8,241 research outputs found

    Danger is My Middle Name: Experimenting with SSL Vulnerabilities in Android Apps

    Get PDF
    This paper presents a measurement study of information leakage and SSL vulnerabilities in popular Android apps. We perform static and dynamic analysis on 100 apps, downloaded at least 10M times, that request full network access. Our experiments show that, although prior work has drawn a lot of attention to SSL implementations on mobile platforms, several popular apps (32/100) accept all certificates and all hostnames, and four actually transmit sensitive data unencrypted. We set up an experimental testbed simulating man-in-the-middle attacks and find that many apps (up to 91% when the adversary has a certificate installed on the victim's device) are vulnerable, allowing the attacker to access sensitive information, including credentials, files, personal details, and credit card numbers. Finally, we provide a few recommendations to app developers and highlight several open research problems.Comment: A preliminary version of this paper appears in the Proceedings of ACM WiSec 2015. This is the full versio

    User Review-Based Change File Localization for Mobile Applications

    Get PDF
    In the current mobile app development, novel and emerging DevOps practices (e.g., Continuous Delivery, Integration, and user feedback analysis) and tools are becoming more widespread. For instance, the integration of user feedback (provided in the form of user reviews) in the software release cycle represents a valuable asset for the maintenance and evolution of mobile apps. To fully make use of these assets, it is highly desirable for developers to establish semantic links between the user reviews and the software artefacts to be changed (e.g., source code and documentation), and thus to localize the potential files to change for addressing the user feedback. In this paper, we propose RISING (Review Integration via claSsification, clusterIng, and linkiNG), an automated approach to support the continuous integration of user feedback via classification, clustering, and linking of user reviews. RISING leverages domain-specific constraint information and semi-supervised learning to group user reviews into multiple fine-grained clusters concerning similar users' requests. Then, by combining the textual information from both commit messages and source code, it automatically localizes potential change files to accommodate the users' requests. Our empirical studies demonstrate that the proposed approach outperforms the state-of-the-art baseline work in terms of clustering and localization accuracy, and thus produces more reliable results.Comment: 15 pages, 3 figures, 8 table

    A make/buy/reuse feature development framework for product line evolution

    Get PDF

    Stack Overflow: A Code Laundering Platform?

    Full text link
    Developers use Question and Answer (Q&A) websites to exchange knowledge and expertise. Stack Overflow is a popular Q&A website where developers discuss coding problems and share code examples. Although all Stack Overflow posts are free to access, code examples on Stack Overflow are governed by the Creative Commons Attribute-ShareAlike 3.0 Unported license that developers should obey when reusing code from Stack Overflow or posting code to Stack Overflow. In this paper, we conduct a case study with 399 Android apps, to investigate whether developers respect license terms when reusing code from Stack Overflow posts (and the other way around). We found 232 code snippets in 62 Android apps from our dataset that were potentially reused from Stack Overflow, and 1,226 Stack Overflow posts containing code examples that are clones of code released in 68 Android apps, suggesting that developers may have copied the code of these apps to answer Stack Overflow questions. We investigated the licenses of these pieces of code and observed 1,279 cases of potential license violations (related to code posting to Stack overflow or code reuse from Stack overflow). This paper aims to raise the awareness of the software engineering community about potential unethical code reuse activities taking place on Q&A websites like Stack Overflow.Comment: In proceedings of the 24th IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER

    Aspect of Code Cloning Towards Software Bug and Imminent Maintenance: A Perspective on Open-source and Industrial Mobile Applications

    Get PDF
    As a part of the digital era of microtechnology, mobile application (app) development is evolving with lightning speed to enrich our lives and bring new challenges and risks. In particular, software bugs and failures cost trillions of dollars every year, including fatalities such as a software bug in a self-driving car that resulted in a pedestrian fatality in March 2018 and the recent Boeing-737 Max tragedies that resulted in hundreds of deaths. Software clones (duplicated fragments of code) are also found to be one of the crucial factors for having bugs or failures in software systems. There have been many significant studies on software clones and their relationships to software bugs for desktop-based applications. Unfortunately, while mobile apps have become an integral part of today’s era, there is a marked lack of such studies for mobile apps. In order to explore this important aspect, in this thesis, first, we studied the characteristics of software bugs in the context of mobile apps, which might not be prevalent for desktop-based apps such as energy-related (battery drain while using apps) and compatibility-related (different behaviors of same app in different devices) bugs/issues. Using Support Vector Machine (SVM), we classified about 3K mobile app bug reports of different open-source development sites into four categories: crash, energy, functionality and security bug. We then manually examined a subset of those bugs and found that over 50% of the bug-fixing code-changes occurred in clone code. There have been a number of studies with desktop-based software systems that clearly show the harmful impacts of code clones and their relationships to software bugs. Given that there is a marked lack of such studies for mobile apps, in our second study, we examined 11 open-source and industrial mobile apps written in two different languages (Java and Swift) and noticed that clone code is more bug-prone than non-clone code and that industrial mobile apps have a higher code clone ratio than open-source mobile apps. Furthermore, we correlated our study outcomes with those of existing desktop based studies and surveyed 23 mobile app developers to validate our findings. Along with validating our findings from the survey, we noticed that around 95% of the developers usually copy/paste (code cloning) code fragments from the popular Crowd-sourcing platform, Stack Overflow (SO) to their projects and that over 75% of such developers experience bugs after such activities (the code cloning from SO). Existing studies with desktop-based systems also showed that while SO is one of the most popular online platforms for code reuse (and code cloning), SO code fragments are usually toxic in terms of software maintenance perspective. Thus, in the third study of this thesis, we studied the consequences of code cloning from SO in different open source and industrial mobile apps. We observed that closed-source industrial apps even reused more SO code fragments than open-source mobile apps and that SO code fragments were more change-prone (such as bug) than non-SO code fragments. We also experienced that SO code fragments were related to more bugs in industrial projects than open-source ones. Our studies show how we could efficiently and effectively manage clone related software bugs for mobile apps by utilizing the positive sides of code cloning while overcoming (or at least minimizing) the negative consequences of clone fragments
    • …
    corecore