multiplexing procedure. The connector to the DAQ card serves

for both multiplexer control, and the collection of the voltage data. Differential

voltages are read from all the electrodes at each current injection cycle. The

PCB can be powered using both a USB or a wall block power supply. The design

consents for a maximum of 16 electrodes, which we find adequate for the goals of

our study. It also provides adjustable switching between different types of current

injection and voltage reading protocols. This can be done logically by adjusting

the multiplexing control, or physically by adjusting the wire connections on the

voltage reading block.
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Figure 3.2: On the left, our customised Printed Circuit Board (PCB). On the
right, schematics of the PCB in our proposed tomography system, with the

sensor connection block, 2 multiplexers, and a Howland current pump.

The current source in a tomography system must supply current with a de-

sired precision over a specific range of load impedance. Therefore in our approach

we use the Howland current pump (183), which is illustrated in Figure 3.3. The

Howland current pump consists of an Operational amplifier (Opamp) and pro-

vides constant current with high output impedance. This allows the supply of a

constant DC current into various connected loads independent of their resistiv-

ity (up to a specific threshold). In Figure 3.3, Vref denotes a reference voltage

which is a fraction of the Opamp supply voltage. This is obtained using a volt-

age divider and another Opamp in negative feedback to ensure stability and a

high output impedance. R1, R2, R3 and R4 are resistors used to obtain a specific

current value. We choose the following configuration for these resistors:

R3/R2 = R4/R1 (3.2)

This is motivated by the fact that in the case of an ideal Opamp, the output

impedance of the source becomes infinite when the resistors satisfy Eq. 3.2. The

current supplied to the Load can be expressed as:

Il = VRef/R1 (3.3)

The configuration presented in Eq. 3.2 can provides constant current up to a

specific load threshold. This is Load < Voutmax/2Il, where Voutmax is the maximum
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voltage output of the Opamp before saturation. Because V + < Vout/2 and V + =

IlLoad, as shown in the circuit in Figure 3.3 In our work we use a Rail to Rail

dual-Opamp OP727 with a Common Mode Rejection Ratio (CMRR) of 85 dB,

which requires a low current supply of 300µA/amplifier. The main advantages

of the Howland current pump are its simplicity, easiness of implementation, and

ability to produce a high output impedance.

Figure 3.3: Howland current pump

The 2 multiplexers serve for switching the current supply between the elec-

trodes. They are digitally controlled via the DAQ card which is in turn controlled

via software on the PC workstation. The multiplexers are two 16:1 ADG1606,

presenting a typical on resistance of 4.5O Ω and a transition time of 143 ns when

switching from one address state to another. With 16 channels the multiplexers

need to be controlled using 5 bit digital variables where 1 of these bits is used for

enabling. This results in a total of 10 control bits. One of the multiplexers has its

input connected to the current source, while the second is connected to ground.

The outputs of both multiplexers are connected to the different electrode pairs.

3.3.1.2 Data Acquisition Setup and Multiplexing

Block 1 in Figure 3.1 illustrates the data acquisition and multiplexing elements

of our sensor system. The DAQ card is used for both multiplexer control, and

voltage data collection. For our experimental purposes we use the NI USB-6353

DAQ card. It has high input impedance, a maximum sample rate of 1.00 MS/s,
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and an ADC resolution of 16 bits. The DAQ is used for performing the differen-

tial voltage readings by connecting one analog voltage input to the positive input

of the device’s programmable gain instrumentation amplifier (PGIA), while an-

other analog voltage input is connected to the negative input of the PGIA. The

maximum settling time for the measurements is 8µs. This value indicates the

time required for the PGIA to amplify the analog input signal to the desired

range before it is sampled by the ADC, and then switched to another input ana-

log channel. We use the MATLAB data acquisition toolbox for managing the

operations of the DAQ card. This is used for collecting and saving the data, and

to generate the 10-bit digital signal which controls the two multiplexers.

The total number of collected samples S for each channel is selected via our

algorithm. The data acquisition is performed concurrently with the multiplexing

switching that serves for current injection. Therefore, for a system with an L

number of electrodes, the number of collected samples for each sequential injection

will be S/L. We denote V b to represent the generic vector containing the raw

samples S which are collected from one generic electrode pair. The differential

voltages collected from each electrode pair are in the form of a matrix: Smat =

{V b
1 ...V

b
L}. After collecting the raw data, we proceed to the pre-processing step.

This procedure is shown in Algorithm 1 and detailed next.

Algorithm 1: Tomographic voltage data set extraction algorithm

S number of collected samples per scan;
L number of electrodes ;
K number of used boundary measurements ;
kselect logical vector for selecting useful boundary measurements;
ts number of transient samples ;

input : S × L samples matrix Smat = {V b
1 ...V

b
L}

output: 1×K vector of voltage measurements Vm

for i← 1 to L by (S/L) do
Vm ← compute column wise median of Smat(i+ ts to i+ (S/L));

end
for i← 1 to L do

Vm ← Vm(i, kselect);
end

First, each vector containing the differential voltages which were collected from

an electrode pair is divided into subsections of size S/L. For each subsection we

remove a number of samples ts from the data that correspond to the number of



CHAPTER 3. ELECTRICAL TOMOGRAPHY SENSOR SYSTEM 52

samples acquired before reaching static conditions. Subsequently, we compute

the median on the remaining samples. The resulting value represents the voltage

at that electrode pair for a specific current injection. We then discard the voltage

data which correspond to the current carrying electrodes at each injection step.

This is done so that we can reduce the effects of noise and contact impedance,

and is achieved by using a kselect logical vector for selecting the useful boundary

measurements depending on the type of injection-measurement protocol used.

Therefore, for a generic L electrodes system, the final number of measurements

at the boundary is K = L (L−sk), where sk is the ”skipping factor” that depends

on the protocol used.

The final voltage data set is represented in the form of a vector Vm containing

the voltage measurements: Vm = {Vm1, ..., VmK}.

3.3.1.3 Transducer Element

The transducer element is represent by block 3 in Figure 3.1. We use a thin,

stretchable, piezoresistive fabric material provided by Eeonyx. The material has

a surface resistance of 30 KΩ, it is low-cost and light weight. The material is

shown in Figure 3.4 a, b and is very flexible and bendable. Thus it is conformable

to different surfaces and provides a pleasant ”real skin feeling”.

For validation purposes a 3D-printed circular frame made out of two disc

layers is used to house the conductive sheet. The frame presents 16 equidistant

extrusions where conductive copper stripes are placed to create the electrodes.

The conductive fabric is then placed between the two discs firmly in contact with

the surrounding electrodes, as shown in Figure 3.4 c. The diameter of the frame

is 22 cm, and the distance between each electrode is 4.3 cm. The aim of the

frame is to keep the boundary electrodes fixed while providing a flat surface for

the transducer. This allows us to evaluate the performance of our system while

minimising the effects of noise, electrode misplacement or motion artefacts. It

also allows for the convenient replacement of the fabric material when prototyping

and testing. In Chapter 5 we present a variant of the sensor that does not require

the use of this hard frame.
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Figure 3.4: Our electrical tomography flexible fabric sensor. In (a) the
conductive fabric material in shown, and in (b) the material when stretched. In

(c) the conductive fabric is placed between two 3D printed discs.

3.3.2 Conductivity Reconstruction

3.3.2.1 Mathematical Formulation

The conductivity reconstruction process in electrical tomography is structured

in two sub-categories: forward model computation, and inverse solution. In the

forward model, an initial conductivity of the body is assumed and then the voltage

data at the electrodes are calculated by solving the Laplacian elliptic partial

differential equation. For a given body Ω with conductivity σ, the scalar potential

is φ and the electric field E = −∇φ. We describe the steady-state absence of

interior current sources as: ∇ · σ∇φ = 0. The analysis is completed with the

boundary equations at the electrodes. In this work, we have used the complete

electrode model:

σ∇φ · n =
1

zl
(Vl − φ)∫

σ∇φ · n ∂Ω = 0

L∑
l=1

Il = 0

L∑
l=1

Vl = 0
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Where Vl and Il are respectively the potential and the current at the l’th electrode,

zl is the contact impedance between the l’th electrode and the domain, and n is

the unit normal to the periphery of the body. These differential equations are

implemented by computing a Finite Element (FE) model of the system, which

generates the forward operator F (.) that maps the internal conductivity to the

potentials at the boundary.

The second sub-category is the inverse solution. In this work, difference recon-

struction methods are applied, as they are fast, non-iterative and only reconstruct

dynamic conductivity changes between two time steps. Furthermore, we have em-

ployed the one-step linear GN solver, through which a minimisation technique is

applied on the difference between the measured data and predicted data to obtain

the approximate solution. This can be summarised by the following:

min(||Vm − F (σ)||)2 (3.4)

where Vm is the data set containing the potentials measured at the electrodes

and F (σ) is the conductivity distribution to be recovered through the forward

operator. In order to solve Eq. 3.4, in dynamic imaging reconstruction we first

calculate the initial set of boundary voltages for an assumed known initial con-

ductivity σ0. F (σ) is then linearised around σ0 in order to only reconstruct the

conductivity changes δσ from this initial conductivity.

Vm − F (σ0)−
∂F (σ0)

∂σ
(σ − σ0) = 0 (3.5)

δV ≈ Jδσ (3.6)

δσ = J−1δV. (3.7)

Vm−F (σ0) = δV represents the variation in the measured potentials when a con-

ductivity change has taken place and J is the Jacobian matrix. In this work, we

determined J by adopting the calculations shown in (160), assuming a small con-

ductivity perturbation into the FE mesh, and then solving the forward problem to

the boundary changes in potential δV . There are several alternative approaches

for the calculation of J . Exhaustive reviews of these can be found in (83, 28).

Many entries in the Jacobian matrix have values close to zero, which creates high

sensitivity to small changes in δV ; this ill-conditioned problem is solved through

regularisation.

Tikhonov regularisation is commonly used in electrical tomography applica-
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tions and is applied in this work. Regularisation means finding a trade-off between

the exact but unstable solution based on the measured data, and a more stable

approximate solution controlled by an imposed prior. Here, the prior informa-

tion is the assumption of smoothness of the spatial distribution of δσ. The formal

solution through Tikhonov regularization is:

δσ = (JTJ + α2RTR)−1(JT δV ) (3.8)

where α is a scalar hyperparameter that controls the amount of regularisation

and R is a regularisation matrix that controls the ”smoothness” of the solution.

There are different methods which have been developed for an optimal selection

of α. Some of these are L-curve, method discrepancy principle, and generalised

cross validation method (75). However in electrical tomography applications this

is usually done heuristically.

For the choice of R we have employed a prior based on NOSER, an acronym

for Newton’s One-Step Error Reconstructor prior (118). This algorithm is based

on the method of least squares, and the regularisation matrix is scaled by the

sensitivity s of each element:

RTR = diag[JTJ ]s (3.9)

where s ∈ [0, 1].

3.3.2.2 Image Reconstruction

All the parameters for the inverse solution are computed off-line, as shown in

Figure 3.5. Since we are employing dynamic imaging, the images of the touch

inputs over the sensor are reconstructed by comparing two voltage data sets:

V0 = {V01, ..., V0K} which indicates the background set of voltages that is used

as a reference; and V1 = {V11, ..., V1K} which indicates the boundary voltages

measured after a conductivity change takes place due a touch input over the

sensor. V0 is obtained only once in the off-line system setup. V1 on the other

hand is updated in an online fashion.

In this work, the image reconstruction together with the numerical imple-

mentation of the forward and inverse problems are performed using EIDORS

(electrical impedance tomography and diffuse optical tomography reconstruction

software). This is an open source benchmark computation approach that is com-
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Figure 3.5: Flow chart of the image reconstruction in electrical tomography.
The grey shaded boxes show the calculations done in the off-line setup of the
system. Then, the second set of potentials V1 is updated online and an image

showing the conductivity changes inside the sensor is reconstructed.

monly used for electrical tomography imaging (4).

After the image (x̂O) which represents the conductivity changes is recon-

structed, it requires post-processing as it presents artefacts due to noise and

possible electrode movement. To minimise these effects, it is necessary to work

on the image pixel values [x̂O]i and select the Region Of Interest (ROI) in which

the maximum amount of conductivity change has taken place. The processed

image (x̂P ) is computed as follows:

ˆ[xP ]i =

[x̂O]i, if[x̂O]i ≥ f ·max(x̂O)

0, otherwise.
(3.10)

where ˆ[xP ]i are the pixel values of (x̂P ) and f is the threshold for the ROI selection.

The ROI represents the region of (x̂O) where the pixels of (x̂P ) are non zero. The

choice of f has a great impact on the post-processed image, however this is

commonly done in a heuristic fashion (146, 187).

3.3.2.3 Simulation Studies

Before conducting the experiments, an explorative simulation is performed to

obtain a baseline for the experimental results. As illustrated in Figure 3.6, a
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FE mesh of our conductive material is constructed using the physical properties

of the Eeonyx fabric sample. A number of boundary electrodes equal to 16 is

selected and modelled to coincide with our physical setup. A simulated touch

input is applied in the central area of the mesh by simulating a change in con-

ductivity inside the material. At this stage, the current injection and voltage

measurement protocol is defined, as well as the current amplitude. A value for

the hyperparameter α of 0.5 is chosen and the prior based on NOSER is also

selected.

By applying the one-step linear GN solver, the software recreates the conduc-

tivity of the elements in the mesh and generates an image of the reconstructed

conductivity. From the simulation results which are shown in Figure 3.6, it is vis-

ible that the simulated touch input has an influence on the conductivity changes

in that area and its proximity. This is clearly demonstrating how the ability to

reconstruct sharp changes in the conductivity is negatively affected by the nature

of electrical tomography. Also, a light blue ring surrounding the touch input area

represents the ringing artefact. This aspect is further discussed in Chapter 4.

Figure 3.6: On the left, a simulated load is applied in the central area of the
mesh and the reconstructed image is shown on the right.
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3.4 Results

3.4.1 Experimentation

Our experimental setup consists of a 16 electrode system. We use the adjacent

injection and measurement protocol which is described in Chapter 2. This pro-

tocol is chosen due to its wide usage in the electrical tomography literature. In

this method, two adjacent electrodes are used for current injection, while voltage

data is read between the remaining adjacent electrode pairs. Different protocols

exist, a study of these can be found in (184). Also, these protocols will be further

detailed in Chapter 4 along with a discussion of their performance.

When considering adjacent injection and measurement protocol, the skipping

factor is sk = 3. Therefore, after applying the kselect logical vector the final

voltage data set will have a dimension of K = 208. We use 62500 S/s as the

DAQ sampling frequency. This corresponds to the fastest speed allowed by the

DAQ when using 16 analog channels. This is considered as oversampling and

is chosen for experimental validation purposes. We set the total number of col-

lected samples on each analog input channel to be S = 800. This results in 50

samples per injection step, and guarantees that the static conditions are reached.

Figure 3.7 shows an example of the voltage samples acquired through the first

DAQ differential channel, namely the difference between electrodes 1− 2 at each

current injection step. The profile of the boundary data potentials indicates the

effective multiplexers’ channel switching with a precise conveyance of the control

digital bits. Also, the image shows that choosing S = 800 is enough for reach-

ing the static conditions at each time step, and guarantees a quick switching

time between the different injection steps. In fact, it is visible that the effects of

transients are negligible just after a number of ts samples equal to 25. For each

current injection time step, the median value of the samples is calculated after

the static conditions are reached. This is then used for creating the voltage data

set Vm, and is done using Algorithm 1.

We denote the sensing rate as the rate at which the S number of samples

are collected. This can be computed by dividing S by the sampling frequency

per channel. In our case this corresponds to 78Hz. If we were to use a smaller

number of electrodes the sensing rate would increase. This is reported in Table

3.2. However, it is worth noticing that even if a reduction in the number of elec-

trodes greatly increases the sensing rate, this would negatively affect the spatial
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Figure 3.7: Measured voltage output signal on DAQ channel 1, obtained with
16 sequential DC current excitation signals. Median values are calculated at

each injection time step for each channel after the static conditions are reached,
and will contribute to create the final voltage data set.
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resolution. In fact, as reported in (188), the spatial resolution is approximately

10% of the characteristic dimension of the sensor when using 16 electrodes, while

an 8 electrodes system gives a resolution of 22%.

Electrodes

8 16

Number of Measurements 64 256

Sensing Rate (Hz) 156 78

Table 3.2: Total number of measurements required per each scanning and the
resulting sensing frame rate for different electrode counts.

In electrical tomography, the image reconstruction frame rate is the one at

which the online reconstruction loop in Figure 3.5 can be executed. Therefore,

this rate depends on the time necessary for the system to perform a complete cycle

of electrode potentials readings, and then compute the inverse solution. Moreover,

computing the inverse solution depends on the reconstruction algorithm as well

as the computing performance of the workstation and is therefore beyond the

scope of this thesis. An image reconstruction frame rate of 45 Hz is reported in

(200) for a system consisting of 17 electrodes. In (7) a sensing rate of up to 30

Hz is reported, however the image reconstruction frame rate is not discussed. In

our study, the image reconstruction frame rate is calculated to be ' 30 Hz.

We also report the power consumption of the developed system in two cases.

When using a current of I=32µA and a power supply of 16 V, this configuration

gives a power consumption of about 10 mW, far lower than the ones presented in

literature. This value can be further reduced to 3 mW when considering a current

of 10µA supplied via a power supply of 5 V.

In Table 3.3 the mean SNR and the Mean Absolute Deviation (MAD) among

different measurement sets are shown for two tested currents of I=32µA and

I=10µA. The results demonstrate that, if it is necessary to reduce the power

consumption, the drive current amplitude can be decreased without compromising

system performance in terms of noise and consistency of measurments.

3.4.2 Contact Location and Image Reconstruction

The image of the touch inputs over the sensor is reconstructed by comparing two

voltage data sets: V0 is used as a background reference and V1 are the resulting



CHAPTER 3. ELECTRICAL TOMOGRAPHY SENSOR SYSTEM 61

Current Amplitude

I=32µA I=10µA

SNR 55 49

MAD 0.5 0.4

Table 3.3: Mean signal to noise ratio (dB) and mean absolute deviation (mV) in
the case of two different current amplitudes

potentials measured when touch is applied. This method guarantees that no

initial calibration is needed.

In Figure 3.8 it is shown an example of the reconstructed image and ROI when

varying the threshold factor f . It is clear how f has a great impact on the final

image. This is definitely a disadvantage in electrical tomography reconstructions

as case specific knowledge is required for the choice of f . In our case, we have

chosen f= 0.10 for the adjacent protocol, as it was shown to be the one exhibits

the best performance during experimentation.

Figure 3.8: Examples of reconstructed images with different threshold factors f
after a conductivity change has taken place.

Finally, in order to demonstrate the quality of the sensor system Figure 3.9

shows the reconstructed images when a touch input is applied in different po-

sitions over the sensor. In the reconstructed figures, the red colour indicates a

positive changes in the conductivity, while a blue colour represents the ringing

artefacts which are bands or ”ghosts” near edges, and are typical of linear filters

like electrical tomography systems. It appears that the location of the touch

input affects the conductivity of the fabric material also in the surrounding ar-

eas. However, following our simulation results it is clear that this behaviour is

mainly caused by the nature of electrical tomography. In fact, sharp conductiv-

ity changes cannot be reconstructed because of the applied regularisation. It is

also worth noticing that keeping the fabric sensor and the electrodes fixed with
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a supporting rigid frame can cause some stretching at the boundary, which is

also recognised as a conductivity change. This further confirms the high sensi-

tivity of electrical tomography reconstructions to small changes in potential at

the boundary measurements. However, this behaviour is mainly removed in the

post-processed image x̂P after application of the threshold factor f .

Figure 3.9: Reconstructed images for a touch input applied in different locations
over the sensor. On the right, the final image showing the ROI representing the

maximum conductivity change. Red colour indicates an increase in the
conductivity.

3.5 Discussion

Common electrical tomography systems tend to have drawbacks such as a slow

sensing rate or complicated hardware which increases power consumption and

costs. In this chapter, we have presented our sensor system which comprises

of: a custom Printed Circuit Board (PCB) for performing adjustable current

injection and voltages measurements; data acquisition setup and multiplexing; a

piezoresistive flexible fabric material which is used as the transducer element; and

our approach for raw data collection, pre-processing and image reconstruction.

This system allows for the implementation of a simple hardware that reduces

costs and power consumption. It also provides a frame rate adequate for dynamic

scenarios found in contact applications that require real-time sensing. We show

that our sensor system can provide a sensing rate up to 78 Hz when using 16 elec-

trodes, and an image reconstruction frame rate of ' 30 Hz, suitable for dynamic
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contact applications. Consistent voltage data collection is successfully performed

with a mean SNR of 55 dB, and a MAD of 0.5 mV. Also, the simple hardware

design guarantees a power consumption of down to 3 mW. The system design can

be configured for up to 16 electrodes with interchangeable current injection and

voltage measurement protocols, which will be used for the work presented in the

next chapter. Finally, touch inputs over the sensor are properly reconstructed,

thereby validating the efficiency of our electrical tomography sensor system for

practical contact sensor applications. Limitations and future perspectives of this

work are discussed in Chapter 6.
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4.1 Chapter Summary

In this chapter the spatial resolution of tomography sensors is considered. This

is greatly influenced by the choice of current injection and voltage measurement

protocol. We introduce a novel type of protocol and study its performance along

with two other commonly used protocols in electrical tomography imaging. We do

this with the aim of achieving a better understanding for this choice of protocol,

consequently improving the performance of our contact sensor.

We demonstrate the validity of our study by evaluating the response of the

electrical tomography sensor in the case of single, and multiple input contact

positions. We do this using both simulated voltage data; and experimental voltage

data collected using the sensor system that is presented in the previous chapter.

For evaluating the different protocols, we propose performance metrics that can

be easily generalised to any electrical tomography system. Finally, we propose an

extension to our work where we set the stage for future works, whereby dynamic

protocol selection can be investigated.

4.2 Introduction

The spatial resolution of a tactile sensor is of course of great importance. This is

especially true when the sensor is used for detecting contact location. In electrical

tomography systems, the spatial resolution is greatly affected by the choice of

current injection and voltage readings protocol (179, 184, 69, 54). This is because

the way the current is injected and flows inside the body under examination

considerably influences the transduced signal; also, choosing different boundary

electrode pairs for voltage reading changes the information content of the signal.

As a consequence, the reconstructed image quality varies depending on the choice

of protocol.

In recent years many attempts have been made to increase the spatial resolu-

tion of a tomography system, this is typically done by optimising the injection-

measurement protocols based on different performance metrics. For example, in

(179) the authors study the optimal way for placing the current injection elec-

trodes in order to maximise the voltage differences and improve the signal quality.

In (88) and (6), the optimisation of current injection protocols has been studied

based on the distinguishability criteria of the boundary voltage data. In (184),

four bipolar injection-measurement protocols are investigated in the context of
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brain electrical tomography. Optimal choice between the protocols is suggested

depending on the resulting boundary voltage data, and the number of independent

measurements of each protocol. In fact, a high number of independent measure-

ments means extracting more information about the internal conductivity and

helps solving the inverse reconstruction. This approach was further developed by

Xu et al. (218), where the performance metrics are based on the reconstructed

image quality. The authors argue that in an electrical tomography system it

is more crucial to work on the algorithms for the inverse solution, rather than

the protocol itself. Although this is an important factor, we still believe that

optimising the current injection and voltage measurement protocol is the main

deciding factor that should be considered when working with tomographic sys-

tems. This is because the protocol is responsible for the resulting tomographic

signals, and therefore it presents the foundation for obtaining informative im-

ages. In the context of tomography brain imaging, the authors in (130) propose

the use of a protocol which maximises the distance between the current injecting

electrodes. They show that this enhances sensitivity to perturbations throughout

the scanned volume, and consequently the resulting image quality.

However, the approaches considered in the above mentioned literature have

not yet examined the relationship between the performance of a certain injec-

tion measurement protocol, and the Region Of Interest (ROI) where a change in

conductivity is detected. By exploring this idea, in this work we aim to improve

the spatial resolution of an electrical tomography system, and therefore to con-

tribute to existing literature. With a particular focus on electrical tomography

fabric sensors, we show that current injection and voltage measurement protocols

respond differently to different positions of the ROI, consequently affecting the

overall performance of the tomography sensor system. For doing this we con-

sider the case of single, and multiple input contact positions. We do this by first

examining simulated voltage data generated using the EIDORS benchmark soft-

ware; then using the sensor system that is presented in Chapter 3. The results

are then evaluated using our proposed performance metrics, which can be easily

generalised to any electrical tomography system.

In the next section we discuss the theoretical considerations that are at the ba-

sis of this work. We then describe the three injection and measurement protocols

which are used to perform the experimentation; we also discuss the performance

metrics and experimental scenarios. We then present our findings, and conclude

by setting the stage for future work, whereby dynamic protocol selection can be
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investigated.

4.3 Methods

4.3.1 Theoretical Considerations

The starting point of this work is to develop a methodology by considering the

physical model of our piezoresistive fabric sensor. This is necessary in order

to understand how the current flows inside the material and how the different

strategies for voltage measurement can influence the collected data for the image

reconstruction.

The resistivity of a coated textile material depends on: the arrangement and

contacts of their yarns; and the way the yarns rearrange themselves when a

mechanical stimulus is applied to the fabric. This has been studied in (50, 203, 13,

12) and discussed in Section 2.3. Furthermore, following the works of (224) and

(112), we assume that our conductive piezoresistive fabric behaves as an electric

circuit network with a certain number of length-related and contact resistors.

Here, the current flows through the continuous elements of the fibres and their

contact points. When a touch input is applied over the fabric material, the

gap between the conductive yarns decreases (i.e. the contact area between the

knitting courses progressively increases) so there is a reduction in the overall

resistance in that area. As a consequence, there is an increase in the current

density through the region where a touch input is applied. Therefore, if a current

injection protocol that further maximises current flow in that region is chosen,

the data and image reconstruction quality would then be improved. This is

further affected by the way the signal is read at the boundary electrodes, which

determines its information content.

4.3.2 Current Injection and Voltage Measurement

Protocols

A current injection and voltage measurement protocol is a strategy that selects the

electrodes pairs on which current injection and voltage readings are performed.

In a generic electrical tomography protocol, an electrode pair is chosen for current

injection, in the mean time electrode pairs are systematically chosen for perform-

ing voltage measurements; this process is repeated until every electrode pair has
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served for the current injection.

In this work we focus on three current injection and voltage measurement

protocols. This choice of protocols is motivated next.

Adjacent protocol (AD): in the AD protocol (Figure 4.1 a), the current is in-

jected and read between adjacent electrodes pairs. The AD protocol max-

imises the current flow close to the boundary electrodes. This protocol is

the most common in electrical tomography applications.

Pseudo-Polar (PP) protocol: the PP protocol (Figure 4.1 b), uses almost op-

posite drive electrodes for current injection. The voltage readings are then

measured through adjacent electrode pairs. The PP protocol presents the

highest current density flow through the central area of the material.

Pseudo-Polar-Pseudo-Polar (PP-PP) protocol: in this study we introduce

the PP-PP protocol (Figure 4.1 c). This protocol injects current in the same

way as the PP protocol, it also performs voltage readings in that way. The

PP-PP protocol has the capability of exciting and reading ample sections of

the material. To the best of our knowledge, the behaviour of this protocol

was never presented and studied in the electrical tomography literature.

Other types of current injection and voltage measurement protocols exist

and are used in electrical tomography applications. These include trigonometric

(37) and polar (opposite) (184) patterns. Trigonometric protocols, studied by

Kolehmainen et al. (104) show small tolerance to errors. In trigonometric pro-

tocols voltages are measured on the current-carrying electrodes, which creates a

high sensitivity to contact impedance mismatch. In polar protocols, the current

injecting electrodes are 180◦ apart. This approach increases the area in which the

current is flowing, however it reduces the number of independent measurements

due to the reciprocity principle. This affects the amount of information available

for conductivity reconstruction.

Following the theoretical considerations and the three current injection and

voltage measurement protocols presented above, we can conclude that if the ROI

is close to the electrodes, the AD protocol can maximise the current density

that flows through it. This improves the image reconstruction result. In the PP

protocol, the current density is higher across the centre of the conductive medium.

Therefore, this protocol will show a better reconstruction when the ROI is more

central. Finally, in the PP-PP protocol the current distribution is the same as
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Figure 4.1: From top to bottom, the first and last of sixteen steps for the (a)
AD, (b) PP and (c) PP-PP protocols for a 16 electrode system. For each

injection step, current is applied between a pair of electrodes and the resulting
voltage is measured between the remaining pairs. The current excitation and

voltage measurement is then rotated until the last step.
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the PP protocol, but the portion of the material being read is higher. Therefore,

in the case of simultaneous multiple ROIs, where the conductivity changes are

more distributed, this protocol is expected to result in an improved performance.

This is because this protocol would maximise the current magnitude in the ROI

and probe it from a greater field of view.

4.3.3 Performance Metrics

For evaluating the performance of the above protocols, we propose performance

metrics by taking inspiration from the works of Xu et al. (218) and Yasin et al.

(220). These metrics are used for image and data quality analysis; and allow us

to compare the results of the three current injection and voltage measurement

protocols when different ROIs are considered.

Voltage-based metrics are used to study data accuracy of the boundary volt-

age. Then, image-based metrics characterise the exactness of the reconstructed

images, detectability and distinguishability of the targets.

Voltage-based metrics These metrics are applied on the voltage data that

results from Algorithm 1. The data is in the form of a vector Vm containing

voltage measurements Vm = {Vm1, ..., VmK}.
The first performance metric which defines the quality of the signal is SNR.

This has been defined in Eq. 3.1.

Then, based on the distinguishability criterion (88), we assess the performance

of a protocol using our Boundary Voltage Change (BVC) metric:

BV C = ||V 1 − V 0|| (4.1)

where ||.|| denotes the Euclidean norm, V 0 denotes the voltage vector measured

before conductivity changes takes place, and V 1 denotes the voltage vector mea-

sured after conductivity changes takes place. The principle is that a larger BVC

indicates better protocol performance.

Image-based metrics These performance metrics are shown in Figure 4.2.

They are used for assessing the quality of the reconstructed image ,and can be

employed for single and simultaneous multiple ROIs. The metrics are applied on

the reconstructed processed image (x̂P ) using Eq. 3.10. Here, the ROI is found by

selecting the area of the reconstructed image in which the maximum amount of
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conductivity change has taken place. This selection is performed using a certain

threshold factor f .

Size Error (SE) measures the difference between the Detected (DSO) and the

real (SO) Size of the Object, compared to the Area of the entire Conductive

Medium (ACM):

SE =

∣∣∣∣DSO − SOACM

∣∣∣∣ (4.2)

where the DSO is obtained by calculating the number of pixels in the ROI.

Position Error (PE) shows the mismatch between the detected position of the

object and its real position. This is calculated as:

PE = |rr − rd| (4.3)

where rr and rd indicate the real and estimated positions of the object respec-

tively. Since rr and rd are found by extracting the centroid of the pixels contained

in the ROI, the PE metric does not depend significantly on the choice of the

threshold factor f .

Electrical tomography reconstructed images generally present an arc of light

blue around the ROI. Ringing is typical of linear filters, caused by the overshoot-

undershoot behaviour of the system: the conductivity change creates an overshoot

in its values, then the response bounces back below the steady-state level, causing

the first ring, it then oscillates back and forth above and below the steady-state

level. The Ringing (RNG) metric measures the amount of these bands or ”ghosts”

of opposite sign surrounding the main reconstructed target area. RNG is calcu-

lated by measuring the area of opposite sign AINV surrounding the reconstructed

target:

RNG =
AINV

ACM −DSO
(4.4)

Desired RNG values are small and uniform, because ringing artefacts might in-

terfere with the detection of contact points.

The above performance metrics are independent of data collection rate, cur-

rent amplitude, frequency, protocol, and number of contact positions. As a result,

this evaluation approach can be easily generalised to specify the performance of

different electrical tomographic applications.
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Figure 4.2: Performance metrics for the reconstructed image. On the top left,
the tomography sensor, and in green the target placed over it. After the voltage

data is acquired, the image of the conductivity change is reconstructed (top
right, (x̂O)). Then the ROI is selected and the SE, PE and RNG metrics are

calculated from the post-processed image (x̂P ).
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4.3.4 Experimental Scenario

The sensor system used for performing experimentation is the one introduced in

Chapter 3. A 3D-printed circular frame is used to firmly hold the conductive

sheet. 16 extrusions on the frame present conductive copper stripes to create the

electrodes. This setup minimises the effects of noise, electrode misplacement or

motion artefacts. Our custom PCB, together with a DAQ and a PC workstation

are used to perform the current injection and voltage measurements. In partic-

ular, our PCB design and multiplexing management system allows us to easily

switch between different injection and measurement protocols when performing

our experiments. This is especially advantageous for the goal of this study. The

image reconstruction is performed following our approach which is discussed in

Section 3.3.2.

Five different experimental scenarios are considered. Figure 4.3 shows the

scenario presenting 4 one-point inputs, and the scenario with a two-point simul-

taneous input. Each scenario corresponds to an input target applied at on of the

following positions x = 0.75, x = 0.5, x = 0.25, x = 0 with a constant y = 0. The

last experiment is the simultaneous two-point touch inputs at locations x1 = −0.5

and x2 = 0.5. The input target is 1.46% the size of the conductive medium and

corresponds to an applied pressure of 20 kPa.

Each one of these scenarios has been tested with the three current injection and

voltage measurement protocols presented in Section 4.3.2. The goal of these ex-

periments is to show that the protocols respond differently for different positions

of the ROI, affecting the overall performance of the tomography sensor system.

Although some studies are conducted with the purpose of finding the correct

choice of the threshold factor (146, 187), heuristic selection is still very com-

mon. Also different protocols behave differently, and so using a post-processing

technique is needed to fairly compare the performance of one protocol with the

others when considering their dependency on the ROI, as is the case in this study.

Therefore in our experimentation the selected threshold factors are f= 0.10, 0.08

and 0.05 for AD, PP and PP-PP protocols respectively. These values are the

ones that performed best on average in terms of size detection of the ROI.

4.3.5 Simulation Studies

A simulation study using the EIDORS benchmark software is carried out to obtain

a baseline for the experimental results. We considered a 16-electrodes circular
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Figure 4.3: The experiments are conducted with the target applied each time
step at x= 0.75, x= 0.5, x= 0.25 and finally at x= 0. The last experiment is the

simultaneous two-point touch inputs at locations x1= -0.5 and x2= 0.5.

shaped phantom which models our sensor system. A FE mesh structure is used

to solve the forward and inverse problems, and is constructed using the physical

characteristics of the Eeonyx fabric sample.

The input targets are generated by simulating a change in conductivity inside the

material for each experimental scenario, as described in the previous section. The

simulated boundary voltages consist of V0 and V1, before and after the simulated

conductivity change has taken place. These data sets are then used to reconstruct

the tomographic image. The performance metrics are then calculated from each

reconstructed image.

Table 4.1 summarises the response of SE, PE and RNG for different target lo-

cations for each injection and measurement protocol resulting from the simulated

data. The SE and PE metrics are shown in % relatively to the size of the sensor.

For better visualisation, the results in the case of single point contact location

are additionally shown in Figure 4.4.
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AD PP PP-PP

Position SE PE RNG SE PE RNG SE PE RNG

x= 0.75 1.4% 0.7% 0.204 3.5% 2.3% 0.301 4.6% 7.8% 0.411

x= 0.5 1.6% 0.7% 0.197 2.8% 1.7% 0.423 3.2% 4.2% 0.401

x= 0.25 3.0% 0.8% 0.340 1.6% 1.7% 0.471 3.3% 6.3% 0.432

x= 0 4.2% 1.1% 0.370 1.1% 1.1% 0.465 3.7% 2.5% 0.402

x1= 0.5, x2= 0.5 4.4% 23.4% 0.451 2.5% 22.6% 0.472 1.5% 14.4% 0.428

Table 4.1: Performance metrics from simulated data

Figure 4.4: Performance metrics from simulated data are shown in the case if
single point input positions.
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Protocol

AD PP PP-PP

SNR 54.98 58.93 76.06

Table 4.2: Signal to Noise Ratio (dB) for the three different current injection
and voltage measurement protocols

Protocol

Position AD PP PP-PP

x= 0.75 55 182 587

x= 0.5 52 156 900

x= 0.25 49 273 547

x= 0 16 368 697

x1 =0.5 and x2 =0.5 129 1324 1487

Table 4.3: Boundary Voltage Changes (mV) for the three different drive
patterns at different target locations

4.4 Results

4.4.1 Voltage Data Metrics

Table 4.2 shows the SNR for the three current injection and voltage measurement

protocols. As expected, the PP-PP protocol produces the highest signal to noise

ratio. This is because the current is flowing crosswise in the sensor, and therefore

through a higher number of fibres and contact points. Also, the readings are

taken over an ample section of the material. The results show that the PP-PP

protocol contains more information when compared to the other protocols.

The BVC values of the three protocols are shown in Table 4.3. A protocol

with small BVC is more likely to be negatively influenced by the presence of

noise. From the results, we can see that the BVC values for the AD protocol are

small, confirming the work of (184). The PP and PP-PP protocols present higher

BVC values, and thus should be considered in the case of noisy systems. These

results confirm our theoretical considerations, and show that all the protocols

have higher BVC values in the case of two-point contact locations. This is a

result of the increased conductivity change inside the medium.
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4.4.2 Image Performance Metrics

Figure 4.5 shows the reconstructed images from the experimental voltage data.

It is already possible to visually identify that each protocol determines different

reconstructions for the same target input location. The performance metrics are

then calculated from each reconstructed image.

Figure 4.5: On the left, the real contact locations are shown, and for each one
the reconstructed and processed images in the case of AD, PP and PP-PP

protocol are presented.

Table 4.4 displays the performance metrics. For better visualisation, the re-

sults for single point contact location are also plotted in Figure 4.6. The first

result to consider is that the position of the target does not influence the RNG

metric, which was already visible in the results from the simulation. In fact, since

the ringing effect is caused by the linear filter behaviour of the system, RNG is

mainly affected by the protocol choice, rather than the position of the ROI. Also,

it is known that high RNG values might cause an incorrect interpretation of the

reconstructed image; this is the case for PP and PP-PP protocols, however in the

case of the AD protocol we observe the lowest RNG values.

In both simulation and experimental tests the AD protocols perform better

for SE and PE when the target position is close to the electrodes (x= 0.75 and x=

0.5). The PE also presents smaller variability between the different experimental
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AD PP PP-PP

Position SE PE RNG SE PE RNG SE PE RNG

x=0.75 1.8% 2.2% 0.263 3.2% 3.6% 0.332 3.1% 6.7% 0.324

x=0.5 2.0% 3.3% 0.299 2.5% 3.1% 0.313 2.3% 6.5% 0.318

x=0.25 2.6% 3.7% 0.328 1.6% 2.5% 0.396 3.4% 1.4% 0.355

x=0 3.3% 3.9% 0.300 0.6% 2.4% 0.380 5.3% 4.4% 0.369

x1=0.5, x2=0.5 1.7% 38.0% 0.353 1.3% 22.5% 0.372 1.0% 20.0% 0.361

Table 4.4: Performance metrics from experimental data

scenarios, making the interpretation of the results more reliable. This is also true

for the PP protocol.

The PP protocol presents a good response for SE and PE when the target is

placed in the central areas of the conductive medium (x= 0.25 and x= 0). This

demonstrates its improved performance when compared to the other protocols in

the same scenarios, and therefore its good sensitivity in the centre of the sensor.

Lastly, when compared with the other protocols, PP-PP performs better in terms

of SE and PE in the presence of two simultaneous input targets. In the other

cases, the response of this protocol is quite poor. This behaviour makes the PP-

PP protocol unfeasible and unstable for all scenarios but simultaneous contact

locations.

Figure 4.6: Performance metrics from experimental data are shown in the case
if single point input positions.
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4.4.3 Analysis

The above experimental results are in line with the simulations and follow our

predictions derived from our theoretical considerations. This confirms that the

response of a current injection and voltage measurement protocol depends on the

position of ROI. This is also qualitatively confirmed by Figure 4.5.

Both simulation and experimental results show that the AD protocol would

be preferable in the case where the ROI is positioned close to the electrodes.

The reason is that this protocol has the highest current density in those areas,

therefore the conductivity changes are more easily detected. Also, the response

of the AD protocol is reliable in terms of PE, although the BVC values show that

this protocol would not perform well in the case of noisy systems. Nevertheless,

as the highest current density is found in the region close to the electrodes, this

results in more sensitivity to errors in the boundary conditions. In Figure 4.5

for x=0 and x=0.75, some sort of extensive pre-stretching in the fabric material

caused by our 3D printed fixture causes errors that appear in the reconstructed

image. The same errors do not appear in the images from the other 2 protocols.

We have seen that the PP protocol performs better in the case where the

ROI is positioned towards the centre of the sensor. By injecting current from

electrodes that are almost 180◦ apart, the current density into the central areas

of the sensor is increased. In fact, during the different injections, this protocol

creates current that flows through the ROI in as many directions as possible,

while also increasing the current density magnitude within it. Nonetheless, this

protocol did not show a good capability in the reconstructing for multiple ROI

positions.

Finally, the capability of reading ample sections of the material while increas-

ing the magnitude of current density in the central regions of the sensor makes

the PP-PP protocol useful in the case of multiple touch points, since the conduc-

tivity change is more distributed. Therefore, despite its poor response in other

scenarios, this protocol can still offer advantages in the case of multiple contacts.

4.4.4 Proposed Algorithm

As a consequence of the above mentioned results, we believe that in order to

improve target size detection and position accuracy of an electrical tomography

sensor, it would be desirable to switch in real time between the AD, PP or PP-PP

protocols depending on the position of the ROI over the sensor. This should be
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done immediately upon the first detection of the ROI.

Our proposed approach is shown as a flowchart in Figure 4.7, and is detailed

next.

Figure 4.7: Our proposed method for dynamically adapting the current
injection and voltage measurement protocols, following the identification of the

ROI on the sensor

We propose that an initial ROI detection should be performed with an AD pro-

tocol. In fact, the AD protocol has shown to be the one presenting an acceptable

performance in all the studied cases. Moreover, electrical tomography systems

with a good temporal resolution can greatly benefit from using such an approach.

This is because it will be necessary to switch between different protocols as soon

as a first detection of ROI is achieved. And as shown in Chapter 3, switching

between protocols and the reconstruction of a new image can be performed in

less than 0.03 s, which would negligibly affect the real-time reconstruction speed

of the sensor. Also, in contact sensor applications where sensory data from differ-

ent sources are used, in the likes of vision systems (122, 193); the contact sensor

system can be provided with information of the expected activity location over

the contact sensor, our approach would then augment the precision of the overall

system. Another potential application is medicine, the reason here is that knowl-
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edge regarding the location of the expected ROI is generally available (202); also

in such a scenario the ROI does not present quick dynamic changes.

After the initial detection of ROI, we then propose to divide the sensor area in

two main sections. We define dc as the distance between the centre of the sensor

and its boundary electrodes. Therefore, a ROI that is considered in the central

region of the sensor will have coordinates xROI ∨ yROI < ξdc, otherwise a ROI is

considered to be close to the sensor boundaries if xROI ∨ yROI ≥ ξdc. We propose

that ξ = 0.5, of course a more detailed study can be imagined where the specific

value of ξ is optimised.

Following this, one of the three protocols is applied: if multiple touch inputs are

present, the protocol should be dynamically adapted to the PP-PP, and an image

of the touch input is displayed; In the case where ROI falls in the region close to

the electrodes, the AD protocol is applied. Finally, if the ROI location is closer

to the central region of the sensor, the PP protocol should be applied.

Although such an approach would provide multiple advantages, some chal-

lenges arise and need to be addressed. Of these, the main ones are: How can

multiple ROI positions be detected automatically? What are the consequences if

the initial ROI detection is not accurate?

4.5 Discussion

A common issue in electrical tomography sensors is their low spatial resolution.

It is shown through the literature that the spatial resolution is affected by the

choice of current injection and voltage measurement protocols. In our work we

introduced a novel type of protocol, and studied its performance along with two

other commonly used protocols in electrical tomography imaging. We conducted

a comparative analysis on the performance of these three protocols with regards

to different ROI locations. The response of the protocols was evaluated using

performance metrics that were obtained from data generated using simulation,

and our sensor system.

Based on the results, both the simulations and experimentation confirmed

that: a) although the AD protocol is less tolerant to noise and has a lower dynamic

range, it performs better when the ROI is close to the electrodes; b) the PP

protocol is preferable when the ROI is close to the central area of the sensor; and

c) our proposed PP-PP protocol is mainly suitable for the detection of multiple

touch inputs.
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These findings can be visualised through the reconstructed images of the touch

inputs, and confirm our theoretical considerations. Finally, and in light of these

findings, we proposed an approach for dynamically selecting the current injection

and voltage measurement protocols. This however requires further study and

validation.
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5.1 Chapter Summary

This chapter presents a method for touch position identification in an electrical

tomography contact sensor. This is done by means of a supervised machine learn-

ing algorithm for performing classification, namely discriminant analysis. This

approach provides accurate touch location identification, increasing the detection

speed and sensor versatility when compared to traditional electrical tomography

approaches.

We propose a novel data collection process for robust training of the learning

algorithm. We then present a detailed study on how the system performance are

dependent from parameters like number of training data, number of electrodes,

dimension of the sensor, and touch position distance from the electrodes. The

sensor is then applied in real world scenarios over different surfaces to show and

validate the efficiency of the proposed approach.

5.2 Introduction

As discussed in previous chapters, the aim of this thesis is to develop a practical

contact sensor system that can be widely used and easily integrated. We have al-

ready identified the advantages of using tomographic techniques for this purpose,

see Chapter 2 for more detail. Moreover, when considering tomographic imaging,

the inverse problem is traditionally solved through constructing a FE model of

the system, which subsequently allows for the reconstruction of the internal con-

ductivity of the body under examination. This creates disadvantages which were

already discussed in Chapters 2 and 3.

Furthermore, relying on the FE model for solving the inverse problem greatly

deteriorates the time resolution of the system. In fact, as already discussed in

Chapter 3, the image reconstruction frame rates of our electrical tomography

system is less than half the system’s sensing rate. This is because the image

reconstruction rate heavily depends on the computation time of the inverse so-

lution. Also, as a consequence of using this approach, the reconstruction re-

sults are greatly influenced by: small variations in the measured data caused

by electrical noise and electrode movements; and modelling errors which include

contact impedance, electrode size, boundary shape of the sensor, and electrode

misplacement. This is reported in the literature by many authors, see for exam-

ple (83, 11, 104, 72). Particularly, in the context of electrical tomography flexible
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sensors, modelling errors can be introduced when placing the sensor over curved,

irregular or moving surfaces. For example, the boundary electrodes might be

moved to positions that were not expected in the initial system model. This

creates reconstruction errors in touch input position detection. Therefore, such

drawbacks hinder the application of these sensors in real world scenarios.

Consequently, although traditional approaches to tomographic imaging are

robust and well studied, their disadvantages stand in the way when considering

the applicability aspect and wide use of flexible contact sensors. In this chap-

ter, we propose to identify contact location on an electrical tomography sensor

using an ML algorithm. This is used to classify voltage data collected that is

measured by our sensor system which is presented in Chapter 3. This approach

does not rely on the system FE model, thus it provides accurate touch location

identification, and improved detection speed. It also promotes the application of

these sensors in real world scenarios, as later shown in this chapter. ML has been

recently gaining an increasing amount of attention by the tomography research

community as shown in Section 2.5.2. A detailed discussion of our methodologies

and developments are presented next.

5.3 Methods

5.3.1 Design Goals

Our aim is to develop an electrical tomography sensor system that is practical to

implement in real world scenarios. We especially consider the possible utilisation

of the contact sensor in human-interactive applications. Therefore, we determine

the necessary specifications of our contact flexible sensor system as follows.

• The main objective of the sensor is to provide accurate positions for contacts

on its surface.

• Essential requirements for the fabric sensor are low cost and the ability to

be manufactured with commonly available tools and materials. For good

integration on arbitrarily shaped surfaces, the material must be flexible,

thin and light weight. Also, it should be possible to customise the shape

and spatial resolution of the sensor.

• The training process for contact location identification should be easy and

quick.
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• The sensor needs to be able to detect touch contacts as small as the human

fingertip, between 10 to 15 mm.

• Next, we consider the working range: the sensor needs to work properly

under both medium- (10-100 kPa, suitable for object manipulation) and

low-pressure regimes (under 10 kPa, comparable to gentle touch (132, 154)).

5.3.2 Piezoresistive Fabric Sensor

In this work we are using the piezoresistive fabric sensor from Eeonyx Corp.

already presented in Chapters 2 and 3. However, compared to our previous set-

up, we do not employ the 3D-printed circular frame that was used to house the

conductive sheet and keep the electrodes fixed.

Here in fact, we do not use any rigid support and we directly place the elec-

trodes for current injection and voltage readings on the fabric material. The

reason behind this choice is that the resulting sensor is truly flexible and can

be built with low cost, widely available materials, and low effort. Also, without

the rigid frame, the position of the electrodes is not necessarily fixed, which can

cause small electrode movements. This is done intentionally to further take into

consideration errors that might appear in real world scenarios when placing the

sensor on different surfaces.

For the electrodes, we use commonly available clip electrodes connected to

the data acquisition system through a 3-ply stainless steel thread.

We also manufacture and test different sensor prototypes which are a 13x13

cm square sensor and a 17x17 cm square sensor. Each sensor is tested using 16

and 8 boundary electrodes.

5.3.3 Classification via Discriminant Analysis

Our aim is to accurately detect the position of an input touch on the sensor. Here,

we approach this problem using machine learning, specifically using supervised

learning for performing classification, see Section 2.5 for more detail. This is

done by first acquiring data from the sensor. We then treat the surface of the

sensor as a grid, whereby each cell in the grid points to a specific position on the

sensor. These cell components define different touch position classes c = 1, . . . , C

where C denotes the total number of classes. Moreover, when working with

a sensor system, we usually acquire data with some uncertainty. These occur
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mainly due to measurement error, and unforeseen changes to the system. It is

therefore necessary to account for this uncertainty, and we do so by approaching

our classification problem from a probabilistic point of view. This is done by

using discriminant analysis, whereby a data observation X is treated as an p-

dimensional random vector X = [X1, X2, . . . , Xp] which is assumed to be drawn

from a multivariate Gaussian distribution, and where p denotes the number of

features. We proceed by modelling the distribution of X in each class separately.

The multivariate Gaussian density for each class is defined as:

fc(x) =
1√

(2π)p|ΣΣΣc|
exp(

1

2
(x− µc)

T |ΣΣΣc|−1(x− µc)) (5.1)

where µc denotes the p-dimensional mean vector, and Σc denotes the p × p co-

variance matrix.

The two most typical uses of discriminant analysis are Linear Discriminant

Analysis (LDA), and Quadratic Discriminant Analysis (QDA) (64). The differ-

ence between these two approaches lies in the shape of the decision boundaries

that is used to separate the classes. For LDA and QDA these are linear and

quadratic decision boundaries respectively. This difference results from the co-

variance matrices that are used. If the covariance matrix is shared between all

the classes, i.e. Σc = Σ∀ c, then we are discussing the case of LDA and we

can therefore estimate the parameters of Eq 5.1 using our training data and the

following:

µ̂c =
1

nc

nc∑
i=1

xi (5.2)

Σ̂ =
1

n− k

C∑
c=1

∑
i;yi=c

(xi − µ̂k)(xi − µ̂k)T (5.3)

where nc denotes the number of observations in each class c, and n denotes the to-

tal number of observations in the training data. In the case of QDA the difference

is that the covariance matrix is instead estimated for each class separately.

Afterwards, we use Bayes theorem to obtain the posterior Pr(Y |X), where Y

represents a random variable that takes on a specific class c.

Pr(Y = c|X = x) =
Pr(X = x|Y = c)Pr(Y = c)

Pr(X = x)
(5.4)

Pr(Y = c) represents the prior probability for class c, we refer to it as πc, and
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we estimate it from the training data using the following:

π̂c =
nc

n
(5.5)

An objective function can then be derived from Eq 5.4, see (91). In the case of

LDA, the following form is obtained:

δc(x) = xTΣ− 1µc −
1

2
µT
c Σ− 1µc + log(πc) (5.6)

we can see that the objective is linear in x in this case. However, for QDA the

derived objective function is quadratic in x as seen in the following:

δc(x) = xTΣc − 1µc −
1

2
µT
c Σc − 1µc + log(πc)−

1

2
xTΣ−1c x− 1

2
log(|Σc|) (5.7)

Now can now classify new data by using ĉ = argmaxc δc(x). The decision

boundary between each pair of classes ci and cj is then described by an equation

{x : δi(x) = δj(x)}

5.3.4 Data Collection and Feature Extraction

In this work, we employ the opposite protocol for current injection and voltage

measurements, in Figure 5.1. Here, the current injecting electrodes are 180◦

apart, while adjacent electrode pairs are used for performing voltage readings.

This approach increases the current spread inside the material, and also reduces

the number of independent measurements (treated in this work as features) due

to the reciprocity principle (73). While a reduction in the number of independent

measurements is usually considered a drawback (184), in our case this results

in a dimensionality reduction of the features, and is very useful when training

the ML classifier, since complexity and training time of the classification model

are reduced. This has direct implications in the specific case of QDA, where the

covariance matrices are of size p× p.
Using an opposite protocol, the total number of independent features is p = L (L−
4)/2, where L stands for the number of electrodes. Therefore when considering

16 and 8 electrode sensor systems, we have p = 96 and p = 32 respectively.

The tests presented here are performed using our custom PCB, together with

the DAQ and a PC workstation, as described in Chapter 3. A flat circular target

representing the human fingertip was used to apply a touch input over the classes
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Figure 5.1: A typical electrical tomography current injection and voltage
measurement cycle in the opposite pattern.

to be tested. Two different targets of size 15 mm and 10 mm were used during

the tests resulting in respectively 49 and 100 classes, as shown in 5.2. This is

performed for the two different sensor dimensions and in the case of 16 and 8

electrodes. The target classes are precisely defined on the sensor by placing a

paper grid on the fabric.

Figure 5.2: On the left, touch inputs for a 1.5 cm target (49 classes) and on the
right, a 1 cm target (100 classes) in the case of 16 electrodes.

During the tests, for each touch input presented to the sensor, we acquire

Snum=20 number of scans, with S=3200 samples for each scan at 10kHz sampling

rate. Even if the acquisition could be performed at higher sampling rate, we have
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limited it to 10kHz in order to ensure a good SNR. This process takes less than

15 seconds for each class.

During this time period, the target is used to apply a variable pressure touch

input. First, a small weight is placed on top of the target to guarantee that a

minimum pressure of less than 10 kPa is achieved. Then, the applied pressure over

each class is varied manually. At this step we are not searching for a high precision

because we want to have a high variety of data. This allows the resulting trained

ML algorithm to identify touch input locations independently of their pressure

values. The purpose behind this choice is that we are trying to cover a certain

range of pressure sensitivity (Section 5.3.1).

Then, after Snum scans are completed, the target is applied on the next class and

the process is repeated until all the input classes are tested. The full process is

finally repeated for T=6 times. The entire data acquisition takes about 1 hour.

In order to form the training matrix, once the raw data are collected, we

then divide the samples in Ssub subsections of 160 samples each and perform the

median as described in Chapter 3. This step provides further robustness to the

classification algorithm as it is able to train on a even higher variety of data,

giving stability to noise. Also it helps taking into account small dynamic issues

as elastic return, or hysteresis effect that are present between the application of

variable pressures. Finally, the number of observations nc per each class becomes:

nc = TSnumSsub. (5.8)

In our case, nc= 2400. The process described above is reported in Algorithms 2

and 3.

For the test data, 20 test data for each class were acquired 1 day after the training

process. Each test data is acquired following Algorithm 1 described in Chapter 3

and is a touch input over the sensor with an unknown pressure. This is performed

to test and show that the final ML algorithm is able to identify touch input

locations independently of their pressure values. Also, this training technique

can be easily performed by any user, without requiring sophisticated hardware.

5.3.5 Training

During the training process of the ML algorithm, a segment of validation data set

is divided from the training data and used to validate the model. This estimates

how well the model has been trained and its properties.
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Algorithm 2: Training data algorithm, first part

S number of collected samples per scan;
Snum number of scans per test ;
C number of position classes ;
T number of tests ;
L number of electrodes ;
Ssub constant used for dividing samples into sub sections;

input : 1× (C ∗ T ) vector container datacon of all readings, where
each element consists of a (Snum ∗ S)× L measurement matrix

output: 1× C vector container mediancont, where each element
represents a class, and consists of a (Ssub ∗ Snum ∗ T ∗ L)× L
matrix of sample medians

Stacking tests per class ;
for j ← 1 to C do

cnt← 1;
for j ← i to C ∗ T by C do

datapc{cnt, j} ← C{i};
cnt← cnt+ 1;

end

end
Computing a container of median values ;
divratio ← S/Ssub;
for j ← 1 to C do

tmp3←empty;
for i← 1 to T do

tmp1← empty;
tmp2← empty;
for k ← 1 to Snum ∗ S by divratio do

tmp← compute column wise median of
datapc{i, j}(k to k + divratio − 1);
tmp2← stack tmp horizontally;

end
tmp3← stack tmp2 horizontally;

end
mediancont{j} ← tmp3;

end
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Algorithm 3: Training data algorithm, second part

S number of collected samples per scan;
C number of position classes ;
T number of tests ;
Snum number scans per test ;
kselect logical vector for selecting useful boundary measurements;
Ssub constant used for dividing samples into sub sections;

input : 1× L vector container mediancont, where each element
represents a class, and consists of a (Ssub ∗ Snum ∗ T ∗ L)× L
matrix of sample medians

output: (C ∗ T ∗ Snum ∗ Ssub)× (kselect/2) matrix used for training the
classifier mlmat

Computing a container of features ;
for j ← 1 to C do

tmp1← empty;
tmp2← empty;
for i← 1 to Ssub do

for k ← 1 to S ∗ Snum by Ssub do
tmp1← stack mediancont{j}(k, all) vertically;
if length(tmp1) is equal to L2 then

tmp2← stack tmp1 horizontally;
tmp1← empty;

end

end

end
featurecont{j} ← tmp2(all, kselect/2);

end
Computing the machine learning matrix ;
for j ← 1 to C do

tmp← a (Ssub ∗ Snum ∗ T )× 1 column vector of 1 ∗ j;
tmp← stack featurecont{j} vertically;
mlmat ← stack tmp horizontally;
tmp← empty;

end
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When having adequate training data, the validation segment is expected to be

a good statistical representation of the entire data set. If not, the results will

greatly depend on how the data was divided.

To avoid this, in this work we have used cross validation. Each time, during the

training phase, the data is partitioned into k-folds, one of this is held-out for

validation, the remaining are used for training. This process is then repeated k

times until all the folds are used. After, the k-fold average loss is from all the folds

is computed, and is used to efficiently compare the different learning algorithms.

In this work, a 10-fold cross-validation is used, as it is the most common approach

in data mining and machine learning (167).

It is worth mentioning that a high number of features in the data affects

the training time and memory consumption, creating computationally intensive

learning algorithms. Using an opposite protocol for current injection and voltage

measurement reduces the number of features. Therefore our approach brings

significant benefits during the training process and also results in a simple ML

algorithm (26).

To sum up, the training and test data used in this work consist of: p = 96

features in the case of a sensor presenting L = 16 electrodes, and p = 32 features

in the case of a sensor with L = 8 electrodes; C = 49 and C = 100 classes in the

case of a target size of 1.5 cm and 1 cm respectively; nc = 2400 observations for

each class for training; 20 observations for each class for testing.

Our framework for training and classification for touch input identification is

shown in Figure 5.3.

5.3.6 Average Euclidean Error

In this work we are dealing with a physical sensor system where the separation

between each class is a 2-D distance. Therefore, only considering the training and

test data classification errors might not be enough to judge the quality of the ML

algorithm. This is particularly meaningful in applications where it is acceptable

to misclassify two neighbour classes. Euclidean error is a good way to weight the

total classification error by considering the 2-D distance between each class. The

Euclidean distance between two points s and q is the length of the line segment

connecting them.

We define s = (s1, s2, ..., sn) and q = (q1, q2, ..., qn) two points in the Euclidean

n-space. The distance d from s to q, or from q to s is given by the Pythagorean
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Figure 5.3: Proposed approach for touch position identification using ML
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formula:

d(s, q) = d(q, s) =

√√√√ n∑
i=1

(qi − si)2. (5.9)

We apply Eq 5.9 to each class for computing the Euclidean distance between that

class and the remaining others.

The Euclidean Error EEtr for each true class tr is then calculated as the

Euclidean distance of the other classes from that true class, times the number of

misclassifications. Given C the number of classes, and npc number of predictions

per each class, we compute:

EEtr =
C∑

c 6=tr,c=1

(
d(tr, c)npcc

)
(5.10)

AEE =

∑
EEtr

C
(5.11)

where AEE is the Average Euclidean Error.

5.4 Results

5.4.1 Classification Methods

Before conducting our work, we have compared the performance of different learn-

ing algorithms in terms of training accuracy Tra and training time Trt. This is

performed in the case of different numbers of training observations for each class:

nc = 24, nc = 240 and nc = 2400. The training observations data used to make

this comparison are related to the tests conducted on C = 49 classes for the

sensor with size 13x13 cm. The results of the comparison are shown in Table 5.1.

The results show that LDA and QDA present the best performance in terms of

training accuracy and time when presented with enough training data. In the

other tests, their accuracy can be still considered satisfying. Also, they show

short training time.

The other learning algorithms are either too slow, with up to 2.5 h training time

in the case of nc = 2400, or less efficient, as for example classification trees. In

the next sections however, we show that the AEE on the test data is negatively

affected by the number of training data already when nc = 240. Therefore, using
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nc = 24 nc = 240 nc = 2400

ML Algorithm Tra Trt Tra Trt Tra Trt

Classification Trees 78.1% 3 78.8% 17 72% 74

LDA 92.1% 92 94% 9 93.8% 88

QDA 66.8% 2 99% 10 100% 81

SVM Linear 83.8% 52 99.5% 257 98.2% 2761

SVM Quadratic 92.8% 156 99% 302 99.1% 3247

KNN Classification 94.1% 181 99% 304 100% 7422

Ensamble Boosted
Trees

68.8% 253 71.6% 555 73.3% 8500

Ensamble Bagged
Trees

92.7% 244 99.9% 414 100% 8172

Ensamble Subspace
Discriminant

91.2% 251 91.1% 412 91.2% 8172

Table 5.1: Training accuracy and training time (in seconds) for different ML
classification algorithms

nc = 24 is in reality of no practicality when presenting the ML algorithm with

unseen data.

Based on the above results, in this work we have applied quadratic discriminant

analysis.

5.4.2 Test Accuracy

First, in order to characterise the response of the QDA learner algorithm in

different scenarios, we report its training accuracy Tra and test accuracy Tea

when changing the number of electrodes and sensor sizes.

L = 16 electrodes, 13x13 cm sensor When performing the training for nc =

49 classes (1.5 cm target), QDA shows Tra = 100% and Tea = 91.6%.

Instead, when performing the training for nc = 100 classes (1 cm target), QDA

shows Tra = 88.2% and Tea = 77.8%. The results on the test data are shown in

Figure 5.4.

L = 16 electrodes, 17x17 cm sensor In this case, when performing the

training for nc = 49 classes (1.5 cm target), QDA shows Tra = 96.2% and
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Tea = 88.7%.

Instead, when performing the training for nc = 100 classes (1 cm target), QDA

presents Tra = 95% and Tea = 80.6%. This is shown in Figure 5.4.

Figure 5.4: Classification accuracy on test data when changing the sensor the
size for 16 electrodes.

L = 8 electrodes , 13x13 cm sensor When performing the training for nc =

49 classes (1.5 cm target), QDA shows Tra = 66.5% and Tea = 68.98%

Instead, when performing the training for nc = 100 classes (1 cm target), QDA

shows Tra = 53.0% and Tea = 29.9%. This is shown in Figure 5.5.

L = 8 electrodes, 17x17 cm sensor Here, when performing the training for

nc = 49 classes (1.5 cm target), QDA shows Tra = 75.2% and Tea = 56.8%.

In the case of nc = 100 classes (1 cm target), QDA shows Tra = 66.9% and

Tea = 37.4%. This is shown in Figure 5.5.

5.4.3 Number of Training Data

Previously, we have compared the results of training accuracy for different learner

algorithms when changing the number of training observations for each class.
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Figure 5.5: Total classification accuracy when changing the sensor size for 8
electrodes

However, it is interesting to know how the AEE changes depending on the number

of training data nc. The AEE is calculated following Eq. 5.11. For the sake of

clarity, we only present here the results the sensor with size 13x13 cm with a

1.5 cm target in the case of L = 16 and L = 8 electrodes. In fact, we believe it is

unnecessary to run a full test considering all our variables (sensor size, target size,

number of electrodes, training data). The results are shown in Figure 5.6 and use

3 sets of observation: nc = 2400, nc = 1200 and nc = 240. When employing less

then nc = 240, the results are unsatisfactory.

5.4.4 Distance from the Electrodes

AEE can be used as metric to show how the distance between each class and

the boundary electrodes affects the quality of the touch input identification. For

better visualisation, in Figure 5.7 the various classes are grouped with different

colours based on their distance from the electrodes.

The AEE for each distance group is computed and shown in Figure 5.8. We

note that the AEE tends to increase and reaches up to 10 mm the more the

classes are far from the electrodes. This behaviour demonstrates an error that

is not stable all over the whole sensing area and depends on the position of the
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Figure 5.6: Average Euclidean Error function of different training data

target on the sensor. The AEE values range from 1 to 10 mm. This is a drawback

in electrical tomography sensors, where the information content tends to decrease

when the target is far from the electrodes, as a result of a reduction in the SNR.

However, it is worth noticing that in Figure 5.8, the error slightly decreases in

the most central region of the sensor. This is due to a a higher current density

flowing in that region. This also confirms our results presented in Chapter 4.

Figure 5.7: Representation of the various distances from the electrodes for the
two different tested sensor sizes.
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Figure 5.8: Average Euclidean Error function of the distance from the
electrodes.

5.4.5 Sensor Size

The AEE is calculated in the case of our two different tested sensor sizes. The

results are shown in Figure 5.9. From the results, it is important to note that

the AEE does not change much in relation to the sensor size. In this case, a

large error bar is indication of the high AEEs variance between the different

classes, as demonstrated in Figure 5.8. These results show that, for studying

the sensor’s performance, it is in fact more meaningful to consider the distance

between the classes and the electrodes (Figure 5.8), and not the whole sensing

area. In fact, by analysing the sensitivity of the error with respect to the distance

from the electrodes, we obtain a more meaningful understanding of the sensor’s

behaviour. This is useful when dealing with different and non symmetrical sensor

shapes.

5.4.6 Number of Electrodes

The AEE is calculated in respect of the number of electrodes considering our

two tested target and sensor sizes, and it is shown in Figure 5.10. Here, the error

decreases considerably when switching from L = 8 to L = 16 electrodes, for all the

considered experiments. This result was already expected. This is because when

using only 8 electrodes for performing current injection and voltage measurement,

there is a great decrease of information for the learning algorithm, given by the

reduced features from p = 96 to p = 32.
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Figure 5.9: Average Euclidean Error and standard deviation when increasing
the sensor size.

Figure 5.10: Average Euclidean Error when changing the number of electrodes.
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5.5 Applications on Real Systems

In this section, apply our approach in two real world scenarios. The sensor setup

and the ML classification algorithm have been implemented in two cases: when

the sensor is wrapped around a curved surface; and the when sensor is placed

around a robotic arm.

5.5.1 Application over a Curved Surface

The sensor is implemented over a curved surface (Figure 5.11) that has bending

radius of 3 cm. Training data from C = 14 touch input classes are collected

with the procedure explained in this chapter. Then, QDA algorithm is trained

resulting in a training classification accuracy Tra = 100%. After that, sensor

data is acquired at 30 Hz sensing rate and presented to the trained classifier. The

results are shown in real-time on a PC screen in the form of a matrix and can

be seen in Figure 5.12. Each time a touch input class is recognised, the section

the matrix corresponding to that class is illuminated with a different colour. The

results confirm that the sensor is able to perform efficiently when bent over a

curved surface.

Figure 5.11: Electrical tomography flexible fabric sensor implemented over a
curved surface with bending radius of 3 cm, and presenting C = 14 touch input

classes
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Figure 5.12: Results from test data. The trained algorithm is able to recognise
correctly the different input classes.

5.5.2 Application over a Robotic Arm

The sensor is implemented over a robotic arm. The system is proposed in Figure

5.13 and comprise of:the hardware setup described in Chapter 3 with our custom

PCB and a DAQ card for current injection and voltage readings, and a worksta-

tion PC for data analysis; a Kuka KR10 robotic arm which can be controlled via

Matlab commands; and a 22x10 cm fabric flexible sensor with L = 16 electrodes.

The sensor is intentionally placed with some discontinuities, to test the effective

robustness of the approach.

We conducted two experiments explained below.

1. Experiment 1: training data from C = 5 classes are collected with the pro-

cedure explained in this chapter. Then, QDA algorithm is trained resulting

in a training classification accuracy Tra = 99.7%. The 5 classes that have

been used for training are: 1 no-touch class and 4 touch classes over the

sensor. After training, sensor data is acquired at 30 Hz sensing rate and

presented to the trained classifier. The results are shown in real-time on a

PC screen in the form of a matrix. In Figure 5.14, a full light blue matrix

indicates no touch recognised. Then each time a touch input class is recog-

nised, the section of the matrix corresponding to that class is illuminated

with a different colour. The results show that the sensor is able to perform

efficiently when bent over a curved surface and is able to recognise no-touch

inputs.
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Figure 5.13: Electrical tomography flexible fabric sensor implemented over a
robotic arm.

Figure 5.14: Identification of no-touch and 4 touch inputs over the Kuka robotic
arm
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2. Experiment 2: The Kuka robot is controlled using C = 4 touch inputs,

which are used to send the robot to four different locations on its workbench,

this is shown in Figure 5.15. The classification output is sent to the Kuka

robot, where the inverse kinematics are computed to allow it to achieve the

desired behaviour. The results show that the sensor can be easily placed

over a robotic arm without losing its functionality, and without impeding

the robot’s dexterity.

Figure 5.15: The kuka robot moving to four different locations on its
workbench, being controlled by 4 touch inputs

5.6 Discussion

Electrical tomography techniques require a construction of a FE model of the

sensing element for the reconstruction of the internal conductivity of the sensor.

This greatly deteriorates the time resolution of the system. Also, the reconstruc-

tion results are greatly influenced by small variations in the measured data caused

by electrical noise, electrode movements and modelling errors. This particularly

happens when applying the sensor in real world applications. Suck drawbacks

jeopardise the practicality and usage of these sensors.

To address this limitation, we use a state of the art method for accurately

identifying touch positions using electrical tomography sensors. This is achieved
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using supervised machine learning for performing classification, namely quadratic

discriminant analysis. In this chapter, we first started by presenting our the de-

sign goals. We then described our approach to the classification problem using

discriminant analysis. Next, we proposed: a novel data collection process for

robustly training the machine learning algorithm; and our algorithm for feature

extraction. Then, we presented a detailed study on how the system performance

are dependent on the following parameters: number of electrodes; number of

training data; dimension of the sensor; and distance of the touch position from

the electrodes. The approach is then applied in real world applications. It is

important to note that the future sensor integration in industrial workcells, is

not fully addressed here, as the experiments have been carried out without pro-

tection for the operator. Therefore, future studies should be carried out in order

to implement a real-time, sensor fusion approach for guaranteeing the safety of

operators in close proximity to robots.

In common electrical tomography sensors, the system’s frame rate greatly

deteriorates due to the computation time required for the inverse solution. This

drawback has been already shown in Chapter 3, where our system’s speed (in

terms of frame rate) is more than halved with respect to the sensing rate. Similar

results are reported in (144, 187). The methodology proposed in this chapter

increases detection speed. In fact, our approach potentially reaches a detection

speed of 78Hz which is our system’s sensing rate. This is due to the fact that

once the classification algorithm is trained, the computation time for classifying

new data collected by the sensor is almost instantaneous.

In addition, our approach demonstrated accurate contact location identifica-

tion. When applied over curved surfaces, the flexible sensor system was also able

to robustly deal with problems such as inaccurate sensor placement, electrode

discontinuities, movements of the host.

As a consequence of the results shown in this work, and driven by the aim of

providing a framework for a practical and easy to customise flexible sensor, we

can conclude that:

• A correct number of training data is of necessary for the learning algo-

rithm to perform accurate classification. This is already known in the ML

literature. In our case, the amount of training data needed depends on pa-

rameters such as: the number of touch input classes; the algorithm chosen;

and the number of features.
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• If developing arbitrary sensor shapes, it is suggested to particularly focus on

the maximum distance from the furthest touch input class to the electrodes,

rather than just on the sensor size. In our experimental results, when a class

exceeds a distance from the electrodes of 6-7 cm, the touch identification

error increases greatly.

• The above behaviour confirms the idea that in electrical tomography sensors

the error is not stable throughout the whole sensing area. Practitioners

designing contact sensors based on electrical tomography need to be aware

of this.

• In general, a number of electrodes L = 16 is desirable for reaching a good

compromise between model complexity, data collection time and good re-

sults.

• The average error in touch input identification can be as small as 1 mm

when choosing the correct design parameters. However, when the sensor

and system designs are not correct, these errors can reach up to 31 mm.



Chapter 6

Conclusion

6.1 Contributions

The main thrust of this thesis is to conduct research and to develop a practi-

cal flexible contact sensor system. The research and development are detailed

throughout the thesis, and are performed through means of an interdisciplinary

approach whereby electronics, system engineering, electrical tomography, and

machine learning have been considered.

The main body of the thesis begins with Chapter 2. This chapter plays an

essential role in motivating our work, and points out the drawbacks of existing

flexible tactile sensor systems. We find that these are often associated with high

costs; present low accuracy and low reliability; and can have a complex structure

which hinders their wide use and integration. In fact we find that the implemen-

tation of such sensor systems remains largely impractical. Also, in this chapter we

identify that electrical tomographic techniques present advantages when consid-

ering such sensors. This is mainly due to the fact that electrical tomography is an

imaging technique where the conductivity distribution of the body under study

is reconstructed from measurements taken at electrodes placed at the boundary.

This is important since it allows for eliminating the presence of wires from within

the active sensing area, which enables the sensor to be easily conformable to

different surfaces, without potentially losing their functionality. However, elec-

trical tomography imaging techniques are considered ill-posed non linear inverse

problems, and are very sensitive to small changes in potential at the boundary

measurements. The general approach to compensate for such drawbacks is to

develop systems that are precise, whereby they present a good Signal to Noise

109
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Ratio (SNR), exhibit consistent measurements and present a high temporal res-

olution. Furthermore, in order to develop practical flexible contact sensors it is

also desired to develop low cost uncomplicated systems that require low power

consumption.

The approaches present in the literature do not address all the above men-

tioned requirements. In Chapter 3, we present our development of an electrical

tomography sensor system which aims at addressing all these needs. We show

our methods which include our sensor system along with all its elements: a cus-

tom Printed Circuit Board (PCB) for performing adjustable current injection and

voltages measurements; data acquisition and multiplexing; and the transducer el-

ement. Moreover, our image reconstruction and data processing approach, along

with a simulation study are presented. Experimental results are provided with a

discussion about system performance. We conclude that our system allows for the

implementation of a uncomplicated hardware which reduces power consumption.

It also provides consistent measurements, and image reconstruction frame rate

that is adequate for dynamic scenarios which can be found in real time tactile

applications.

Chapter 4 is dedicated to improve the low spatial resolution of electrical to-

mography sensors. It is shown through the literature that the spatial resolution

is affected by the choice of current injection and voltage measurement protocols.

However, the relationship between the performance of a protocol and the Re-

gion Of Interest (ROI) is never examined. Therefore, with a particular focus on

electrical tomography-based fabric sensors, in this chapter we show that proto-

cols respond differently to different positions of the ROI, consequently affecting

the overall performance of the tomography-based sensor system. We introduce

a novel type of protocol, and along with two other commonly used protocols,

we conduct a comparative analysis on their performance with regards to differ-

ent ROI locations. The response of the protocols is evaluated using performance

metrics that are obtained from data generated using i) a benchmark simulation

software, and ii) our sensor system which is presented in Chapter 3. The findings

of this chapter confirm that choosing the correct protocol can improve the per-

formance of an electrical tomography system. We conclude the chapter with a

recommendation for conducting future works, where we propose to dynamically

switch between different protocols following the identification of the ROI on the

sensor.

Although traditional approaches to tomographic imaging which consider the
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usage of a system FE model are robust and well studied, they still present some

disadvantages that stand in the way when considering the applicability aspect

and wide use of flexible contact sensors. In Chapter 5, we consider a machine

learning approach for detecting the contact location over the sensor. ML has

been gaining popularity in the research community as we show in Section 2.5.2,

and is considered to be state of the art. We present our approach that uses

discriminant analysis for performing classification of different contact locations

over the sensor. We propose a data collection process that allows for robust

training of the learning algorithm. In addition, we present a detailed study on

how the system performance is dependent on: the number of training data; the

number of electrodes; the dimension of the sensor; and the distance of the touch

position from the electrodes. The sensor is then applied over different surfaces

to show and validate the efficiency of our approach for practical flexible contact

sensor systems. The main finding of this work is that this approach provides

accurate contact location identification, and increases the detection speed and

sensor versatility when compared to traditional electrical tomography techniques.

6.2 Limitations and Future Perspectives

Although we present multiple contributions to the field of flexible contact sensing

technologies, some challenges and issues remain as an open research topic. This

opens up perspectives that can be addressed in future works.

1. Further enhancements to the electrical tomography sensor system that is

presented in Chapter 3 should be considered. For example, a miniaturisa-

tion of the system, together with wireless communication could be studied

for achieving better integration in real world scenarios.

2. The sensor presented in this work aims at detecting accurate contact po-

sitions over the sensor surface. However, future works should investigate

techniques which can detect other stimuli such as contact force. This can

be done by employing transducers that exhibit changes in conductivity due

to these stimuli.

3. PPY coated fabrics are also thermos-resistive. In this particular work, tem-

perature was almost constant during the experiments, so compensation was
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not incorporated. This is necessary to be considered in practical appli-

cations where temperature compensation methods should be devised and

implemented.

4. The findings in Chapter 4 led us to propose a future extension of our work,

whereby dynamic protocol selection can be investigated. However, other

protocol configurations can be studied, along with automatic techniques

for detecting multiple inputs. Also, sensor fusion approaches should be

considered.

5. Chapter 5 proposes a classification learner that discriminates between dif-

ferent contact positions over the sensor. This work can be further improved

by integrating the capability to absolute positioning, and the detection of

multiple inputs. This can be achieved using regression techniques.

6. Algorithms for mapping the tactile sensory data into artificial somatosen-

sory representations should be investigated in future works. This step can

be crucial for the effective application and utilisation of tactile information

by the host system.

6.3 Closing Remarks

We strongly believe that there will be a need for integrating our work within a

tactile sensing framework, whereby sensor fusion techniques can provide different

types of information. It is also foreseeable that Artificial Intelligence will be the

main driver for the next generation of research, and will contribute to develop-

ing a system which behaves more intelligently and can improve its knowledge of

the world around it. This becomes particularly important in light of the recent

demand for artificial systems which are capable of autonomously and safely op-

erating in unstructured environments alongside humans. These systems in fact

do not only need to behave intelligently, but also seamlessly co-exist, cooperate

and communicate with humans.
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