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Abstract

As a part of the digital era of microtechnology, mobile application (app) development is evolving with

lightning speed to enrich our lives and bring new challenges and risks. In particular, software bugs and

failures cost trillions of dollars every year, including fatalities such as a software bug in a self-driving car

that resulted in a pedestrian fatality in March 2018 and the recent Boeing-737 Max tragedies that resulted

in hundreds of deaths. Software clones (duplicated fragments of code) are also found to be one of the

crucial factors for having bugs or failures in software systems. There have been many significant studies

on software clones and their relationships to software bugs for desktop-based applications. Unfortunately,

while mobile apps have become an integral part of today’s era, there is a marked lack of such studies for

mobile apps. In order to explore this important aspect, in this thesis, first, we studied the characteristics of

software bugs in the context of mobile apps, which might not be prevalent for desktop-based apps such as

energy-related (battery drain while using apps) and compatibility-related (different behaviors of same app

in different devices) bugs/issues. Using Support Vector Machine (SVM), we classified about 3K mobile app

bug reports of different open-source development sites into four categories: crash, energy, functionality and

security bug. We then manually examined a subset of those bugs and found that over 50% of the bug-fixing

code-changes occurred in clone code. There have been a number of studies with desktop-based software

systems that clearly show the harmful impacts of code clones and their relationships to software bugs. Given

that there is a marked lack of such studies for mobile apps, in our second study, we examined 11 open-source

and industrial mobile apps written in two different languages (Java and Swift) and noticed that clone code

is more bug-prone than non-clone code and that industrial mobile apps have a higher code clone ratio than

open-source mobile apps. Furthermore, we correlated our study outcomes with those of existing desktop-

based studies and surveyed 23 mobile app developers to validate our findings. Along with validating our

findings from the survey, we noticed that around 95% of the developers usually copy/paste (code cloning)

code fragments from the popular Crowd-sourcing platform, Stack Overflow (SO) to their projects and that

over 75% of such developers experience bugs after such activities (the code cloning from SO). Existing studies

with desktop-based systems also showed that while SO is one of the most popular online platforms for code

reuse (and code cloning), SO code fragments are usually toxic in terms of software maintenance perspective.

Thus, in the third study of this thesis, we studied the consequences of code cloning from SO in different open-

source and industrial mobile apps. We observed that closed-source industrial apps even reused more SO code

fragments than open-source mobile apps and that SO code fragments were more change-prone (such as bug)

than non-SO code fragments. We also experienced that SO code fragments were related to more bugs in

industrial projects than open-source ones. Our studies show how we could efficiently and effectively manage

clone related software bugs for mobile apps by utilizing the positive sides of code cloning while overcoming

(or at least minimizing) the negative consequences of clone fragments.
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1 Introduction

This chapter provides the motivation and a short introduction to the thesis. Research problems are

discussed in Section 1.1 along with thesis motivation. Section 1.2 presents our contributions to address the

research inadequacy. This thesis prepares the possible publications for future submission, which are shown

in Section 1.3. Finally, Section 1.4 exhibits an outline of the remaining chapters of this thesis.

1.1 Motivation and Research Problem

In recent years, mobile applications (apps) provide consumer-oriented solutions that convey highly designated

functionalities and customized experiences with the assistance of artificial intelligence. The popularity of

mobile apps is rising day by day with advanced features such as social integration, secure payment, cross-

platform coverage, augmented reality integration, managing positioning information and so on. These not

only enrich our lives but also bring new risks and challenges. In particular, software bugs and crashes cost

trillions of dollars every year, including fatalities such as a software bug in a self-driving car that resulted in

a pedestrian fatality1 in March 2018 and the recent Boeing-737 Max tragedies2 that resulted in hundreds of

deaths. Additionally, several catastrophic incidents in software-control medical arrangements, Marine aircraft

and missile systems that caused severe injuries and deaths during the last decades [31, 193, 198]. In 2017, 314

commercial organizations and over 3.7 billion people were affected by 606 software bugs which cost around $1.7

trillion3. In addition, during 2009-2018, a software bug caused scheduling errors for mammography tests of

elderly British women. As a result, half a million women missed their tests, leading to hundreds of premature

deaths4. Furthermore, in 1985, four Canadian cancer patients lost their lives, and two more were having

severe injuries because of fatal software bugs in the Therac-25 radiation therapy system5, which happened

after successfully performing 20,000 irradiations on the region’s cancer patients. All these catastrophic

incidents and unfortunate tragedies illustrate the severe consequences of software bugs and malfunctions. So

who is/are really responsible for these software-induced catastrophes is a great question to ask. The answer

might significantly indicate the faults in development strategies, the inadequacy to report potential severe

software bugs during testing phases and the lack of diligence in triaging newly incoming bug reports that limit

immediate actions and allocate resources. Although there have been numerous active researches to prevent

software inconsistencies and deadly consequences, further research is warranted more than ever regarding

1https://bbc.in/3B44YRH
2https://abcn.ws/3jl21WV
3https://tek.io/2FBNl2i
4https://bit.ly/2E1fYap
5https://bit.ly/2KU9IR2
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the exploration of the implementation procedures (source code level), potential bugs’ characteristics, and

probable categories to illustrate the severity.

At the stage of development and further the app’s lifetime, developers, maintainers and even end-users

report a huge amount of app inconsistencies and incompatibility issues in their development sites. Reported

issues might be software bugs, enhancement requests or compatibility suggestions. Manual analysis of bug

reports requires both time and resources, which can delay the decision-making where immediate actions are

needed. Like modern desktop-based systems, mobile apps usually follow Event-Driven Architecture [130],

bugs from one event might be harmful to another event if there are any dependencies. So, immediate decision

and resource allocation are demanded by developers and maintainers in bug management. To decide and

allocate resources, developers need to know the type, characteristics and severity of the occurred bug. Hence,

it is a must to classify bugs (i.e., bug reports) into certain groups. Initially, we focused on the characteristics

of software bugs in the context of mobile apps, which might not be prevalent for desktop-based apps. For

example, we found energy-related bugs/issues (battery drain while using apps), which is considered one of the

key concerns of user satisfaction, compatibility constraints (different behaviours of the same app in different

devices), and other functional and security issues (e.g., GPS, device configurations, authentication, and secure

network) that arise only upon user interactions. Therefore, it is promising to know the bug category so that

the developers and maintainers can respond and allocate resources on a priority basis. Therefore, we plan

to classify the mobile application bug reports into four groups i.e., security bug, energy bug, functionality

bug and app crash bug [207]. The complexities will arise when end users report these type of bugs in

different formats and styles. Different users report apps’ disharmony differently, so we need an automated

classifier to deal with. Several existing studies classified bug reports mostly in two/three categories for

example, corrective (defect fixing) and perfective (major maintenance) [32, 150], security and non-security

[68, 72, 111, 205], important, not important and request for enhancement [28, 78]. All of the related works

investigated both bug and non-bug issues of several desktop-based systems. To the best of our knowledge, no

existing studies classified only bug reports into further categories or according to mobile applications’ specific

defects.

All software systems are often profoundly intricate parts of modern technology and innovation that require

regular updates and maintenance support, which are tedious and time-consuming and should be anticipated

well ahead of time. It is a common belief that software cost is a one-time investment brought about when

the software is being developed/purchased. Unexpectedly, industry specialists estimate that more than 90%

of all expenses are regular maintenance costs that most companies do not consider in the first place [22].

Therefore, software changes are unavoidable during maintenance and apps’ evolution, but they might create

risks and inconsistencies if the changes are completed without proper awareness. While investigating the

incorporated code-change at the time of bug-fixing, we found that majority of the code-change are happened

in clone code than non-clone code. In addition, there are number of studies revealed that code clones have

been supposed to be liable for introducing additional change requirements and also software bugs.
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Frequent copy/paste or code cloning is a commonly accepted practice during software development and

further maintenance. Repetitive standard software features, technology and solutions constraints, code

understand-ability, limited development time-frame and outer business races are potential reasons for do-

ing code cloning [99, 167]. Whatever the reasons behind code cloning, it is still a controversial issue

among software research communities with both positive and negative impacts of cloning. Several stud-

ies [35, 74, 83, 95, 99, 107, 108, 109] showed positive impacts of code cloning, while there are other studies

[40, 70, 93, 95, 115, 121, 122, 136, 137, 183] that prospected harmful results of cloning. In addition, there are

numerous studies [36, 40, 75, 88, 89, 138, 144] that investigated the relationship of cloned code and bugs, but

none of the existing studies have ever investigated the actual impacts of code clones in mobile apps and not

for industrial mobile apps at all. Moreover, developers frequently copy/reuse external code elements from

different open-source software systems and crowd-sourced sites [24, 117]. Therefore, those external source

code might have impacts at the stages of software development that also need to be investigated.

Crowd-sourced developers sites such as Stack Overflow (SO) have emerged much popularity regarding

discussion of programming problems, implementation constraints, impactful solutions from domain experts,

and enormous resources of current development trends and practices. To make high-quality software in a

timely and cost-efficient manner, source code reuse, cloning the common functionalities, and designs are

widely accepted fundamental approaches [118]. Several studies [42, 161] showed that SO is very popular

among mobile developers where developers seek assistance frequently about implementation problems and

they reuse SO code snippets to mitigate their issues in a systematic manner [161, 169]. A prior work

[24] investigated 22 open-source Android applications that reused SO code snippets. They examined SO

code ratio in the mobile codebase, possible reasons for code reusing, who mainly reuse source code, and its

implication after reusing. However, their study is limited in investigating the actual behaviors of reused

SO code snippets in mobile apps development. For example, their study claimed mobile apps experienced

more bug-fixing commits after the reuse than before. Nevertheless, it is not sure that the reused code were

responsible for those bugs and that they did not consider the change-proneness of the SO code snippets

throughout all the revisions. A plethora of studies [58, 156, 178] presented the adverse effects of SO code

snippets such as code smell, toxic code fragments, source of technical debt and so on. So it is promising to

investigate the actual consequences of SO code snippets in the context of open-source mobile apps as well as

commercial projects where external code reused is nearly prohibited due to code security, attribution, and

licensing issues.

1.2 Research Contributions

Focusing on the above research limitations on mobile apps’ bug classification and impact of code cloning, we

performed the following studies. The following subsections briefly describe each of these studies.
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1.2.1 Study 1: Exploring Classification of Software Bug Reports Towards Mo-

bile Applications

First, we focused on the characteristics of software bugs in the context of mobile apps, which might not be

prevalent for desktop-based apps. In most cases, apps’ inconsistencies (i.e., bugs) arise upon interactions

between app and users depending on specific times, positions and device varieties. Therefore, it is promising

to investigate the characteristics/categories of mobile bugs so that the developers and maintainers can respond

and allocate resources accordingly. Hence, we plan to classify the mobile app bug reports into four groups,

i.e., security, energy, functionality, and app crash.

Second, we collected around 3K bug reports of several Android and iOS apps assembled from numerous

open-source software developer sites (i.e., GitHub, Google Code, Trac and F-droid). Since the collected bug

reports were not labelled, we prepared a distinctive feature set of each type of bug report and then manually

labelled them (bug reports) into four groups.

Third, we prepared a machine learning-based classifier which helps to categorize newly incoming bug

reports. Therefore, our distinctive feature set is fed into several classification algorithms (Gaussian Naive

Bayes, K-Nearest Neighbor, Decision Tree, Support Vector Machine and Random Forest) to find the best

classification model. As a result, the Support Vector Machine classifier performs the finest among the

distinctive algorithms with a promising f1 score (91%) with the compiled dataset.

After the classification, we wanted to explore the possible code-change in a particular software codebase

while fixing a bug. So, we investigated randomly selected 50 bug reports of Java projects from our collected

3K bug reports dataset. As a result, we noticed 82% of bug-fixing commits, Java code experienced code-

change while the rest 18% of code-changes appeared in HTML, XML and other non-Java files. Furthermore,

from the Java code-changes, we marked 56% of code-changes are happened in clone code (exact or similar

code fragments throughout the codebase). Moreover, there have been a number of studies with desktop-based

software systems that clearly show the harmful impacts of code clones and their relationships to software

bugs. However, given that there is a marked lack of such studies for mobile apps, the second study explored

several mobile applications to find the consequences of clone and non-clone code throughout the app lifetime

regarding bug-proneness and change-proneness. This next study also shows the diversity between mobile and

non-mobile (i.e., desktop) apps in terms of code maintenance while fixing software bugs.

1.2.2 Study 2: Analysis of Code Cloning in Open Source and Industrial Software

Development Stages: A Perspective of Mobile Applications

To mitigate the study gap regarding the impacts of code clones in mobile apps development, we analyzed

11 open-source and industrial mobile apps written in Java (Android) and Swift (iOS). We collected these

industrial projects from a famous local software company in Canada and open-source projects from GitHub.

This experiment perceived that clone code is more bug-prone than non-clone code. Furthermore, more
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clone code fragments are present in industrial apps than open-source apps, i.e., cloning is more frequent in

industrial apps. Additionally, we compared our experimental results with non-mobile (i.e., desktop) apps

and noticed that mobile apps need less maintenance in clone code than non-mobile. Overall, we investigated

and scrutinized the bug-proneness and change-proneness of clone code and later compared open-source vs

industrial and mobile vs non-mobile apps.

In the next part of this study, we surveyed 23 developers from 17 different companies across Canada

and Bangladesh concerning code clones usability, possible reasons to clone code, further effects in code

maintenance and so on. The survey strengths our study outcomes as industry people experienced similar

thoughts about clone code, software bugs, and later maintenance in their app development stages. Besides

cloning code from one file to another, developers also copy/clone code from several crowd-sourced sites, in

specific SO. Around 95% of developers usually reused code from SO during the implementation stages of apps,

and later, more than 75% of developers experienced software bugs because of the reused SO code snippets.

Lack of required resources, less experience of developers and availability of experts suggestions by asking

questions all are potential reasons for reusing SO code snippets. Whatever the reasons, developers noticed

software bugs in later revisions, and these bugs required extra maintenance. Since a single bug could be

responsible for any catastrophic incident, it is promising to understand the actual consequences of SO code

elements in mobile apps in the context of software bugs and code maintenance. However, since several studies

showed that SO contains toxic code fragments involving outdated code and licence violation issues, no study

has been conducted on how SO code elements behave adversely in real systems. Therefore, we conveyed our

next study to explore the impacts of SO code elements in the context of open-source and industrial mobile

apps.

1.2.3 Study 3: Cloning and Consequences of Stack Overflow Source Code: A

Study on Open-source and Industrial Mobile Applications

In order to understand the impact of code cloning or reusing from SO, we examined SO code snippets reused

in open-source and industrial apps in the context of code ratio, change-proneness, bug-proneness and analyzed

the properties of the buggy and non-buggy answer code snippets. Therefore, we extracted more than two

million SO answer code snippets to find the reused code fragments in the apps’ codebase. Our analysis

exhibits:

• The proportion of reused SO code is comparatively higher in industrial mobile apps than open-source.

• Open-source projects mostly reuse SO code to enhance existing features, whereas industrial projects

reuse it to add new features into the application.

• SO code fragments are significantly more change-prone than non-SO code.

• SO code snippets are responsible for bug occurrence in later revisions, which is comparatively higher

in industrial projects than open-source ones.
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Our experimental results can assist the SO, research, and mobile developer communities to strengthen us-

ability and concerns to facilitate code-quality improvement and minimize software bugs due to SO code.

Additionally, while investigating the buggy and non-buggy SO code snippets, both user reputation and an-

swer score seem inadequate to authenticate the code quality when reusing code fragments from SO. Possible

supports might consolidate from domain experts at the time of answer submission regarding code quality.

However, manual code quality analysis is strenuous and time-consuming, referring to an automatic code

review system integrated with SO.

1.3 Related Prepared Publications

The list of publications is prepared from this thesis work for submission in different conferences and journals

with collaborators.

• Md Shamimur Rahman, Abdul Awal, Chanchal K. Roy. Exploring Classification of Software Bug Re-

ports Towards Mo-bile Applications. Journal of Systems and Software (JSS), 25 pages (under review).

• Md Shamimur Rahman, Chanchal K. Roy, Kevin Schneider, James R. Cordy, Chad Jones. Analysis of

Code Cloning in Open Source and Industrial Software Development Stages: A Perspective of Mobile

Applications. Journal of Systems and Software (JSS), 36 pages (under review)

• Md Shamimur Rahman, Chanchal K. Roy, Chad Jones. Cloning and Consequences of Stack Over-

flow Source Code: A Study on Open-source and Industrial Mobile Applications. The International

Conference on Mining Software Repositories (MSR), Double column 12 pages (to be submitted)

1.4 Outline of the Thesis

There are six chapters in total, including the Introduction. In this thesis, we conducted three individual

but interconnected studies regarding software bugs and code cloning from the perspective of mobile apps.

Hereabouts, we outline the thesis as follows:

• Chapter 2 presents several background concepts and terminologies, which include code clones, types

of clones, the impact of code clones, different approaches for clone code detection, supervised and

unsupervised machine learning algorithms and several statistical testing methods.

• Chapter 3 discusses our first study on classifying mobile bug reports using machine learning algorithms.

Here, we show how manual labelling of bug reports is done and then evaluate the classifier with different

matrices.

• Chapter 4 depicts the overall clone analyses on several open-source and industrial mobile apps. Here,

we reveal that clone code is more bug-prone than non-clone and make comparison between mobile vs

non-mobile and open-source vs industrial apps.
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• Chapter 5 illustrates the study result of SO code snippets reused in open-source and industrial mobile

applications. In this study, we experienced that SO code are more change-prone than non-SO code

elements and therefore, need special review before cloning SO code.

• Chapter 6 concludes the thesis with the direction of significant future works.
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2 Fundamentals and Terminologies

In this chapter, we would like to provide a brief idea of our background studies, fundamentals and different

technical terminologies for making the thesis more understandable. Section 2.1 refers the idea of code cloning,

different types of code clones with appropriate examples and impact of code clones in software communities.

Section 2.2 describes the techniques and approaches of detecting code clones from software codebase. A

number of machine learning algorithms that we used in our thesis study are discussed in Section 2.4. In

Section 2.5, we reference some methods of statistical significance testing and finally Section 2.6 concludes

this chapter.

2.1 Code Clone

In a software code-base system, code clone happens if multiple code fragments are exactly or nearly similar

to each other. During the evolution of software system, frequent copy/paste activities which are performed

by the developers causes code clones. A pair of two code snippets that are the same or similar to each other

is called a code clone pair or simply clone pair. A group of similar clone pair form a clone class hence called

clone cluster. There might be several reasons for code clones such as developers’ behaviour like laziness and

tendency to repeat common solutions, technology limitations [43, 152] (e.g., lack of reusing mechanism in

programming languages), code evolvability and code understandability [135]. Cloning code might be done

from same software system or other software systems (it is called cross clone) and different open source

development site (i.e., SO, GitHub). Whatever the sources and possible reasons of code cloning, it is a

matter of great concern at the stage of software evolution and maintenance. We briefly describe the clone

types, detection techniques and impacts of code cloning in the following subsections.

2.1.1 Types of Code Clones

Based on the existing studies and literatures, there are mainly four types of code clones. These are defined

as follows:

Type 1 Clone: If two clone fragments are exactly similar or identical to each other where the only

difference is comments and/or code formation (ex., blank space, newline etc). An example of three Type 1

clone fragments is shown in Figure 2.11

1https://harvest.usask.ca/handle/10388/ETD-2013-01-911
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Figure 2.1: Example of Type 1 clone code (adapted from [134]).

Type 2 Clone: Type 2 clone fragments are syntactically similar but changed in identifier names and

data types. Figure 2.21 depicts Type 2 clone fragments where code fragments are different in function and

identifier naming.

Type 3 Clone: Type 3 clones are created because of additions and deletions of lines in code fragments.

If one or multiple lines of code is/are added or deleted from Type 1 and Type 2 clones, Type 3 clones are

formed. In Figure 2.31, these code fragments are considered as Type 3 clone.

Figure 2.2: Example of Type 2 clone code (adapted from [134]).

Figure 2.3: Example of Type 3 clone code (adapted from [134]).

Type 4 Clone: In general, Type 4 clone fragments perform identical task but with different coding

convention. It denotes that Type 4 clones are semantically similar but not in syntax (i.e., one problem

statement and it can be solved by different implementations). Figure 2.41 shows two different method (using

loop and recursion) to solve same problem.

2.1.2 Impacts of Code Clones

Whatever the motives and sources of clones, software developers often copy and paste code in their project

codebase both in open-source and industrial sectors. Existing researches show that the percentage of code
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Figure 2.4: Example of Type 4 clone code (adapted from [134]).

clones may vary from 5% to 23% in both development environment (open-source and industrial) [44, 92, 98,

110, 116, 128] where another study [60] shows that it can be up to 50% of the entire software codebase.

A plethora of studies and experiments were conducted on exploring the consequences of code cloning in

software development and maintenance. While several studies [35, 74, 83, 95, 99, 107, 108, 109] showed the

positive effects of code cloning, there are other studies [40, 70, 93, 95, 115, 121, 122, 136, 137, 183] that

prospected negative results of cloning. In addition, there are numerous studies [36, 40, 75, 88, 89, 138, 144]

that investigated the relationship of cloned code and bugs. In this thesis, we explore the relevance of code

clone and software bug in the perspective of mobile apps. If a code fragment contains bug and then it

is copied in other files or other projects without knowing the bug, it must increase the maintenance cost

during the system evolvement. On the other hand, if one clone fragment is modified, the same modification

need to be done to other clone fragments of same clone class to secure consistency. If the modifications are

not propagated properly because of developer unwariness or other possible reasons, software system might

collapse and require huge cost to recover it.

In this thesis study, we also analyse code clone in multiple mobile apps and discover the level of required

post maintenance and bug-proneness of clone code through system development lifetime. We got negative

consequences of code cloning and also clone code are more bug-prone than non-clone code. We will discuss

the study in details in Chapter 4.

2.2 Clone Detection Techniques

To study the consequences of clone and process of software maintenance regarding software bugs occurred by

clone or reused code, we need to detect clone fragments from software system first so that we can handle them

properly. There are several existing clone detection tools including those of cross-language clone detectors

[29, 148] and also continuing research to make it more appropriate. The existing tools follow different

methodology to detect clone snippets. Here, we discuss these methodologies in the following subsections.

2.2.1 Textual-based Approach

In this way of code clone detection, the source code of software system is considered as a set of characters and

independent of programming principles and methodology. Several researches [48, 94, 113, 125, 127, 163, 196,
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204] follow this approach and these tools are also worked even where source code is not able to compile. Some

of those studies [94, 113, 125, 127, 204] even do not apply any process of source code transformation prior

to contrasting two separate code snippets. As a result, these tools do not give satisfactory result when same

syntactical structure is addressed differently in various places. To identify significant level concept clones,

Marcus and Maletic [127] applied latent semantic indexing (LSI) procedure to source text. Nonetheless, they

considered just comments and identifiers ignoring the whole source code. On the contrary, NiCad [163] is a

hybrid clone detection tool that use tree-based structural analysis based on lightweight parsing and text based

comparison to implement pretty-printing, code normalization, source code transformation and filtering. That

properties of NiCad take out the downsides of the past textual approaches. In addition, a cloud based code

clone analysis tool named Clone Swarm [39] internally uses NiCad to help the outside community of software

clones. Besides, NiCad+ [62] provides the faster version of previous NiCad [163] which performs better in

large scale clone detection without effecting its recall and precision. Another variant of NiCad is SimCad [197]

that uses a similarity preserving data hashing technique, Simhash for scalable detection of near-miss clones.

CloneWorks [187] also evolves from NiCad which is designed to detect both exact and near-miss clones from

large repositories even using standard hardware. CloneWorks uses our fast and scalable partitioned partial

indexes approach, which can handle any input size on an average workstation using input partitioning.

2.2.2 Lexical-based Approach

According to lexical approach, source code is considered as a set of tokens. This approach mainly suitable for

code fragments who have small difference such as identifier renaming. Dup [37], CCFinder ][97], iClones [81],

SourcererCC [175] are some examples of token-based clone detection approach. Similar approach LVMapper

[206] converts the token into sequence and apply alignment approach of bioinformatics to find two similar

sequence with more difference. This method inspired by the idea of the seedand-extend method in bioinfor-

matics. SAGA [114] is another efficient and large scale clone detection technique designed with sophisticated

GPU optimization where source code is converted into suffix-array after tokenization. For detecting large-

gap clone, a token based CCAligner [199] tool design a novel e-mismatch index and asymmetric similarity

coefficient for similarity measurement.

2.2.3 Tree-based Approach

In tree-based approaches [44, 45, 50, 61, 92, 104, 105, 112, 114, 191], first source code is converted into

parse tree or abstract syntax tree (AST) and then detect clones of similar sub-trees using different matching

algorithm of tree data structure. It needs to traverse trees while making comparison that causes higher time

complexity than text or toked based approach. Another study CLCDSA [148] uses syntactical features and

API documentations as AST and then apply deep learning techniques to find cross language code clones.
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2.2.4 Graph-based Approach

In graph-based clone detection approaches [63, 80, 82, 109, 216], a program dependency graph (PDG) is

generated from software source code. These methods are aimed for very simple modifications for example

reordering of lines. Source code syntactically need to be correct and these approaches has programming

language dependencies. Like tree-based approaches, it has also high time complexity.

2.2.5 Metrics-based Approach

The metrics-based clone detection tools [53, 67, 128, 177] use several metrics such as names, layouts, expression

and control flow of functions. Poster [185] uses a simple Jaccard-based clone similarity metric which make

the tool fast, scalable and user guided clone detection. Metrics-based detection approaches have also been

used to find clone in webpage or web documents [46, 57].

2.2.6 Learning-based Approach

Several clone detection method [84, 91, 100, 148, 201, 210, 211] use different machine learning and deep

learning techniques for example Support Vector Machine, Neural Network, Weighted Recursive Autoencoders

(RAE). Authors [30, 173, 179, 180] also use learning algorithm, information retrieval and software metrics to

find semantic clones (i.e., Type 4) where most tools work well up to Type 3.

The concept of clone detection is not restricted to software source code. It has also influenced on clone

detection in binary executable [170], Bytecode in Java [101, 102, 176], assembly language instructions [54, 55],

software requirement specification [59, 119] and many more fields.

2.3 Code Stability

The concept of Stability [83, 108, 109, 123] introduces to evaluate the change-proneness of a software system.

In general, the stability of a software codebase refers to the amount of maintenance needed to amplify code

elements during the software evolution. The code with low stability needs more maintenance and is change-

prone than the code with high stability. Existing researches introduced this term to quantify the stability

between clone and non-clone code. There are several matrices to measure the stability in different viewpoints,

which are summarised in two broad categories.

2.3.1 Stability in respect to code-changes

According to studies [69, 83, 108, 123], stability in terms of code-changes between clone and non-clone code

is calculated in two ways:

1. Determine the rate of lines of code added, modified, and deleted from codebase throughout all the

revisions of a software system. The higher code-change rate indicates lower stability (or high instability)

[69, 108, 123].
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2. Determine the modification frequency, i.e., how many times or operations added, modified, and deleted

code from the codebase. The higher the modification frequency of a code region, the less stable it is

[83].

2.3.2 Stability in respect of code-age

The approaches [109, 136] calculate the average changed dates of code of a software system. The older the

average changed date, the more stable it is. The following example shows how to calculate average changed

date [136].

If we consider a codebase of multiple lines of code and five lines of that codebase are changed at different

times, creating separate five commits or revision dates 5-Jan-2018, 8-Jan-2018, 15-Jan-2018, 22-Jan-2018,

and 29-Jan-2018, respectively. Then, the average date is calculated by the average day differences from the

older commit date to all other dates, i.e., the day differences between 5-Jan-2018 and 8-Jan-2018, 5-Jan-2018,

and 15-Jan-2018, and so on. So, the average day difference is (3+10+17+24)/4 = 13.5, and thus the average

date is 13.5 days later to 5-Jan-2018, which is 19-Jan-2018.

In this thesis work, we use two approaches for code clone detection: NiCad [163] and CCFinderX [96].

Using NiCad, we detect clone code from several open-source and industrial mobile apps of two programming

languages (Java and Swift) to find the consequences of clone code in terms of software maintenance and

bug-fixing. NiCad can detect three types of clone (i.e. Type 1, Type 2 and Type 3) separately. It is much

more easy to install and use NiCad as well as detect iOS (Swift) apps’ clone code without further setup

requirements. For another work, we need to find cross clones between SO answers’ code fragments and

changed code fragments of each revision of mobile apps. We can not use NiCad this situation because NiCad

works as a full parser and the source code must compilable where SO code fragments might have syntax

errors or not complete code. So, we use CCFinderX which is a widely used token-based clone detector and

can work even source code contains programming errors.

2.4 Machine Learning Algorithms

Machine learning [10] is a concept that focuses on the systematic study of algorithms and statistical models

to get the best accuracy to intimate the way human beings learn. It takes control of greater part of today’s

Computer Science and Artificial Intelligence (AI) and emerging component of data science. The learning is

classified into three main domains i.e., Supervised, Unsupervised and Semi-supervised and they handle both

labeled and unlabeled data to train their learning process. Supervised learning trains its algorithm by using

labeled data and perform cross validation to classify data or predict accurate outcome with several trial and

error (also called Reinforcement learning). Unlabeled dataset are handle by Unsupervised learning when

algorithm discover hidden patterns to categorise them. Where semi-supervised learning has less labeled data

which help to extract the feature from unlabeled data. Here, we include a brief discussion of some supervised

and unsupervised algorithms used in this thesis study.
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2.4.1 Näıve Bayes Classifier (NB)

Näıve Bayes is a simple probabilistic classifier but powerful statistical technique that works on Bayes Theorem

[8, 159] with an assumption of independence among predictors. It does consider the conditional independence

property exists among the features in a class. It helps to simplify the calculation, and that’s why it is called

Näıve. From Bayes theorem we know that:

P (Y |X) =
P (X|Y )P (Y )

P (X)
(2.1)

Here, X is the evidence variable (represents the features) and Y is the target variable. From Bayes

theorem, we can calculate the probability of Y , given that X is already known. X is defined as: X =

x1, x2, ..., xn

Here, X = x1, x2, ..., xn represents the features of a training instance. If we substitute the value of X into

(2.1) and expand the equation using product rule, we get:

P (y|x1, x2, ..., xn) =
P (x1|y)P (x2|y)...P (xn|y)

P (x1)P (x1)...P (xn)
(2.2)

Now, we can calculate the values for each of numerator by looking at the dataset using maximum likelihood

approach and substitute them into (2.2). The denominator is fixed for all entries in dataset. Hence, the

denominator can be removed as considering it constant, and we get the following equation:

P (y|x1, x2, ..., xn) ∝ P (y)

n∏
i=n

P (xi|y) (2.3)

Equation (2.3) will give us probability values for all classes. Given the predictors, now we can find the

class label using the following equation:

y = argmaxyP (y)

n∏
i=n

P (xi|y) (2.4)

Gaussian Naive Bayes (GNB)

(GNB) [8] is a case of Naive Bayes supports real-valued attributes with an absolute assumption of having a

Gaussian or normal distribution given the class label i.e., dealing with continuous data. For example, suppose

that ith attribute is continuous and its mean and variance are represented by µy,i and σ2
y,i, respectively, given

the class label y. Hence, the probability of observing the value xi in ith attribute given the class label y, is

computed by (2.5), that is also called as normal distribution.

P (xi|y) =
1√

2πσ2
y,i

exp
(−

(xi−µy,i)
2

2σ2
y,i

)
(2.5)
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2.4.2 K-Nearest Neighbors Classifier (KNN)

K-Nearest Neighbors (KNN) [212, 213] is a simple, non-parametric scalable algorithms in machine learning

where, K denotes the number of nearest neighbors. Suppose x is an instance for which we will predict the

class label. First, we find the k closest instances to x. After that, we count total numbers for each separate

class from closest instances. Then we apply majority voting technique to find the class with the highest

vote and it will be the final prediction of the model. Figure 2.52 illustrates this concept. For finding closest

similar points, we normally calculate the distance between instances using distance measure techniques such

as Euclidean distance, Hamming distance, Manhattan distance and Minkowski distance.

Figure 2.5: K-Nearest Neighbors approach on classification

The value of K is considered as the main factor for classification. Research [212] has shown that no fixed

value of K is perfect for all types of datasets. We must carefully select the value of K, so that the accuracy

will be maximum. There are several ways to select the appropriate value of K. A small value of K means

that noise will have a higher influence on the result and a large value make it computationally expensive.

Cross-validation [90] is one of the technique where divide the entire dataset into training set and test set,

then apply KNN for different k value into training set and cross validate it with test set and observe the

performance. Another approach called Elbow method [7] is a heuristic used in determining the number of

clusters in a data set. According to this method, we need plot a graph with distortion and value of K starting

from 1 to
√
n, where n is the total count of the data points and take the elbow value for the optimal number

of clusters. In Figure 2.63, clusters number is either 2 or 3.

2https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn
3https://pythonprogramminglanguage.com/kmeans-elbow-method/
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Figure 2.6: Elbow method plotting for optimal value of K.

2.4.3 Decision Tree (DT) Classifier

Decision Tree [171] consists of two types of nodes: internal node and leaf node. Internal node represents the

feature or attribute and leaf node denotes the decision of classification. The edge between nodes represents

the decision logic. DT algorithm works as follows:

1. Select the best feature based on some feature selection techniques to split the instances

2. Make that feature as a node and break the dataset into smaller sets

3. Repeat process 1 and 2 recursively until all the instances belong to the same feature value or all the

attributes are used for splitting the dataset or all the instances are used to make a decision.

It is common to use the concept of entropy in Information Theory [52] to find out the best feature. Entropy

denotes the impurity in a group of instances. We need to calculate the information gain to select the best

feature. For this, we measure the entropy before the split and after the split. By the difference of previous

two values, we calculate information gain and it is the decreased value in entropy. We calculate information

gain for all the features accordingly and the feature with the most information gain score will be selected to

split the dataset. Sometimes Gain Ratio and Gini index are also used to select the best feature.

2.4.4 Random Forest (RF) Classifier

Random Forest [117] classifier creates multiple individual decision trees using ensemble learning methods and

merges them together to get a better and stable prediction. From individual trees in random forest, we get

a class prediction and majority voting technique is used to find the the ultimate prediction of the model.

Figure 2.74 illustrates this concept. This classification algorithm uses two key concepts which are as follows.

1. Make trees using random sampling of training instances and

4https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d
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2. Randomly selected feature’s subset is used for splitting nodes.

At the root of each tree, it first splits the data points in such a way that the class differences in each part of

data becomes as small as possible. It repeats this process until the depth of tree reaches to it is maximum

length of the leaf nodes contain data points of a single class. Here is the procedure5 of Random Forest

classifier:

1. Create multiple decision trees using random sampling of training data.

2. Predict the class label for the test features using each randomly created decision tree

3. From predicted class labels count the votes for each class

4. The class with the majority votes will be considered as the final prediction of the model.

Figure 2.7: Random Forest Classifier

2.4.5 Support Vector Machine (SVM)

Support Vector Machine classifier [184] takes data points as input and gives output a line (or hyper-plane)

that separates classes if possible. There are many possible hyper-plane could be drawn (in Figure 2.86) to

classify data points into two separate classes. During each step of the classification process, SVM tries to

find a hyper-plane that has maximum margin, i.e., the distance between data points of two classes will be

5https://medium.com/@Synced/how-random-forest-algorithm-works-in-machine-learning-3c0fe15b6674
6https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
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maximum. Hyper-planes are considered as decision boundaries that help to classify data points. The data

points which goes through the margin line of each class are known as support vectors showing in Figure 2.96,

and the original classification line lies between the middle of both margins.

For multi-class classification problem, SVM will classify data points into class− 1 and other n− 1 classes

will be in a single class. After that, it will take those n − 1 classes and find the second class from it while

keeping n− 2 classes in the same class. This process will continue until SVM completes the classification of

all the data points into a class. The controlling parameter C tries to keep balance between smooth decision

boundary and correctly classification of training examples. Large value of C will classify more data points

correctly and vice versa. The controlling parameter Gamma denotes how a single data point (considered as

outlier) affects on the classification accuracy. High value of Gamma ignores data points that are considered

as outlier in decision boundary and vice versa.

Figure 2.8: Support Vector Machine Classifier

Figure 2.9: Support Vectors in SVM

2.4.6 K-means clustering Algorithm

Clustering is the way of splitting data points into many groups where similar data points belong to the same

group and data points of one group is dissimilar to the data points of other groups. K -means clustering

[9, 76] is one of the most common and simplest unsupervised algorithm in machine learning. It is normally

used when we have data without predefined classes or categories, and we want to classify data points into

some clusters where K denotes the number of clusters. K -means is an iterative algorithm that tries to keep
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the inter-group data points as similar as possible while also making the groups as dissimilar as possible. It

places data points into a cluster in such a way that the sum of the squared distance between data points and

the centroid of the cluster will be minimum. Here, centroid is that point which holds the arithmetic mean of

all the data points of a cluster.

Given a set of observation (X1, X2, ...., Xn) where each observation is a d -dimensional real vector, k -means

clustering aims to partition the n observations into k(≥n) sets S = {S1, S2, ..., Sk} so as to minimize the

within-cluster sum of squares (i.e., variance). The following (2.6) finds the objectives of k -means where µi is

the mean points in Si.

argmin
S

k∑
i=1

∑
xεSi

||x− µi||2 = argmin
S

k∑
i=1

|Si|V arSi (2.6)

Like KNN (in Section 2.4.2), too choose the right value of K mostly Elbow method is used. From the

sum of square distance between data points and their assigned cluster’s centroids we get a curve. We pick

K at the point where sum of square distance starts to flatten out and forming an elbow. The Figure 2.6

illustrates this concept.

2.5 Statistical Significance Tests

We use several non-parametric statistical tests to validate our study findings. The tests are briefly discussed

in the following subsections.

2.5.1 Mann Whitney U Test

Mann Whitney U test (also called Wilcoxon Rank Sum Test or Mann Whitney Wilcoxon Test) is a popular

non-parametric test to compare results between two independent samples and also can tell whether the

samples are likely to derive from the same distribution [11]. It compares two group of data (either ordinal or

continuous) that allow statistical inference without making the assumptions that the sample has been taken

from a particular distribution (i.e., normal).

Initially, the data points of each group are sorted into ascending order and then each data point must

get a rank value. The smallest data points of both group receive a rank value of 1.0, the second smallest are

ranked with 2.0 and this continues until all data points are properly ranked. If there are multiple data points

of same value are assigned the median rank of the entire identically sized group. For example, if the smallest

data value appear twice, then both of them receive the rank of 1.5. It implies that the rank of 1.0 and 2.0

has been utilized and that the following highest data point has a rank value of 3.0. Again, if the least data

point value seems three times, then each value is ranked of 2.0 and the next greatest data has been ranked

as 4.0 and so on. Finally the groups are being compared by the sum of all ranks of each group. According

to Mann-Whitney, a test statistic U is calculated by this following equation 2.7.

19



U = n1n2 +
n2(n2 + 1)

2
−

n2∑
i=n1+1

Ri (2.7)

Where n1 and n2 are sample size of two groups and Ri is the rank of each sample data points. We also

measure the Critical U value with a specific level of significance and compare with statistics U to reject/accept

null hypothesis. The significance level (a.k.a. alpha or α) is a strength measurement factor of a particular

evidence that surely available in data samples before reject/accept the null hypothesis [21]. If we reject the

null hypothesis , it concludes that the impact is statically significant. So, α value is the likelihood of rejecting

the null hypothesis when it is valid or true. For instance, we consider 0.05 as significance level which indicates

a 5% risk of inferring that a difference exists where there is no real difference. Before the rejection of null

hypothesis in lower significance levels, we require strong grounded proof. In this thesis, we use 5% level of

significance (i.e., α = 0.05) and find the Critical U value from statistical table [6] where the sample size of

two groups are the row and column value of corresponding table.

2.5.2 Willcoxon Signed Rank Test

Like Mann Whiteney U test, Willcoxon Signed Rank test is a non-parametric test which is designed to find

difference between two treatments or conditions where there is co-relation between the samples [19]. It can

differentiate conditions for same size of samples (Where Mann Whitney U test also works different sized

data) and tells how different two sets are from one another to establish statistical significance between the

two distributions. We also use 5% level of significance and find the Critical U value from statistical table [6].

2.5.3 p-value

A p-value is the probability which would obtain the impact observed in samples, if the null hypothesis is

valid for the populations [18]. p-values are determined based on sample data points and the assumption

of the validity of null hypothesis. Lower p-values show more prominent proof against the null hypothesis.

Using significance levels at the time of hypothesis testing, we also calculate p-value to compare with selected

significance level. If the p-value is less than the significance level then we can reject the null hypothesis and

summarised that the samples are statistically significant.

2.5.4 One-tailed and Two-tailed Test

In terms of test statistic, one-tailed and two-tailed test are another effective ways of testing statistical sig-

nificance of a parameter construed from a sample [15]. If the test statistic is symmetrically distributed, we

can pick one of three alternatives hypotheses. Two of these direct to one-tailed tests and one relates to a

two-tailed test. Nonetheless, the p-value introduced is (almost always) for a two-tailed test [16]. If we use

5% significance level (i.e., α = 0.05), a one-tailed test distributes all of α in the one direction of interest

to test the statistical significance where a two-tailed test allots half of α in one direction and rest half of α
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in other direction. So, in two-tailed test, we are testing the possibility of the relationship in both direction

where one-tailed test completely disregards the possibility of one direction.

2.5.5 Cohen’s kappa Coefficient (k)

Cohen’s kappa coefficient (k) [4] is a statistical measurement used to evaluate the agreement (also called

inter-rater reliability) between two raters. Simply, it provides a quantitative measure of reliability for two

raters’ agreement precisely on the same thing. The value of k varies −1 to +1. A score of k = 0 implies a

random agreement between raters, whereas k = 1 means perfect or complete agreement. Moreover, a score

of k = −1 or less than 0 denotes less agreement than random chance. The meaning of k is formulated by the

following equation 2.8.

k =
p0 − pe
1− pe

= 1− 1− p0
1− pe

(2.8)

Where p0 = the relative observed agreement amount raters and pe = the hypothetical probability of

chance agreement. Cohen’s kappa coefficient is also used in classification tasks and imbalanced class prob-

lems [5].

In this thesis study, we use Mann Whitney U test for testing statistical significance between two group of

paired data (sample size are same) and Willcoxon Signed Rank test for different sample size groups. Both

cases, we use 5% level of significance and two-tailed test and hence, we calculate p-value and statistic U and

find the Critical U according to significance level value from statistical chart [6]. If the calculated p-value is

less than 0.05 and statistics U is less then Critical U , then we can say that the data groups are not being

taken from same distribution and they are statistically significant.

2.6 Conclusion

In this chapter, we introduce several fundamental concepts and terminologies that would help to understand

and follow the rest of the thesis. We mentioned different types of code clones, impact of clone in software

maintenance and evolution and several strategies of code clone detection approaches. We also describe a

couple of machine learning algorithms (i.e., Naive Bayes, Decision tree and so on) that we use in our thesis

study. Finally, we discuss some statistical significance tests to verify our study findings. From the next

chapter, we will represent each of our study and analysis of this thesis step by step.
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3 Exploring Classification of Software Bug

Reports Towards Mobile Applications

Software bug reports are significantly used in a plethora of research areas such as bug classification, bug

prediction, bug triaging and so on. However, unlike traditional desktop-based software systems, there are

very a few studies (to the best of our knowledge) about the classification of bug reports and analysis of bug

severity from the perspective of mobile apps. This chapter explores several machine learning algorithms to

build and evaluate classifiers capable of classifying newly incoming mobile applications’ bug reports into four

classes (i.e., crash bug, energy bug, functionality bug, and security bug). Appropriate classification result

assists developers and maintainers to quickly identify and understand the newly occurred bugs and hence,

take necessary steps or allocate resources to fix them. To build classifiers, we collect 2,700 bug reports from

diverse subject systems of Android and iOS apps and label these bug reports by hand into predefined classes.

We prepare a distinctive feature set that is then fed into a number of classification algorithms (Gaussian

Näıve Bayes, K-Nearest Neighbors, Decision Tree, Support Vector Machine, and Random Forest) to find the

best classification model. Among the distinctive algorithms, the Support Vector Machine classifier performs

the best with a promising f1 score (91%) and a low error rate (4.7%) with the compiled data set.

The rest of the chapter is organized as follows. Section 3.1 has introductory discussion and motivation.

Several related works associated with this field are presented in Section 3.2. Section 3.3 contains the data

description and dataset preparation. Section 3.4 talks about experimental results and analysis that we

found. Section 3.5 presents the discussion of experimental findings and comparison with other existing

works. Section 3.6 reports the possible threads to validity and finally, Section 3.7 concludes this chapter and

proposes probable future works.

3.1 Introduction

At the end of 2020, there are more than 3.9 billion people use smartphones to explore different apps [13].

So, each day developers and maintainers are reported a humongous amount of apps’ inconsistencies and

incompatibility issues in their development sites. These issues carry bug reports, enhancement requests,

compatibility suggestions, etc. Manual analysis of bug reports requires both time and resources, which

can delay the decision-making about a bug where immediate actions are needed. As mobile apps usually

follow Event-Driven Architecture [130], the bug in one event might affect other events as well if there are
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dependencies among them. So, appropriate decisions and actions are demanded by developers and maintainers

in the context of bug management. To help developers categorize mobile apps’ bug reports based on specific

domains, we investigate Android and iOS applications’ (mobile apps) bug reports to build a prominent

classifier that helps identify and understand the bug severity.

User interaction with mobile applications plays a significant role in helping developers and maintainers

know app behaviors and development faults. As it is popular to use Event-Driven Mechanism [130] for

building mobile apps, each operation is treated as an event, and several events are connected based on

their dependencies. So, to minimize the inconsistencies, developers need necessary synchronization among

these unique events that are immensely occurred when users start using apps. In the evolution of mobile

apps, clients or users report the inconsistencies of a particular app in the development sites (for open-source

apps) such as BugZilla1 , GitHub2, Google Code3, Trac4, and F-droid5. So, the complexities are found to

categorize the reported bugs or enhancement requests because of using different formats and styles of bug

reports. While finding bug reports from different open-source sites, we experienced several issues regarding

formats and styles with multiple questions answering mechanisms, but users hardly maintained the report

structures to respond to appropriate bugs or any contradiction. As different users report apps’ disharmony

in different ways, so we need an automated classifier that helps developers and maintainers to understand

the bug types and take appropriate actions to resolve.

Unlike desktop-based software systems, mobile applications have several types of bug such as security bug,

concurrency bug, compatibility bug, energy bug, functionality bug and app crash bugs. [207], which might

not be prevalent for desktop-based apps. For example, we found energy-related bugs/issues (battery drain

while using apps), which is considered one of the key concerns of user satisfaction, compatibility constraints

(different behaviors of the same app in different devices), and other functional and security issues (e.g., GPS,

device configurations, authentication, and secure network) that arise only upon user interactions. Developers

usually have information on these types of bugs in the form of bug reports. A bug report has three main

sections: bug ID or issue ID, bug title, and bug description. We analyze the bug title and description after

some preliminary processing to classify them into predefined classes. Sometimes, difficulties arise when there

is inadequate information of a bug report, such as having only a bug title with no description or a very brief

description. To complete this task, we collect around 3K bug reports from several open source development

sites such as GitHub, Google Code, F-droid. All the bug reports can be accessed in this link.

From bug reports, we choose some meaningful words as features that are appropriate for the detection of

each class label, and we prepare a feature set using the bag-of-word approach. We discuss a brief description

of each class type and, for better understanding, also show an example of each type of bug report in Table

3.1.

1https://www.bugzilla.org/
2https://github.com/
3https://opensource.google/
4https://trac.edgewall.org/
5https://f-droid.org/
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Table 3.1: Sample bug report properties and predefined class labels of classifier.

Project Name Issue ID Title Description Class Label

Wordpress 6668

IndexOutOfBounds

Exception in

ImageSettingsDi-

alogFragment

Open image settings Tap the Width field.Input

10.Press confirm on the soft keyboard.The width

field should display ”10px” Tap on the field again

and delete the ”10px”. Notice the crash. Fatal

Exception: java.lang.IndexOutOfBoundsException:

setSpan (2 ... 2) ends beyond length 1.

Crash

K9Mail 6894
K9mail is eating lots

of battery power

K9mail is a powerful mail client, but it is too much

power hungry! I test it on several smartphones,

k9mail is consuming around 10% (the screen is con-

suming 14% on my Xperia M4 for the same period)

of my battery for a 24 hours period... In the same

time, Yahoo Mail app is consuming 2% and Gmail

less than 1%.

Energy

Osmdroid 690

Secondary tile

overlay does not

always display tiles

I’m using osmdroid 5.6.5 in my Android application.

I’m using a custom base layer, and I add a second

layer above it: Everything is working fine, but when

scrolling the map, sometimes there are some tiles not

show properly. When scrolling a little bit further,

they are loaded. Is this a known bug

Functionality

Connectbot 76
ECDSA 521 bit keys

auth always fails

Trying to authenticate the client with a 521 bit sized

ECDSA key signature always fails on the client side

(it fails to format the signature to the ssh format,

and doesn’t send anything).

Security

Crash Bug: There are a couple of reasons for app crashes like out of indexing, i.e., such as memory

management, error condition and exception handling, network management and so on. However, users’

feedback are most important in this situation because they find inconsistencies while interacting with the

apps.

Energy Bug: In the development stages, developers must think about the energy efficiency or power

consumption which is one of the most concerning parts of users’ satisfaction while using an app. Estimating

energy consumption for android apps can make the developers aware of the energy cost of each code module

in their apps.

Functionality Bug: It mainly means functional inconsistency between the expected result and the actual

result. It is the most common type of bug that occurs more frequently until the final evolution of apps. It

also includes fragmentation issues (apps are required to work perfectly on different operating system versions

and devices), the absence of necessary synchronization among distinctive events, and different behaviors in

different systems of the same apps.
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Security Bug: Many confidential and private information (for example, contacts, accounts info and so

on) is available on mobile device, creating security complexities. In addition, there are several security issues

like permission over-privileged, permission re-delegation, network attacks, ICC attacks, app clones and many

more. Any inconsistency of these issues is considered a security bug.

As the collected bug reports are unlabeled, first we apply K -means algorithm to group them into four

classes. However, because of features overlapping among bug reports, the clustering result is not much

satisfactory. In consequence, we label bug reports manually though it is a strenuous and time-consuming

task. We group the collected bug reports into security, crash, functionality and energy bug. Concurrency and

compatibility bug are also considered as part of functionality bug. Then we apply a number of supervised

classification approaches. For training and validation purposes and to lower the validation error rate [73],

we split our dataset as 70% and 30% for training and validation, respectively. The accuracy result of the

classifiers is acceptable, ranging from (88%-91%) except for Näıve Bayes, where the Support Vector Machine

(SVM) classifier has the highest accuracy.

3.2 Related Work

In software development, bug reports play a vital role in several tasks like the prediction of future bugs

[77, 181], triaging reported bugs [147, 192] and categorization of bugs into some specific types [194]. Therefore,

it is crucial to have excellent and clear descriptive bug reports for perfect alignment. There are a number of

studies related to the classification of bug reports, but a few that addressed mobile app bug reports, and no

studies had class labels more than three. Nevertheless, we consider four categories of bug reports that are

significantly relevant for mobile apps in the classification task in this work.

Antoniol et al. [32] proposed an automated classification approach. Their techniques asserted that only

textual content of bug reports is enough for classifying bugs and non-bugs reports, i.e., their classification

task had two class labels. They also addressed misclassifying bug reports, which creates severe complexities

on the bug management system. Herzing et al. [79] extended this research and said only textual content is

inadequate and unreliable because sometimes prediction result is biased. However, they [32, 79] worked with

the issues which were mixed with bugs and non-bugs but we consider only bug reports which are labeled by

the developers and maintainers.

Otoom et al. [150] constructed a classification model that could detect bug reports into two categories, i.e.,

corrective (defect fixing) and perfective (major maintenance). This method was almost similar to Antoniol

et al. [32] because they also tried to find which issues are bugs that are corrective and which are non-bug

that is perfective. However, the difference was that they tried to help maintainers quickly understand major

non-bug issues so that they (maintainers) would allocate resources to solve them (major non-bug issues)

immediately. They investigated three different open source desktop projects and used manual labeling to

categorize bug reports. They prepared a feature set and fed it into different classification algorithms (Support
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Vector Machine, Näıve Bayes and Random Trees) and achieved high average accuracy (93.1%) with the SVM

classification algorithm. Our work considers only bug reports to be categorized into different classes so

developers or maintainers can easily take necessary actions based on bug types (crash, energy, functionality,

or security).

Katerina et al. [72] built an automated classifier of software bug reports related to security and non-

security, using both supervised and unsupervised approaches. The limitation is that their dataset had a

smaller number of security-related bug reports. That is why their dataset did not provide as good results as

expected (only 25% of the data provides as good results as training on 90% of the data).

Bo Zhou et al. [214] focused specifically on the difference in bugs and bug-fixing processes between

desktop-based software and smartphone application. They analyzed 88 open source projects on desktop,

android, and iOS. Their main task was how developers and maintainers behave with the bug-fixing process

of multiple platforms, understanding the nature of bugs, similarities, and differences between desktop-based

software and smartphone application.

Gegick et al. [68] proposed an automated classifier that trained by a statistical model using text mining

on wrongly hand-labeled security bug reports. The authors used the SAS text mining tool to prepare feature

vectors, and their classifier found several security bug reports that were manually identified as non-security

bug reports. They investigated four large Cisco projects and identified that around 77% of security bug

reports were miss-classified. However, their classifier experienced a very high false-positive rate varying

from 27% to a maximum of 96%. Like this work, [68], another miss-classification research conducted by

Wright et al. [205] that identified the non-vulnerabilities bugs in the MySQL database, which were labeled

as vulnerabilities bug reports.

There are several works that researchers do to prioritize desktop software issues (bug and non-bug)

reports. Herraiz et al. [78] analyzed bug reports of Eclipse and recommended a more straightforward format

for bug reports by reducing severity levels to three levels as important, not important, and request for

enhancement based on the time taken to close the bug. They also found priority-level clusters based on the

same consideration and recommended three classes i.e., high, medium, low. Ahsan et al. [28] proposed an

automatic developer prediction system for incoming bug reports. They applied feature selection and feature

reduction on the Mozilla bug report. They found the best result in using latent semantic and SVM among

all the other machine learning methods they used. They got an accuracy of 44.4% for their classification

task. This research told maintainers just priority of issues but did not categorize in problem domains (for

example, this issue is a concern to the security of mobile apps).

Lamkanfi et al. [111] implemented text mining algorithms on bug reports of Eclipse, Mozilla, and GNOME

to automatically classify them in different severity levels. They got an average precision of 65% in Eclipse

and Mozilla and 75% in GNOME, an average recall of 75% in Eclipse and Mozilla, and 85% in GNOME.

All of the related works investigated both bug and non-bug issues of several desktop-based systems.

However, no such study classified only bug reports into further potential categories that would help predict
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appropriate resources and take immediate actions efficiently. Therefore, we analyzed mobile apps bug reports

which might not be prevalent for desktop-based apps, such as energy and compatibility related bugs/issues.

Moreover, we classified them into significant classes/categories by specific features presented in the bug report,

which assists to know the bug domains, reasons, probable consequences and that developers take immediate

actions accordingly.

3.3 Data Description and Dataset Preparation

To tag each bug report that we collect, we apply K -Means clustering approach but get an unsatisfactory

result. Hence, based on meaningful words that help to distinguish bug reports, we label manually and finally

organize a complete dataset with two thousand seven hundred rows and five columns (four features and

one class label). The dataset characterization and preparation steps are described in detail in the following

subsections.

3.3.1 Dataset Collection and Pre-processing

We collect bug-related issues from open source developer sites (Google Code, GitHub, and F-droid ) and build

our own dataset. All the information in a bug report is not necessary for the classification task. Therefore,

we must pre-process bug reports to remove punctuations, stop words, numbers, and other special symbols.

For this purpose, the bug reports are tokenized into a set of tokens. Tokenization means large texts are split

into words. For example, if we tokenize the sentence: ‘A large text is divided into a set of tokens’, we get

[‘a,’ ‘large,’ ‘text,’ ‘is,’ ‘divided,’ ‘into,’ ‘set,’ ‘of,’ ‘tokens’ ]. Before tokenization, punctuations and numbers

are removed, and also capital letters are replaced with small ones.

In the next step, we apply the technique stemming. It converts each word to its root form because our

feature set for each class contains only root form to minimize the number of feature words. For example,

“connect” is the root form of “connection,” “connecting,” “connected,” etc. We also remove the tokens whose

word length is less than three. We apply stop-word removal as the final pre-processing step. Stop words in

any language are a collection of widely used words. For instance, “the,” “is,” and “to” are qualified as stop

words in English. After stemming and removing stop words, we get the final tokenized version of each bug

report.

3.3.2 Feature Selection and Preparation of Feature Set

We scrutinize only bug titles and bug descriptions for the classification task. We consider the attribute ”title”

that plays the most important role in classifying bug reports. Usually, developers and users set the summary

of a bug report as the title, and the maintainers easily get the gist of a particular bug only read the title.

From the definition of class label and detail study, we prepare a meaningful set of words to get the prediction

of class labels which are shown in Table 3.2. We assume these keywords can distinguish bug reports and
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Table 3.2: Significant words for each class label

Class Label Word set

Crash

‘indexoutofbound’, ‘arrayindexoutofboundsexception’, ‘arithmeticexception’, ‘crash’, ‘jsonexception’,

‘runtimeexception’, ‘nullpointerexception’, ‘activitynotfoundexception’, ‘classcastexception’, ‘fatalex-

ception’, ‘eventbusexception’, ‘stringindexoutofboundsexception’, ‘numberformatexception’, ‘memo-

ryexception’, ‘outofmemory’, ‘illegalstateexception’

Energy ‘consume’, ‘energy’, ‘battery’, ‘power’, ‘utilize’, ‘drain’

Functionality

‘support’, ‘display’, ‘should’, ‘miss’, ‘wrong’, ‘differ’, ‘invalid’, ‘correct’, ‘cutoff’, ‘work’, ‘incorrect’,

‘match’, ‘delete’, ‘instead’, ‘show’, ‘able’, ‘unavailable’, ‘allow’, ‘access’, ‘upgrade’, ‘ignore’, ‘fail’,

‘add’, ‘stop’, ‘visible’, ‘active’, ‘infinite’, ‘connect’, ‘lose’, ‘use’, ‘handle’, ‘break’, ‘hide’, ‘disappear’,

‘appear’, ‘change’, ‘load’, ‘expect’, ‘create’, ‘disable’, ‘inconsistent’

Security

‘security’, ‘permission’, ‘sslexception’, ‘httpclient’, ‘phish’, ‘proxy’, ‘guaranty’, ‘clone’, ‘protect’, ‘pri-

vate’, ‘public’, ‘signin’, ‘signup’, ‘verify’, ‘password’, ‘authenticate’, ‘login’, ‘credential’, ‘autocom-

plete’, ‘admin’, ‘leak’, ‘bypass’, ‘lock’, ‘ssh’, ‘key’, ‘warn’, ‘telnet’, ‘torrent’, ‘vpn’, ‘firewall’, ‘certify’,

‘cipher’, ‘socket’

categorize them into different class labels, and words from bug titles are given more priority than description.

For example, bug report containing keywords such as authentication, connection and SSH will be classified

as security bug report. Table 3.3 shows an example of a bug report and highlighted keywords that help to

indicate the class label.

We consider the whole document, i.e., an individual bug report is our instance, and the features are words

in that bug report. After pre-processing, we get the tokenized version of that bug report with every token is

in root form and then find the words that we have enlisted for class label prediction and treat the presence or

absence of each word as a feature. We give special attention to the title of a bug report. If a keyword appears

in the title, we increase the token count ten times greater than the keyword that appears in the description

of a bug report (as we consider a bug title helps more on classification task, we tried several weights ranging

from 2 to 15 and inspect classifiers’ performance and for weight = 10, we find significant performance result

than other weights). Finally, we sum up all the token values to get a single score of each feature set, i.e.,

a single report has four different scores (crash score, energy score, functionality score and security score) to

form our 2700× 4 dataset.

3.3.3 Clustering and Manual Approach for Class Labeling

Before applying K -Means, we manually set the class label of each bug report to justify the accuracy of

the clustering approach to label distinguishing mobile bug reports. We classify 2,700 bug reports into four
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Table 3.3: The presence of word features in a bug report.

Project Name Issue ID Title Description Class Label

Zxing 748

Can’t

connect

to Tiny

SSH

Server

”Can’t connect to Tiny SSH Server On Android Side:

Error Key exchange was not finished, connection is

closed. Cannot negotiate, proposals do not match. On

Server Side: tiny SSH: C9jP74r2: info: connection

from 192.168.0.19:48492 main tiny SSH d.c:106 tiny

SSH d: C9jP74r2: fatal: unable to receive kex-message

(protocol error) main tiny SSH d.c:148 ”

Security

predefined class labels and get the manual classification result which is shown in Table 3.4. After dealing

with K -Means clustering, we see that each cluster has a mixture of different class labels. That means we can

not distinguish any cluster into a fixed class labels. Figure 3.1 shows the actual class labels with colors and

cluster elements with symbols. There are overlaps among the class labels, such as crash bug reports available

in all clusters, and other clusters behave similarly. Crash bug reports have more influence on cluster 1, which

is 947, but there are also 74 functionality bug reports and four security bug reports in that cluster. The

condition of cluster 3 is worsened than others. All the contents of clusters are showing in Table 3.5 for a

more precise understanding.

As the result of K -Means has unusual overlapping, we stick to manual labeling. Two graduate students

independently and separately investigated the collected bug reports and finally classified them into four groups

(Crash, Energy, Functionality and Security bug). We performed Cohens’ kappa coefficient [4] to evaluate

the level of agreement between the two graduate students regarding the classification task. Cohens’ kappa

coefficient (k) is a popular statistical measurement used to estimate the inter-rater reliability of agreement

between two raters, ranging between -1.0 and +1.0 where a negative value indicates poorer than chance

agreement and positive means better than chance agreement (details discussed in Section 2.5.5). Therefore,

we determined the coefficient k that shows the level of agreement between the two students to be +0.978,

and it is an excellent reliable agreement to justify the categorization [64].

After manual labeling, We apply five supervised classification algorithms (Näıve Bayes, K-Nearest Neigh-

bour, Decision Tree, Support Vector Machine, and Random Forest) on our dataset and analyze the result

based on classifier evaluation metrics. In spite of the manual labeling of each bug report, there are pretty

much overlapping among the class labels (except crash bug class which is almost separable with others),

which is shown in Figure 3.2. This is because the description of the bug report contains lots of meaningful

words that might predict multiple class labels at a time, which might affect the classification task.
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Figure 3.1: Visualization of Clustering result using K-Means algorithm.

3.4 Experimental result and analysis

To find the best classifier to categorize bug reports, we apply five supervised approaches, i.e., Gaussian

Näıve Bayes (GNB), K-Nearest Neighbors (KNN), Decision Tree (DT), Support Vector Machine (SVM),

and Random Forest (RF) and evaluate their results with several evaluation metrics. Finally, we discuss our

findings and observations in the following subsections.

3.4.1 Performance Metrics

For evaluating the performance of each classifier, we consider mainly f1 score and error rate. Besides, we also

discuss the classifier’s precision, recall, average accuracy, Receiver Operating Characteristics (ROC) curve,

and area under ROC curve [154]. In this subsection, We briefly discuss calculation procedures for all the

metrics.

To know about these metrics, we must know about the confusion matrix, which is shown in Figure 3.3

and different terminologies are calculated by it are described below:
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Table 3.4: Bug Reports of different categories

Class label Manual Counting

Crash 1072

Energy 131

Functionality 1000

Security 497

Total 2700

Table 3.5: Results of clustering approach for class labeling.

Clusters
Actual Class Labels

Crash Energy Functionality Security

Cluster 0 63 5 342 58

Cluster 1 947 0 74 4

Cluster 2 15 2 37 363

Cluster 3 47 124 547 72

Figure 3.2: Density plot of each class label on manually classifying dataset.

Figure 3.3: Confusion Matrix
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• True Positive (TP ): It defines the correctly predicted instances by the classifier. That means the

actual class was Crash, and the classifier predicted as Crash.

• False Positive (FP ): It defines the incorrectly predicted instances by the classifier. That means the

actual class was non Crash, and the classifier predicted as Crash.

• False Negative (FN): It defines the incorrectly predicted instances by the classifier. That means the

actual class was Crash, and the classifier predicted as Non-Crash.

• True Negative (TN): It defines the correctly predicted instances by the classifier. That means the

actual class was non Crash, and the classifier predicted as non Crash.

Accuracy: Accuracy is defined as the ratio of the total number of examples correctly classified by the

classifier to the total number of examples in the testing dataset.

Accuracy =
TP + TN

TP + FP + TN + FN

Error rate: Error rate is defined as the ratio of the total number of examples incorrectly classified by

the classifier to the total number of examples in the testing dataset.

Error rate =
FP + FN

TP + FP + TN + FN

Precision: It is defined as the ratio of the total number of TP correctly classified by the classifier to the

total number of predicted TP . Thus, it can answer the question ’What proportion of positive identifications

was actually correct?’

Precision =
TP

TP + FP

Recall: It is defined as the ratio of the total number of TP correctly classified by the classifier to the total

number of TP in the testing dataset. Recall attempts to answer the following question ’What proportion of

actual positives was identified correctly?’

Recall =
TP

TP + FN

f1-Score: F-1 score is useful for the imbalanced dataset, which means when the class distribution is

uneven. It is the harmonic mean of precision and recall and can be defined as follows:

f1 Score = 2 ∗ Precision ∗Recall
Precision+Recall

Receiver Operating Characteristic (ROC) curve: ROC curve represents how the relationship be-

tween precision and recall varies as we change the threshold for detecting positive instances in our dataset.

ROC curve plots false positive rate (probability of false prediction) on the x-axis and true positive rate (recall)

on the y-axis.

False Positive Rate =
FP

FP + TN
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Finally, we also use another metric, Area Under the Curve (AUROC), to quantify a models’ ROC curve. The

value of AUROC falls between 0 and 1, and the higher number means better performance of a classification

model.

3.4.2 Algorithms parameter tuning

Parameter tuning of any supervised classification algorithm is an essential task to seek the best performance

of that classifier, and it mainly depends on data characterization and presentation. We use 70% data as

training and 30% data for testing purposes from the total dataset. First, we use the Näıve Bayes approach

for the classification. Though there are different types of Näıve Bayes, we choose GNB [159] because of our

continuous features set, and the features are almost normally distributed as we see in Figure 3.2. Second,

K-Nearest Neighbor is used in categorizing the bug reports, and choosing the value of K is a significant job.

To search the optimal value of K, we run a process of different K values (starting from 3 and increasing by

2) and inspect the classifiers’ accuracy (f1 score) and get the highest accuracy (f1 score) when K = 7.

Third, in DT [171] classifier, we use entropy (information gain) as a criterion because of imbalanced

continuous attributes of the dataset and minimize misclassification though it is slower than the Gini impurity

due to log calculation. Gini impurity measures how often a randomly chosen bug report from the dataset

would be incorrectly labeled, and it is calculated by subtracting the sum of the squared probabilities of each

class from one. Also, entropy gives good results for multi-label classification rather than Gini for binary

classification. We also tune the parameter max depth as 5. Fourth, for SVM classifier [184], we take radial

basis kernel function because of multi-class classification with other parameters set to default.

Moreover, finally, for RF Classifier [151], we set 400 trees as estimators to the forest. We scrutinize several

number of estimators and get the best accuracy (f1 score) for 400.

3.4.3 Classifier Results Analysis and Evaluation

The results of each classifier are manifested in Figure 3.4 and showed both separate class labels comparison

and overall accuracy comparison among the five supervised classification algorithms (GNB, KNN, DT, SVM,

and RF). We present a comparative analysis among classifiers in each class label regarding precision, recall,

f1 score, and accuracy.

All the classifiers perform equally for the crash bug label because the number of crash reports and features

of that class are rich; the GNB experiences the highest f1 score for the crash class label, which 95% and all

other classifiers have a similar score of 94%. Precision, recall, and accuracy are nearly equal to each classifier.

All the investigations on the crash bug label are shown in Figure 3.4(a). For the context of energy bug, we

have the utmost f1 score vary from 93% to 96% except GNB classifier and SVM holds the highest one. We

get a lower f1 score for the GNB classifier because of the imbalanced dataset problem. Our dataset has fewer

energy bug reports compare to other bug types. As GNB does not perform well for the imbalance dataset,

the precision (13%) and f1 score (23%) are comparatively lower than the other classifier for this class label.
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((a)) ((b))

((c)) ((d))

((e)) ((f))

Figure 3.4: Precision, Recall, f1 Score, Accuracy and false positive rate comparison among classi-
fication algorithms for (a) Crash; (b) Energy; (c) Functionality; (d) Security; class labels. Overall
comparison among classifiers (e) Micro Average f1 score; (f) False Positive Rate.
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((a)) ((b))

((c)) ((d))

Figure 3.5: Representation of ROC curve among classifiers of each class labels (a) Crash; (b) Energy;
(c) Functionality; (d) Security.

In addition, unlike GNB, we get 95-97% precision scores for KNN, DT, SVM, and RF. On the other hand, the

main reason for getting that much accuracy for other classifiers is crash class features (words). The energy

bug reports are represented by some specific keywords that are hardly available in other types of bug reports.

Figure 3.4(b) depicts the analysis of five supervised algorithms for the energy class label.

If we observe Figure 3.4(c), we can see the highest precision (90%) at DT, highest recall (88%), and highest

accuracy (88%) at SVM. Like energy class labels, GNB accuracy is relatively low because of low recall scores

(18%). From the context of the f1 score, SVM performs best (88%) for the functionality class bugs. Finally,

security class label observations are presented in Figure 3.4(d). Although we select some unique words to

identify security bug reports than other class labels, there are many misclassifications due to the extensive

presence of other class label keywords. This issue is also true for other class label detection. In the security

class label, SVM has the most f1 score (87%). Here GNB performs well of highest precision (90%) and good

f1 score (86%). Other classifier results are quite similar to each other.
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We also plot the overall accuracy of each classifier in terms of precision, recall, and f1 score in Figure

3.4(e) of each class label performance. As our dataset is not balanced, so we consider the average micro

score to detect the best classifier. All true positives, false positives, false negatives, and true negatives are

considered in the micro average calculation. SVM has the finest score in terms of f1 score, which is 91%. We

also investigate the False Positive Rate (FPR) of each classifier to detect each class label. Figure 3.4(f) shows

all the class label FPR (a non-crash bug report is detected as a crash class) in different classifiers. As we

can see in the energy class label, GNB has the highest rate, as expected as a low f1 score. All the other class

labels have rates that vary from 2% to 7.5% maximum along with classifiers. To conclude this subsection, we

can say that the support vector machine performs best as a bug reports classifier for our manually labeled

dataset.

3.4.4 Analysis of ROC curve and Area Under ROC curve

The Receiver Operating Characteristics(ROC) curve determines the capability of classification algorithms to

separate data among classes, and Area Under ROC (AUROC) narrates the measurement of that separability.

Higher AUROC means the high number of positive values are labeled as positive and negative values are

negative. In Figure 3.5, we show each class label ROC with different classification algorithms and calculated

AUROC.

In Figure 3.5(a), we can see the ROC curve and area under the ROC curve of crash class along with

different classifiers, which are varied from 94% to 96%. The RF classifier has the highest area coverage,

although DT and SVM scores are quite similar.

It is obvious that energy bug reports classification gets maximum area because of its distinctive features,

almost 100% for SVM and 99% for other classifiers. All classifiers’ ROC curve for energy class label is

constituted in Figure 3.5(b). All the classifiers perform well for functionality and security class label and

cover from 93% to 97% area under ROC curve, respectively. These are depicted in Figure 3.5(c) and Figure

3.5(d). It is notable that GNB dominates 93% to 99% area under the ROC curve for all the class labels

classification, but the classifier accuracy is poor. This is because GNB can separate each bug report in certain

class labels but not in appropriate criterion. For example, it covers all the energy bug reports(AUROC =

99%), but most of them are miss-classified, i.e., marked energy bug as other class labels (crash, functionality,

or security).

Finally, we also calculate the overall separability measurement and error rate of each classifier which is

represented in Table 3.6. Again, the measurement of AUROC of each classifier is quite similar to each other

varies from 94% to 96%, and SVM experiences low error rate (4.7%) than others.

3.5 Discussion

Almost all of the classification approaches used traditional desktop-based software bug reports to categorize

and prioritize bug severity. Here in this work, we investigate several open-source mobile applications’ bug
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Table 3.6: Overall evaluation among classifiers in terms of AUROC and Error rate.

Classifier AUROC ErrorRate

GNB 0.943 0.173

KNN 0.951 0.053

DT 0.955 0.051

SVM 0.951 0.047

RF 0.952 0.051

reports to classify certain criteria that help developers and maintainers make appropriate decisions to tackle

an incoming bug.

After an intensive analysis of 2700 manually labeled bug reports along with five supervised classification

algorithms (GNB, KNN, DT, SVM, and RF), we got our best result from the SVM classifier in terms of f1 score

and error rate (we could not consider AUROC because except GNB every classifiers’ AUROC measurement

is too close to each other). The overall accuracy result (91%) of the SVM classifier is very promising in terms

of mobile application bug reports and classifying them into four defined categories, and also, the SVM has a

lower error rate(4.7%) among the other classifiers.

Similar types of tasks which were done by Otoom et al. [150] got 93.1% average accuracy for SVM

classifier. They also used manually labeled bug reports of desktop-based subject systems and had only

two class labels (corrective and perfective), i.e., bug and non-bug. However, the challenges of our work are

manual classification of bug reports of mobile apps where developers and end-users report their inconsistencies

in different formats and representations, labeling these reports into four predefined categories, and finding

distinctive features for each class. In addition, no other existing research worked with futher classification of

bug-related issues.

Another work is done by Katerina et al. [72] to detect security and non-security bug reports for the NASA

dataset. They mentioned that they experienced lower accuracy because of the unavailability of security bug

reports in their dataset. They used three types of feature vectors: Binary Bag-of-Words Frequency (BF),

Term Frequency (TF), and Term Frequency-Inverse Document Frequency (TF-IDF), but finally, their result

was poor (only 25% provides good result while training on 90% of the data). In our approach, we manually

analyze each bug report and enlist meaningful keywords as features and prepare a feature vector of each

bug report to detect the presence of word with predefined weight (bug title word features get more weight

than bug description feature word) to feed machine learning algorithm and get a dominant result of 91%

accuracy. They also applied both supervised and unsupervised approaches but got comparatively good results

in supervised learning like our approach.

In Gegick et al. [68], the authors said that their classifier had a very high false-positive rate ranging

from 27% to 96%. However, in our case, the rate of false-positive vary from 0.5% to 7.5% among different

classification approaches. Moreover, they only worked with security-related manual labeled bug reports, but
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here we consider four types of bug reports that are important for mobile applications’ bug report classification.

Although all the classifiers (except GNB) provide a good accuracy score for each bug report, the accuracy

might be increased if the dataset is balanced. We cannot find enough security and energy bug reports where

functionality and crash bug reports are more frequent in developer sites. So, it is possible to bias the low

number of bug reports by the high number, which is the main possible reason for Gaussian Näıve Bayes to

produce poor f1 score results.

3.6 Threats to Validity

We randomly collect 2,700 bug reports which are labelled as bugs by the corresponding app developers from

diverse Android and iOS apps of several open-source development sites by hand. We do not cover all the bug

reports of any specific app, and also, the reported issues were different in format at each development site.

However, we consider only the textual features (plaintext in bug titles and descriptions) for categorisation

that might not be affected by distinguished bug reports in formats and designs.

The classification task is performed based on our selected features of each class label. In specific, we

manually select the feature words to prepare feature vectors. These words might not be optimal or possibly can

be an overhead for the classification task, and we do not consider any synonyms of the selected feature words.

However, our selected features of each bug category can predict the expected bug label with an accuracy of

more than 95%. Moreover, two graduate students did the manual categorization of bug reports and labelled

them by considering our selected features. However, the categorization may be biased and inclined to human

error. Therefore, we calculated Cohens’ kappa coefficient to evaluate their mutual agreement and got an

excellent inter-rater agreement with the value of +0.978.

In our classification task, we tuned several parameters of distinguished machine learning algorithms. The

parameters tuning might not be appropriate when the dataset has a lower or higher number of bug reports

than we have, though it provides acceptable accuracy for our analysis. Finally, we found a limited number

of energy and security bug reports in the development sites that might yield a poor predictive performance,

which arose from the data imbalance problem. However, we chose such unique keywords to identify the above

class labels, which sustains nearly 100% accuracy.

3.7 Conclusion

In this paper, we applied the approach based on utilizing machine learning algorithms to classify the bug

reports. We collected 2,700 mobile apps (Android and iOS) bug reports from different open-source developer

sites and manually labeled them into four predefined class labels. We also tried clustering to classify bug

reports into four clusters, but due to excessive overlapping among class types, we did not get a satisfactory

result, so we went for manual labeling. We split our dataset into 70% training and 30% testing, respectively.

Then we apply five supervised classification algorithms (GNB, KNN, DT, SVM, and RF) to build a model for
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automatic classification of mobile bug reports. Despite the imbalanced dataset, we got a promising accuracy

score for distinguishing mobile bug reports into four classes when all the existing research worked only for two

class labels. All the classifiers (except GNB) provided good accuracy scores varying from 88% to 91%, and

we got the best result with SVM classifier with a high f1 score (91%) and low error rate (4.7%). Moreover,

the classifiers in our approach provided very low false-positive rates (up to 7.5%) where some existing works

[68, 205] experienced a very high false-positive rate (up to 96%).

Although we got good classification results for our own manually built dataset, some limitations need to

be addressed. One of them is that our dataset is not balanced. Though the manual collection of bug reports

from distinct open-source sites was strenuous and time-consuming, we explored more than a hundred android

and iOS apps to find security and energy bug reports but experienced inadequate numbers. For example,

crash and functionality bug reports were nearly balanced, but the number of energy bug reports was too

low. We will collect more bug reports to solve this issue and explore more mobile applications present in

open-source development sites.

After the classification, we wanted to explore the possible code-change in a particular software codebase

while fixing a bug. So, we investigated a randomly selected subset of entire bug reports of Java projects

and noticed that more than 50% of code-change are happened in clone code (exact or similar code fragments

throughout the codebase). Moreover, existing studies with desktop-based software systems clearly show the

harmful impacts of code clones and their relationships to software bugs. However, given a marked lack of

such studies for mobile apps, the next chapter will explore several mobile apps to find the consequences of

code clones throughout the app lifetime regarding later software maintenance.
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4 Analysis of Code Cloning in Open Source and

Industrial Software Development Stages: A

Perspective of Mobile Applications

To mitigate the study gap regarding the impacts of code clones in mobile apps development and their

relationship with software bugs that are not common in desktop-based apps (as discussed in the previous

chapter). Therefore, this chapter focuses on the bug-proneness of clone and non-clone code in eleven mobile

apps: five open-source and six from the industry. Our analysis of thousands of revisions of eleven diverse

Android and iOS apps shows that the rate of source code-change in bug-fix commits is significantly higher in

clone code than non-clone code. We also observe that bug-fixing commits changed clone code at a higher rate

in open-source mobile apps than in industrial mobile apps. In addition, the ratio of code-change between

clone and non-clone code differs in open-source and industry apps. According to our study, clone code

is more bug-prone than non-clone code, and thus clone code should be more carefully treated during app

development and maintenance. This study also performs a comparative analysis between mobile and non-

mobile apps through the percentage of bug-fixing commits that changed clone and non-clone code and states

that mobile apps have a lower code-change rate than non-mobile apps. Finally, we conduct an online survey

with industrial developers to determine their experiences with clones and bugs.

The rest of the chapter is organized as follows. Section 4.1 discusses the motivation of this work and

research questions. Section 4.2 depicts several studies related to this work. The overall methodology is

discussed in Section 4.3. In Section 4.4, key findings and answer of the research questions are presented.

Section 4.5 reports developers’ survey and detail discussion. Threats to the validity of this study are presented

at Section 4.6 and finally, concludes this chapter with Section 4.7.

4.1 Introduction

It is estimated that there are more than 2.56 million Android apps in Google Play Store and around 1.85

million iOS apps in Apple’s App Store [14], and the number of mobile apps for smartphones and tablets

is increasing day by day. Such a large number of apps enrich our life, as well as bring new challenges and

risks. Similar to traditional software, mobile apps may be buggy when running on different systems and

devices. Clone research has considered the bug-proneness of clone and non-clone code in desktop-based

software system. On the other hand, mobile app research [33, 203, 208, 209], has mostly focused on detecting
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bugs in apps, improving app performance, and protecting data privacy in smartphones from malicious apps,

with numerous approaches and techniques proposed and prototyped [207].

Our focus is on the bug-proneness of clone and non-clone code in mobile apps. In our study, we analyze

the effects of clone code for thousands of revisions of eleven subject systems both from the open-source

software development site (GitHub) and from a mobile app development company to address this gap in

the research. Two or more blocks of code or code snippets in a software system are considered to be

clone when they are exactly or nearly similar to each other [162, 166]. During software development and

maintenance, developers frequently copy-and-paste code that creates code clones. A plethora of studies

and experiments were conducted on exploring the consequences of code cloning in software development

and maintenance. While several studies [35, 74, 83, 95, 99, 107, 108, 109, 136] showed the positive effects

of code cloning, there are other studies [40, 70, 93, 95, 115, 121, 122, 136, 137, 141, 183] that prospected

negative results of cloning. Several software issues such as high instability [136], late propagation [40], and

unintentional inconsistencies [70] are created because of code cloning. In addition, there are numerous studies

[36, 40, 75, 88, 89, 138, 144] that investigated the relationship of cloned code and bugs, but none of the existing

studies have ever investigated the actual impacts of code clones in mobile apps and not for industrial project

at all.

Although today’s desktop and mobile apps use similar designs, architectures, implementations, coding

approaches, and testing strategies, there are unique characteristics of mobile applications and their devel-

opment [66]. Flora et al. [66] conducted a survey involving software companies, app development teams

members, mobile experts, researchers, and relevant stakeholders to identify the key characteristics and other

things make mobile apps different from traditional software. The author mentioned several requirements

such as potential interaction with other apps, integration with device sensors, input mechanisms, respon-

siveness, native and hybrid (mobile web) apps, storage limitations and security issues [103], variability and

inconsistency of user interfaces, power consumption and unit testing, localization and multiple networking

protocols and short length session activities [65, 202]. In addition, because of the many mobile devices,

developers need to create versions of the same application for each type of devices [56, 71]. According to a

survey [66], software bug, such as concurrency bug, security bug, compatibility bug, app crash bug in mobile

apps usually occur in session management and when users start interacting with the apps. As there are a

couple of potential studies related to software bugs in traditional software system due to code cloning, it is

equally important to investigate the effect of code cloning in mobile software code bases and corresponding

development environments.

Increased awareness of bug-proneness in code clones for Android and iOS apps could lead to app users

experiencing fewer bug-related issues due to code cloning. In this work, our goal is to investigate several

mobile apps’ commits to observe the effects of clone code and software bugs, and build a comparative

analysis of code-change rate between clone and non-clone code during software evolution and maintenance.

We also investigate the code cloning ratio of open-source and industrial applications and find correlative
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characteristics of clone code change while fixing bugs. In addition, we make comparative analysis between

industrial and open source, mobile and non-mobile (results are taken directly from [87]) apps. Therefore, we

consider bug-fixing commits reported by developers from thousands of commits in five open-source apps and

six industrial apps (from a mobile app development company we refer to as ABCD Software) written in two

different programming languages (Java and Swift).

To determine the impact of bug-fixing and non-bug-fixing change in maintenance throughout all revisions

of each app, first, we detect code clones from each of the revisions of a mobile app using the NiCad [51] clone

detector, scrutinize the history of app evolution for these clone code and investigate in what proportion they

contain bugs. To find the bug-fixing commits, we review the commit messages to find some specific words

related to bug and bug-fixing according to Mockus and Votta [132] method. After detecting the bug-fixing

commits, we analyze those commits’ clone code to find whether they are responsible for the bugs. We also

investigate clone code of all the commits to determine code-change throughout the development stages and

further maintenance. Omitting the change of the clone code, we are left with the change in the non-clone

code. Then we calculate the rate of change per thousand lines of the codebase. We conclude that the rate of

clone code change is significantly higher than the rate of non-clone code change. We also analyze the use of

code cloning in open source and industrial mobile apps and find that the ratio of code cloning in industrial

apps is higher than open-source apps, and we also determine the code change rate between open-source and

industrial apps while fixing bugs. We validate our findings using the Wilcoxon Signed Rank test [20] for three

types of clones with non-clone code and the Mann-Whitney U test [12] for comparing our findings for open

source versus industrial. In this study, We investigate five research questions listed in Table 4.1 which are

described details in Section 3.4.

Table 4.1: Research Questions

Sl. Questions

RQ 1 What is the rate of change in clone and non-clone code in bug-fixing commits?

RQ 2 What are the impacts and characteristics of clone code and non-clone code throughout

the evolution of non-bug-fixing commits?

RQ 3 Are clones more prevalent in open source or industrial mobile applications?

RQ 4 Is the change-proneness of code clones in the open-source mobile apps similar to that

of the code clones in the industrial mobile apps?

RQ 5 Is there a difference in terms of clone and non-clone code change in bug-fixing commits

between mobile and non-mobile apps?
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4.2 Related Work

There are several existing analyses and research on code cloning and bug severity measurement but most of

them used non-mobile apps as subject system.

There have been a number of studies that conducted the relationships between bugs and software clones

[136] including comparative studies in cloned code and non-cloned code [87], on the relationships between

stability and bug-proneness of code clones [157], propagation of bugs through code cloning [143], identifying

code clones having high possibilities of containing bugs [142], investigating context adaptation bugs in copied

fragments [144], replication of bugs in clones and micro-clones [89], and even harmfulness and intensity of

late-propagation of clones [140].

Islam et al. [87] conducted a comparative study on bug proneness in clone code and non-clone code

by analyzing several projects’ commit logs from SVN repositories [23]. According to their inspection, the

percentage of changed files due to bug-fix commits is significantly higher in clone code compared with non-

clone code, and they limited their research to traditional desktop-based software, and they did not consider

the lines of code change rate in clone code and non-clone code. A similar study is conducted by Mondal et

al. [138], but the authors did not consider the bug-proneness of non-clone code in their study.

Azeem et al. [36] experimented with the effect of code cloning in mobile apps. The authors used open-

source iOS game apps and tried to find the coupling relationship among the five main classes, which are

developed by third parties. But authors did not analyze the bug-proneness of clone code throughout all

revisions of the apps’ lifetime. They also did not consider the developers’ level code change measurement to

mitigate bugs. Our study examines bug-fix and non bug-fix commits that changed clone and non-clone code

throughout industrial and open-source mobile apps.

Several studies investigated bug-proneness of code clones like Li and Ernst [115] did an empirical study

on clones’ bug-proneness by scrutinizing four software systems and developed a tool called CBCD based on

their findings. To find inconsistencies in copy-paste activities, Li et al. [116] built a CP-Miner tool. Steidl

and Gode [183] investigated clone code related to machine learning and found fixed bug in near-miss clones

that were incomplete and might affect other features.

Gode and Koschke [70] examined the occurrences of inconsistencies created unintentionally to the code

clones. They tested three mature desktop software systems and experienced that around 14.8% of all change

to the code clones were inconsistent but happened unintentionally. Shajnani et al. [174] accomplished a

comparative study between clone and non-clone code for bugs’ distinguish patterns. However, they did not

present any comparison or relation between clone and non-clone code.

Focusing on different subject systems (i.e., mobile apps) than existing works (i.e., desktop apps), this study

aims to find the impacts of clones regarding software bugs and maintenance from the perspective of industrial

and open-source mobile apps. Moreover, there is no such study that incorporates industrial/close-sourced

projects in clone study. In addition, To strengthen our study results, we intended to survey industrial people
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(mobile apps developers) regarding their thoughts and experiences concerning code clones, software bugs and

later maintenance. Accordingly, this study provides potential implications for a better understanding of code

clones in software bugs in both development environments.

4.3 Experimental Methodology

We performed our experiment on the apps listed in Table 4.2. These apps have variations in domains, sizes,

number of revisions, and weather they were previously used in other studies [24]. An important factor for

selecting these apps is to consider a broad range of domains such as travel, music video, and shopping. As

well, we selected the most popular and satisfactory apps of the ABCD software company, which are also in

diverse domains with differing sizes and revisions.

All of these mobile apps are downloaded from online GitHub1 repositories (for open-source projects) and

BitBucket2 which is the development site of ABCD Software company (for industrial projects). In Table 4.2,

each apps is listed with its domain of application, the programming language its written in, and the total

number of revisions (NR) along with the average number of lines of code (ALOC) per revision. We calculate

ALOC by counting all the revisions lines of code and then measure the mean to determine the ALOC. We

ignore comment lines and blank newlines to compute the actual lines of code. We perform the following five

steps for our study. All the steps of our study will be construed in details in subsequent subsections.

4.3.1 Clone Detection Technique

We use NiCad [51] for detecting clone code since it can detect all major types (Type 1, Type 2, and Type 3)

of clones with high precision and recall [146, 164, 165]. Another important reason for choosing NiCad is its

ability to detect clone fragments in Swift language directly. Using NiCad, we detect clone code blocks with

30% dissimilarity threshold and blind renaming of identifiers. We use this configuration of the NiCad clone

detector shown in Table 4.3 to get the higher precision and recall rate used by Roy et al. [163].

4.3.2 Bug-proneness Detection Technique

For all the mobile apps (Android and iOS) of two different languages, first, we extract developers commit

messages by applying git log command [47]. Developers usually include the purpose of a corresponding

commit operation in a commit message in the form of natural text. We automatically infer the commit

messages using the heuristic approach proposed by Mockus and Votta [132] to identify those commits which

are occurred to fix bugs or solve bugs-related issues. If one or more clone fragments are deleted or modified

in a particular bug-fix commit, then it is an implication that the modification of those clone fragment(s)

was necessary for fixing the corresponding bug and called these code fragments are responsible for that bug

1https://github.com/
2https://bitbucket.org/product
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Table 4.2: Subject Systems

SL Project Name Type Lang. Domain ALOC NR

1 SIGA Industrial Java Entertainment 3211 519

2 TRUSTED Industrial Java Online directory 32,317 182

3 AskAvenue Industrial Swift Live Chat for Real Estate 39,994 498

4 Bolt Mobile Industrial Swift Service Provider 17,684 267

5 My Shire Industrial Swift Business 40,426 276

6 Reperformance Industrial Swift Workout and Fitness Test 48,134 1167

7 Ankidroid Open source Java Education 49,185 9298

8 Frostwire Open source Java Media and Video 243,848 6027

9 TramHunter Open source Java Travel 10,783 288

10 Andlytics Track Open source Java Shopping 38,274 1524

11 OpenDocument Reader Open source Java Reader 3778 612

Table 4.3: NiCad settings for different kind of clones.

Clone Types Identifier Renaming Dissimilarity Threshold

Type 1 none 0%

Type 2 blindrename 0%

Type 3 blindrename 30%
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occurrence. This way, we investigate the commit messages to detect the bug-fixing commits and identify

the code snippets associated with the bug-fix, such as the number of change operations, number of lines of

code change and so on. We also determine the number of non-clone code change, both for bug-fixing and

non-bug-fixing commits parallel with different types of clone code. The main idea of [132] to find bug-fixing

commits is to spot five specific keywords (i.e., ‘bug’, ‘fix’, ‘fixup’,‘error’,‘crash’, and ‘fail’ ) in the commit

messages. The authors of [165] evident that this way of detecting covers almost all the bug-fixing commits.

Other studies, such as Islam et al. [87] and Barbour et al. [40] reused this idea previously to detect bug-fix

commits.

4.3.3 Code Change Detection Steps

We only consider code change by a commit to further maintain clone code and non-clone code throughout

all revisions. To detect the changes between every two consecutive revisions, we use the output of UNIX diff

command. And then, compare change output, NiCad results, revision number, programming file names, and

start-line and end-line of clone code fragment to spot the clone code change throughout the revision when

fixing bugs. We consider all the changes (deletions, additions, and modifications) in all commits and find the

change that occur in clone fragments and categorize them in terms of clone types. We also scrutinize the line

of code change in clone code and non-clone code for non-bug-fix commits.

4.3.4 Statistical Significance Testing

We verify our analysis results using two types of non-parametric statistical methods i.e., Wilcoxon Signed

Rank Test [20] and Mann Whitney U test (also called Wilcoxon Signed Rank Sum test) [12]. Non-parametric

methods allow statistical inference without making the assumptions that the sample has been taken from a

particular distribution (i.e., normal). For matched pairs data, we justify our calculated outcomes using the

Wilcoxon Signed Rank Test (when we try to find statistical significance among different types of clone and

non-clone code for all industrial and open-source projects). Furthermore, we employ the Mann Whitney U test

for independent samples data to encounter the significance between industrial and open-source mobile apps.

Besides, we consider 5% level of significance and two-tailed test (because of testing statistical significance in

both directions and calculating the p-value) and observe the critical U value from the statistical chart [6].

4.3.5 Developers Survey

To relate our findings with the experience of mobile app developers, we conduct an online survey with 23

developers to perceive their thoughts/experiences about clones and bugs. The developers are from ABCD

company and sixteen different renowned software companies across Canada and Bangladesh with 1-10 years

of development knowledge on mobile apps and also working as an open-source developer in distinguished

teams. We received many potential comments and feedback from each developer. We present the survey

outcomes in Section 4.5 in detail.
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4.4 Experimental Results and Analysis

In this section, we elaborately justify our experimental findings and relate them to find the answers to our

mentioned research questions.

4.4.1 Answering the first research question (RQ 1)

RQ 1: What is the rate of change in clone and non-clone code in bug-fixing commits?

Motivation: It is important to investigate the rate of change of different operations (deletion, addition

and modification) and lines of code are updated in bug-fixing commits and to make comparison among all

types of clone code and non-clone code. If software code-base files experience more change on the number of

operations and lines of code that indicates more files are affected due to bug and it is obvious to give much

attention dealing with code that are responsible for those occurrence. By knowing of the change information

throughout the evolution of apps, we can emphasize on which type of code (clone or non-clone) influence the

system more and require more discretion at the stage of app development.

Methodology: To answer this research question, we analyze the commit messages to find the bug-fixing

commits using the approach discussed in [132]. There are around 7% to 23% commits are occurred as bug-

fixing commits in our selected Android and iOS apps. We detect all the change both in clone code and

non-clone code of those bug-fixing commits and figure out this research question’s answer.

After analyzing clone code fragments and results from UNIX diff command, we measure the changes that

are happened to fix bugs. If a single line or multiple lines of code are deleted or added or modified to solve

a bug, we call it as one change occurred. We determine the rate of change of each type of clone by the ratio

of total clones change count while fixing bugs and total clones in all revisions. There are several terms that

are used to calculate change rate are represented as short form for easy understanding which are discussed

below and used as columns header of Table 4.4.

LOCCB: Total number of lines of code of each type of clone in bug-fixing commits. We calculate this

term by summing up clone code that are available in all bug-fixing commits.

LOCNCB: Total number of lines of non-clone code in bug-fixing commits. We measure its value as same

way as LOCCB (add all lines of non-clone code available in all bug-fixing commits).

NCC: Total number of changes (delete, add and modify) in different types of clone code while fixing bugs

in bug-fixing commits.

NCNC: Total number of changes (delete, add and modify) in non-clone code while fixing bugs in bug-fixing

commits.

CRTL: To find out the rate of changes for thousand lines of code (we use thousand lines for visualizing

the calculated value in a better way)

Using NiCad [51] results of each subject system, we calculate LOCCB and LOCNCB for individual clone

types and non-clone code. After analysing clone code fragments and results from UNIX diff command, we
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measure the changes that are happened to fix bugs. We compute in what extent each type of clone code

are changed. For better presentation, We determine all the rate of changes per thousand lines of code. The

change rate (CRTL) is calculated for clone and non-clone code by equation 4.1 and equation 4.2 respectively.

CRTL(CloneCode) =
NCC ∗ 1000

LOCCB
(4.1)

CRTL(NonCloneCode) =
NCNC ∗ 1000

LOCNCB
(4.2)

We observe that most of the projects experience a high change rate in clone code (for different clone

types) than non-clone code. To verify the significance of change rates, we apply the Wilcoxon Signed Rank

statistical test [20] with 5% level of significance and two-tailed hypothesis between each type of clone and

non-clone. After performing the test, we could not find significant results (see in Table 4.5) (p-value >0.05

and U Statistics >U critical), i.e., there is no meaningful distribution differences among different clone code

and non-clone code (in a word, we can say they follow similar distribution). All the measured values and

calculated rate of changes are presented in Table 4.4. Therefore, we do another experiment to answer this

research question that considers lines of code change among clone code and non-clone code. Previously, we

consider only operations, not the consequences of those operations. For example, if hundreds of new code lines

are added to fix a bug, we count only one for previous consideration. Now we reflect on the complete lines of

code change of all bug-fixing commits among clone and non-clone code. Along with previous measurement

LOCCB and LOCNCB, we introduce four new terms.

LCC: Lines of code which are changed in clone code while fixing bugs.

LCRTL: Lines of clone code-change rate per thousand lines of code.

LCNC: Lines of code change in non-clone code in all bug-fixing commits and

LNRTL: Lines of non-clone code-change rate per thousand lines of code.

we determine LCRTL and LNRTL using following equation 4.3 and 4.4 for several types of clone code

and non-clone code per thousand lines of code (for better visibility) respectively.

LCRTL =
LCC ∗ 1000

LOCCB
(4.3)

LNRTL =
LCNC ∗ 1000

LOCNCB
(4.4)

Table 4.6 shows all the calculated values of code change in three types of clones and non-clone codes. We

also present the lines of code change rates (LCRTL & LNRTL) in Figure 4.1, where we can observe that the
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((a))

((b))

Figure 4.1: The rate of lines change per thousand lines of code occurred in bug-fixing commits on
different types of clone and non-clone code for (a) Industrial project;(b) Open-source projects.
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Table 4.5: Wilcoxon Signed Rank test to determine change rate significance.

Clone Types p-value Ustat

Type 1 0.646 23

Type 2 0.509 21

Type 3 0.880 26

line changing rate in clone code is higher than in non-clone code. To verify the significance, we again apply

the Wilcoxon Signed Rank test for each type of clone with non-clone code based on the rate of lines change

per thousand lines of code. To apply the test, we take pairwise values of Type1 (i.e., 0, 0, 1.46, 0, 0, 0.64,

4.33, 0.63, 6.71, 2.82, 134.3) and Non-clone (i.e., 9.25, 0.19, 1.45, 0, 0.13, 2.45, 4.15, 0.13, 5.75, 0.88, 10.91)

and same as for Type2 and Type3 with Non-clone code (from Figure 4.1). Table 4.7 shows the corresponding

p-value and U statistics where the two-tailed level of significance is 5% and U critical is 8 [6]. If we observe

the content of Table 4.7, there is a significant difference in the distribution of Type 2 and Type 3 clone code

with non-clone code. The p-value and U statistics of Type 2 and Non-clones are 0.009 and 2, which are

much lower than 0.05 (5% level of significance) and 8 (U-critical) respectively, where Type 3 and non-clones

hold lesser value than Type 2, which are 0.005 and 0 accordingly. However, there is no significant difference

between the Type 1 clone and non-clone code. We can prove by this statistical experiment that Type 2 and

Type 3 clone code are more responsible for occurring bugs than non-clone code.

Answer to RQ 1: According to our experimental analysis and results, the rate of code-change is higher

in clone code (for Type 2 and Type 3) than in non-clone code during bug-fixes. So, according to our dataset,

clone code are more accountable for creating bugs and needed more attention in development stages.

4.4.2 Answering the Second research question (RQ 2)

RQ 2: What are the impacts and characteristics of clone code and non-clone code throughout

the evolution of non-bug-fixing commits?

Motivation: As we already have the answer of RQ 1 and hence, we know the code-change in clone and

non-clone code in bug-fixing commits, we are still not aware of the consequences of clone code and non-clone

code in non-bug-fixing commits. It is essential to know the frequency of change occurrence throughout all the

commits, both in bug-fix commits and non-bug fix commits. This research question helps us to gain insights

into managing clone and non-clone code throughout all revisions in the area of mobile app development.

Methodology: To answer this research question, first, we detect the non-bug-fixing commits by simply

separate bug-fixing commits from total commits. We follow the same procedure as answering the first research
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Table 4.7: Wilcoxon Signed Rank test to determine Line of code change rate significance.

Clone Types p-value Ustat

Type 1 0.575 22

Type 2 0.009 2

Type 3 0.005 0

question. With the help of NiCad results, calculate the lines of three types of clone code and discard from

total lines of code to measure the non-clone code present in non-bug-fixing commits. By comparing diff and

NiCad results, we get the number of change operations and the lines of code change for each type of clone

and non-clone. Then we determine the rate of change and the rate of lines of code change per thousand lines

of code.

Figure 4.2 and Figure 4.3 depict the rate of change operations (deletions, additions, and modifications)

and rate of lines change in three types of clone code and non-clone code in non-bug-fixing commits. We

perform the statistical test (Wilcoxon Signed Rank) to know significant difference among different clone

types and non-clone code. In both cases (change rate and lines of code change rate), we do not get significant

results that means the p-value is greater than 0.05. So, in that sense, maintenance of three types of clone

code and non-clone code in non-bug commits follow similar distribution. However, if we closely look at the

Figure 4.2, four of the six industrial projects experience higher change rate in clone code than non-clone code.

This is also true for open source projects. Only one project ‘OpenDocument Reader’ has higher non-clone

code changing rate out of five projects. We can also notice similar patterns in lines of code changing rates,

which are shown in Figure 4.3. All the industrial projects have higher lines of code change in different types

of clones than non-clone code, but for different projects, one of the three clones takes the lead. That is the

main reason not to get a significant result from the Wilcoxon Signed Rank test. We can also see much higher

line of code-change in clone code of several open-source projects.

Answer to RQ 2: Although we do not get statistical significance between each of three clone types and

non-clone code, we deeply investigate each of the eleven projects and observe that most cases of different

project type of clones (Type 1, Type 2, or Type 3) need more maintenance and prolongation than non-clone

code. Even for multiple projects, all three types of clones have higher changing rates than non-clone. To

recapitulate, in mobile app development both in open source and industrial, we also need to handle and

maintain clone code in non-bugfixing commits carefully.
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((a))

((b))

Figure 4.2: The rate of change per thousand line of code occurred in non-bug-fixing commits on
different types of clone and non-clone code. (a) Industrial project;(b) Open Source projects.
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((a))

((b))

Figure 4.3: The rate of lines of code-change per thousand lines of code occurred in non-bug-fixing
commits on different types of clone and non-clone code (a) Industrial project;(b) Open-source projects.
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4.4.3 Answering the third research question (RQ 3)

RQ 3: Are clones more prevalent in open source or industrial mobile applications?

Motivation: We already know about the complications of clone code throughout bug and non-bug-fixing

commits. By this research question, we want to know how frequently open-source and industrial projects

use clone code from diverse sources. We measure the use of clone code and non-clone code of each project

and make a comparison between the use of clone code in open source and industrial context. If we find any

significant difference in the usability of clone code in two different development environments (open source

and industrial), then we can carefully mitigate the threads of clone code from bug occurring and frequent

maintenance of that specific development environment according to the corresponding clones’ consequences.

Methodology: To measure the percentages of clone and non-clone code of each project, we simply sum

up all the revisions clone code getting from the NiCad result and calculate the mean value divided by the total

number of commits. We determine the average line of code (ALOC) earlier, so we get the mean lines of code

of non-clone type. After that, we make percentages of those values for better representation. Figure 4.4 shows

the percentage ratio of clone code and non-clone code of industrial and open-source projects, respectively

where x-axis denotes the subject systems as presented in the Table 4.2.

Figure 4.4: Ratio of clone and non-clone code in industrial and open source projects.

In order to know the significant difference, we perform the Mann Whitney U test [12]. We can not use

the Wilcoxon Signed Rank test [20] for this case because it is only applicable for equal sample size and

paired data where the Mann Whitney U test also works for different independent sample size. As we have

six industrial and five open source projects, we apply this test [12] with 5% level of significance where U

critical is 3. After completing the test, we get p-value = 0.023 and Ustat = 2 which are less than 0.05 and 3

respectively. Therefore, we find a significant difference in using clone code higher in industrial projects than

in open-source.
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Answer to RQ 3: After investigating the ratio of each projects’ clone code for two different development

environments, we discover a higher distribution rate of using different types of clone in industrial projects

than in open-source mobile apps.

After knowing the answer of RQ 3, we wanted to know how these two different environments (industrial

and open-source) behave with software bug having higher and lower percentages of clone code. We will

answer this question in our RQ 4.

4.4.4 Answering the fourth research question (RQ 4)

RQ 4: Is the change-proneness of code clones in the open-source mobile apps similar to that

of the code clones in the industrial mobile apps?

Motivation: From RQ 3, we come to know that industrial mobile apps have more clone fragments

(sometimes more significant than non-clone, for example, subject system six “Reperformance” in Figure. 4.4

carries more than 50% clones in code-base) than open-source projects. So, we are interested in knowing

bug-proneness in both types of apps and the extent to which each environment needs more maintenance to

tackle occurring bugs from others.

Table 4.8: Mann Whitney U test to determine significant difference in industrial and open-source
apps.

Clone Types
Change Rate Line Change Rate

p value Ustat p value Ustat

Type 1 0.023 2 0.023 2

Type 2 0.412 10 0.121 6

Type 3 0.522 11 0.234 8

Methodology: To find the answer, we perform the Mann Whitney U test [12] (5% two-tailed level of

significance and U critical is 3) between each type of clone code of industrial and open-source projects. First,

we apply the rate of operations change and rate of lines of code change of Type 1 clone of industrial and Type

1 clone of open-source projects using the obtained values from RQ 1. As industrial applications carry more

clone fragments, it is expected to get a higher changing rate in that environment, but the statistical testing

[12] proves that open-source projects’ Type 1 clone code are more bug-prone and require more maintenance

than Type 1 clone of industrial projects. We do the same for Type 2 and Type 3 clone and do not find any

significant differences. All the calculated testing value is presented in Table 4.8.

We perform another experiment to know how often bug-fix commits change clone and non-clone code

in both (open-source and industrial) development environments. To answer, we identify the total number
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of bug-fixing commits and total number of all commits where clone and non-clone code changed. Then,

we calculate the percentage rate of these change to make comparison between industrial and open-source

mobile apps. This experiment also aids to answer of RQ 5. We follow the following procedures to calculate

all the associated measurements. We assume several short form to make the experiment understandable.

CC: Total number of commits that made change to clone code; BCC: Total number of bug-fix commits that

made change to clone code; PBCC: Percentage of the bug-fix commits that made change to clone code. We

consider all types of clone code separately to calculate PBCC; CNC: Total number of commits that made

change to non-clone code; BCNC: Total number of bug-fix commits that made change to non-clone code;

PBCNC: Percentage of the bug-fix commits that made change to non-clone code. All the terms represent

columns in Table 4.9. We use the following equations to calculate PBCC and PBCNC.

PBCC =
BCC ∗ 100

CC
(4.5)

PBCNC =
BCNC ∗ 100

CNC
(4.6)

We also compute overall PBCC ( for every clone type) for industrial and open-source projects separately

by the ratio of the sum of all BCC and CC, then make percentage and so for PBCNC (non-clone). The

overall percentage of bug-fixing commits that changed clone and non-clone in industrial and open-source

project are depicted in Figure 4.5. As we discover earlier that industrial projects have more clone code than

open source but open source apps require more maintenance than industrial mobile apps, we get similar result

from this experiment. If we observe Figure 4.5, the percentage of bug-fixing commits which were responsible

for changing different types of clone and non-clone code in open-source projects is higher than in industrial

projects. Additionally, clone code (specially Type 1) has more changing rate than non-clone code for the

open-source mobile apps. On other hand, the bug-fixing rate of non-clone for industrial projects is sightly

higher than clone code, but these clone types (Type 2 and Type 3) are prior responsible for more maintenance

than non-clone code (as per RQ 1).

Answer to RQ 4: Although industrial mobile app projects have a higher clone code ratio, they require

low bug-fixing maintenance than open-source projects, especially for Type 1 clones. Furthermore, open-

source projects have more erroneous clone fragments than industrial projects in terms of bug-fixing commits.

So, for open-source mobile app development, cloning should be treated more carefully.

4.4.5 Answering the fifth research question (RQ 5)

RQ 5: Is there a difference in terms of clone and non-clone code change in bug-fixing commits

between mobile and non-mobile apps?

Motivation: In our analysis and experiments, we investigated the characteristics of mobile apps (indus-

trial and open-source) in the field of clone and non-clone study. We are also interested in investigating the

relative similarity or dissimilarity between mobile and non-mobile apps (desktop based) considering bug-fixing
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Figure 4.5: Percentage of bug-fix commits that have changed clone and non-clone fragments of
Industrial and Open-source mobile apps.

commits to clone and non-clone code. With this research question, we can determine the level of effective-

ness of clone and non-clone code in the creation of software bugs in two different users centric environments

(mobile and non-mobile).

Figure 4.6: Percentage of bug-fix commits that changed clone and non-clone fragments of Mobile
and Non-mobile apps.

Methodology: Islam et al. [87] conducted a similar study by analyzing seven desktop systems written

in C and Java and summarised that clone code is more bug prone than non-clone code. They considered the

number of files changed due to fix bugs and the number of bug fixes that changed clone vs non-clone code.

However, In our study, we take into account the number of operations (additions, deletions and modifications)

and number of lines of code change. To compare with Islams et al. [87] outcomes, we calculate the percentage

of bug-fix commits that changed clone and non-clone code according to the authors’ [87] methodology, which

we already discussed when answering RQ 4. The final calculated results of our eleven mobile subject systems

are presented in Table 4.9. We take the associate outputs from [87] directly to make our comparison. The

overall percentages of bug-fix commits that changed clone and non-clone code of mobile and non-mobile apps
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is shown in Figure 4.6. Like the method [87], we calculate the overall percentage of bug-fixing commits

by using equation 4.5 and 4.6, where overall BCC and CC represent the sum of all projects’ BCC and CC

respectively and then make percentage. We do the same for non-clone code to calculate the overall percentage

rate.

In Figure 4.6, we notice that the percentage of bug-fix commits that changed Type 2 and Type 3 clone

code and non-clone code is comparatively higher in non-mobile apps than in mobile apps, which tells us that

mobile apps have less erroneous code fragments. But for mobile apps change to Type 1 clone code, is sightly

higher (19.68%) than non-mobile apps (18.91%). This is mainly for open source mobile apps. If we closely

observe the values for Type 1 clone code in Table 4.9, the industrial percentage rates (PBCC) are much lower

(most are 0.00%) than open-source projects.

Answer to RQ 5: Though the environments, number of revisions, diversity of users are quite different for

mobile and non-mobile apps, it is equally important to treat different types of clone code carefully. According

to our analysis, clone and non-clone code in mobile apps has a lower bug-fix change than non-mobile apps,

but the difference is not negligible. For user satisfaction and lower software maintenance costs, we should be

careful when cloning code in both mobile and non-mobile (desktop) apps.

4.5 Developers Survey and Discussion

We conducted an online survey with 23 developers from 17 companies who are also linked with various

open-source teams. Table 4.10 shows the survey questions. We have eight closes and one open questions and

summarize each responses. Two of the questions have four possible answers i.e. ”Often” (3 or more times per

week), ”Sometimes” (1-2 times per week), ”Rarely” (1-2 times per bi-week) and ”Never”. Figure 4.7 depicts

the results of the survey.

The majority of the developers have two to four years of development experience. However, five developers

from ABCD software company have been working as mobile apps developers for more than six years (one

developer has ten years of experience). Categories of developer experience are shown in Figure 4.7(a) (the

result of survey question 1). In the next question, we ask developers about their frequency of code cloning

when developing mobile apps, and most indicated that they sometimes clones code (see Figure 4.7(b)). We

asked reasons why they sometimes cloned code and most mentioned reasons like industrial project structures

and core implementation similarities, predefined patterns, and unwillingness to start from scratch. However,

some of them (only three) barely and never clone code because of personal choices and company restrictions.

Almost all developers (95.2% in Figure 4.7(c)) clone/copy code from development Q&A sites like GitHub,

and Stack-Overflow. AbdalKareem et al. [24] revealed that after reusing code from Stack-Overflow, mobile

apps experience more bug-fixing commits than earlier. The statement from AbdalKareem et al. [24] is also

justified by the developers’ answer to survey question 4. More than three-fourths of developers (displayed in

Figure 4.7(d)) experience bugs after cloning code into their project (Cloning from either the same project,
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Table 4.10: Survey Questions

Sl. Questions

1 How long (i.e. year) you are working as a Mobile apps developer?

2 How frequently do you clone code in mobile application development (from one file to

another or one project to another project)?

3 Do industry people clone code from open source repositories such as GitHub, Stack

Overflow?

4 Did you experience any software bugs generated by cloning code at the time of mobile

application development?

5 How frequently do you experience bugs in apps’ lifetime because of code cloning?

6 Does a higher number of files get changed because of fixing bugs in clones compared to

fixing bugs in non-clone code?

7 Do you perceive any difference between the oftenness of making clones in industrial and

open-source projects?

8 Do you think that code clones have more impacts (number of change, change effort, the

required time to manage ) on the software system than non-clone code during system

evolution?

9 If you experience bugs because of code clone, then could you please define the steps you

would like to take to minimize software bugs generated from code clone?
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another project, or a development Q&A site), and this is also true for bug occurrences within the evolution

(or lifetime) of software (answser to question 5). 47.6% of developers experienced a lower number of bugs,

while more than 52% of developers struggle with the bugs that occurred in clone code throughout the apps’

lifetime (depicted in Figure 4.7(e)). Moreover, this result also validates the findings of RQ 1, i.e., clone code

are more responsible for software bug than non-clone code.

Like the previous survey questions, question 6 also supports the RQ1 findings. Around 57% of developers

agree with the statement that says while fixing bugs; clone code need more change and maintenance than

non-clone code (shown in Figure 4.7(f)). Nevertheless, the rest of the developers says non-clone code need

more attention and care because, in a software codebase, the amount of non-clone code is much higher than

clone code (see Figure. 4.4).

As the participating developers of this survey are from industry and connected with numerous open-

source development teams, we also wanted to know the extent to which clone code is used in industry versus

open source. Development of industrial mobile apps are tailored for a particular business case and driven by

the client’s requirements, whereas open-source allows for contributions from multiple parties. Open-source

mobile apps are developed on a generalized basis so that a large number of parties can take advantage of

it and also there is no time constraint from the users’ side, but Industrial apps are developed for specific

services/tasks with predefined timing and budget constraints so that they can focus on their service more

closely and make those apps more efficient. So, more clone code in industrial projects causes difficult situations

for project delivery and further maintenance. In question 7, we ask developers whether they perceive any

difference between the frequencies of making clones in industry versus open-source projects. One-third of

developers state that industry projects have more clone fragments than open-source, while other 23.8%

claim the opposite. In answering RQ3, we identified more clone code in industrial projects than open-source

projects and find statistical significance where most developers characterize industry and open-source apps

in the same way regarding the presence of clone code (values are shown in Figure 4.7(g)).

In Question 8, developers’ answers especially from ABCD company greatly reflect the outcomes of RQ 1,

RQ 2, and RQ 4 because we analyzed their developed apps and the majority of developers (around 70% of

responses from ABCD company matched the study outcomes) insist that clone code need more attention and

care than non-clone code, both bug-fixing and non-bug-fixing commits. According to 71.4% of developers

(in Figure 4.7(h)), the time, effort, and change required for clone code is much higher than non-clone code

during apps’ evolution. In the last question, we ask developers to provide some potential approaches to

mitigate software bugs because of cloning. We received multiple promising suggestions; for example, one

developer from ABCD says, “If you are cloning code without understanding why, you’re going to run into

bugs. It’s not the act of cloning code that is the problem.” That means proper understanding is important

before cloning code. Some insist on reusing code as much as possible with proper functioning feasibility and

modularising because the issue of code clones can never be fully remedied. From Bangladesh, one of the

developers suggests, “Following coding principles (SOLID). Also, the use of design patterns can help mitigate
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((a)) ((b)) ((c))

((d)) ((e)) ((f))

((g)) ((h))

Figure 4.7: The summarised results of the developers’ survey. (a) Years of experience; (b) Frequency
of code cloning; (c) Code cloning from Q&A Site; (d) Occurrence of bugs after cloning; (e) Bug
occurrence in apps’ lifetime ; (f) Agreement of clone code change more than non-clone code while
fixing bugs; (g) Agreement of clone fragment ratio in industry and open source; (h) Agreement on
more change effort on clone code than non-clone code.
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code cloning. Code cloning is the starting point when code starts to smell.” Other suggestions like “Follow

design pattern to write code to prevent code clone. For instance, Singleton Pattern. Also, it’s necessary

to write OOP based code, so that minimize software bugs.”. Some of suggestions denote tool support for

automated testing and follow a solid plan of action during development.

To recapitulate, our study and survey result, we can say that clone code are liable to create software

bug related issues, and it needs more consideration at the time of cloning and perpetuation for whole apps’

lifetime. So, it must be treated accordingly than non-clone code both for industry and open-source projects.

4.6 Threads to Validity

For detecting different types of clone fragments, we used NiCad [51] clone detector, which may suffer from

confounding configuration issues [163] and might return different results in different settings. However, the

NiCad settings that we used are standard and shown to be given high precision and recall [164, 165, 186, 188].

Our research is also involved with the detection of bug-fix commits by analyzing commit messages. We

followed similar detection technique, which was proposed by Mocus and Votta [132]. By the technique of

Mockus and Votta [132], it can be possible to select a non-bug-fix commit as a bug-fix commit erroneously.

However, Barbour et al. [41] proved that the probability of success is 87% for desktop subject system,

which is acceptable. To determine the accuracy of detecting bug-fixing commits in mobile apps, we manually

analyzed all the commit messages of each industrial and open-source projects and found 93-100% accuracy

scores. We got higher accuracy for industrial mobile apps (for example, three projects have 100% accuracy)

than open-source mobile apps. Besides, open-source projects are developed by different developer groups

which have different coding conventions, quality assurance and group sizes, where the selected industrial

projects are developed by same development teams of ABCD software company.

4.7 Conclusion

In this paper, we conducted an in-depth comparative study of several Android and iOS apps’ bug and

change proneness in both clone and non-clone code. We also considered industrial projects written in Swift

and Java programming languages and investigated bug-proneness because of code cloning. Additionally, we

collaborated with mobile apps’ developers to perceive their opinions on code cloning and software bug. Our

study analyzed all major types of clones (Type 1, Type 2, and Type 3) and non-clone code to determine

their consequences in bug occurrence and maintenance throughout the project evolution. We investigated

thousands of revisions of eleven open-source and industrial mobile projects and analyzed commit messages to

detect bug-fix commits determining change rates in clone and non-clone. According to our investigation, clone

code (especially Type 2 and Type 3) are more bug-prone than non-clone code. Furthermore, we observed that

code clone occurs more frequently in industrial projects but experiences a lower amount of change in Type 1

clone code than in open-source projects. We found that mobile apps are less bug prone than non-mobile apps

65



while code cloning. We believe that our exploratory analysis of bug-fix commits and clone and non-clone

code characteristics are valuable for understanding clone management in open source and industrial mobile

software maintenance and make understandable to treat mobile and non-mobile (desktop) apps equally.

Moreover, the survey of 23 developers from 16 different companies across Canada and Bangladesh

strengths our study outcomes concerning code clones usability and effects in code maintenance. Besides

cloning code from one file to another, developers frequently copy/clone code from SO. In the survey, we re-

ceived experiences of more than 75% of developers who witnessed software bugs because of the cloned/reused

code from SO. Therefore, the next chapter will convey the impacts of SO code elements in the software

codebase of open-source and industrial mobile apps.
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5 Cloning and Consequences of Stack Overflow

source code: a study on open-source and industrial

mobile applications

As discussed in Chapter 4, developers reused SO code elements into their projects and experienced bugs in

later revisions. So, further investigations are warranted regarding the impacts of SO code snippets in mobile

apps. In particular, software bugs and code maintenance that cost trillions of dollars every year, including

fatalities such as a software bug in a self-driving car that resulted in a pedestrian fatality in March 2018 and

the recent Boeing-737 Max tragedies that resulted in hundreds of deaths. As a result, a number of studies were

conducted about usability and how developers acquire insights from SO regarding implementation problems

in open-source mobile apps. However, to the best of our knowledge, no existing work covered the actual

impacts of SO source code reused in mobile apps in the context of change-proneness, bug-occurrence, and at

the time of bug-fixing. Additionally, no study incorporated industrial mobile apps to study the impacts of SO

code snippets. In this study, we conducted an exploratory study in order to investigate the change-proneness

and bug-proneness of reused SO code fragments considering ten open-source and industrial mobile apps.

Following our selected dataset, our analysis exhibits, 1) the proportion of reused SO code is comparatively

higher in industrial mobile apps than open-source; 2) open-source projects mostly reuse SO code to enhance

existing features where industrial projects reuse for adding new features into the app; 3) SO code fragments

are significantly more change-prone than non-SO code; 4) SO code snippets are responsible for bug occurrence

in later revisions, and that is comparatively higher in industrial projects than open-source. Our experimental

results can assist the SO, research, and mobile developer communities to strengthen usability and concerns

to facilitate code-quality improvement and minimize software bugs due to SO code.

The rest of the chapter is organized as follows. Section 5.1 discusses the background of this work and

research questions. Section 5.2 shows the motivating example behind this work. Section 5.3 depicts several

studies related to this work. The overall methodology is discussed in Section 5.4. In Section 5.5, key findings

and answer of the research questions are presented. Threats to the validity of this study are presented at

Section 5.6 and finally, concludes this chapter with Section 5.7.
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5.1 Introduction

Stack Overflow (SO) is the progressively essential and most widespread crowd-sourced forums for developers

and practitioners due to the lack of conventional and official learning resources [153, 160, 195], where the

developers search for solutions by asking questions and share potential knowledge by answering questions. On

the other hand, customer satisfaction, software quality, efficient timing, and cost-effectiveness are primary

concerns during software development, especially for mobile apps. Therefore, software developers usually

reuse similar and new source code fragments from different sources such as open-source sites (e.g., GitHub)

[85], external libraries [118], developers forums and questions answering sites [161, 169] (e.g., SO) in a

consistent manner. Although, the usage of external source code and development constraints are considerably

different in open-source and industrial projects in terms of security, quality of support, and various policies

[17], source code cloning is a widely accepted practise in both environments [118, 158].

Several existing studies [58, 145, 156, 178, 182] investigated that SO code snippets might be toxic, error-

prone and sometimes code are irreproducible to its actual usage. On the contrary, studies [42, 149, 161]

showed insights into the usability of SO code in software development. Furthermore, a plethora of research

considered open-source mobile apps and SO code snippets that introduced possible domains where SO code

can be reused, such as small development teams with time constraints [24, 190], novice or less experienced

developers [24, 133] and when required resources are limited [133]. A similar prior study [24] illustrated

how much, why, who, and when SO code snippets are reused in open-source mobile apps. According to

Abdalkareem et al. [24], the amount of reused SO code varies to different apps, enhancement of existing code

is the potential reason for reusing, more experienced people in smaller teams/apps and less experienced people

in large team/apps mostly reuse SO code. Moreover, mid-age and older apps reused SO code snippets later in

the lifetime. They also claimed that the open-source projects that reused the SO code snippets experienced

more bug-fixing commits than before the reuse, which might affect the app’s quality. However, they did not

examine the actual consequences of the SO code elements regarding how they behaved upon the rest of the

commits, change-proneness, and bug-proneness. In addition, none of the studies illustrated industrial mobile

apps towards reusing SO code where the same group of people are involved with the majority of mobile

projects of a company. If one of the team members has benefited from using SO code in their developed

project, then it is possible to have SO code in all projects developed by the same team. If we are aware of

further consequences of reused SO code, either positive or negative, we would be able to revise development

strategies accordingly to the companys’ benefits.

Unlike open-source projects, commercial companies do not really want to use or have limited access to

the external source code, such as third-party libraries and available crowd-sourced sites (e.g., SO, Quora)

[158]. Instead, most monetary software industries use their built-ins to prevent code leaking, fraudulent code

behaviour, attributions, and license violations [158]. We surveyed 23 mobile app developers from 17 different

commercial companies in order to understand the usages and later consequences of SO code snippets. We
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noticed that around 95% of the developers usually copy/paste (code cloning) code fragments from SO to their

projects and that over 75% of such developers experience bugs after such activities (the code reusing from

SO). Moreover, software bugs and failures cost trillions of dollars every year, including severe catastrophic

incidents such as pedestrian fatality in March 2018 by an autonomous car, Boeing-737 Max tragedies, Therac-

25 radiation therapy system and other software-control arrangements that resulted in hundreds of deaths.

To leverage the study gap regarding industrial mobile apps and actual consequences of SO code snippets,

we studied ten open-source and industrial mobile apps containing thousands of revisions along with more

than two million SO answer posts that contain Java code snippets to get insights into the usage diversity,

change-proneness, and bug-proneness of SO code in the context of mobile apps. We formulate four research

questions (RQs) for the study, which are shown in Table 5.1. In RQ1, we noticed that the amount of reused

SO code varies among selected mobile apps and that reused proportion is significantly higher in industrial

projects than open-source. Enhancing existing code and integrating new features are the most potential

reasons for SO code reusing, discussed while answering RQ2. From the analysis of RQ3, we experienced that

SO code fragments encountered more code-change during app maintenance than non-SO code. Although SO

code snippets are reused in bug-fixing commits, they (reused SO code) are also a source of software bugs

in later revisions (examined in RQ4). Our experimental results can benefit both SO and mobile developer

communities to get insights into code reusability, maintenance and software bugs in the context of mobile

apps development.

Table 5.1: Research questions of this study.

Serial Research Question

RQ1 What is the amount of SO code snippets reused in mobile apps? Is there any quantitative

difference between open-source and industrial mobile apps regarding the reuse of SO code?

If so, is it significant?

RQ2 What are the possible reasons for reusing SO code? Do industry developers reuse code for

similar purposes as open-source developers?

RQ3 How stable are the reused code snippets? What is the rate of code-change of SO code

snippets throughout the app evolvement? Is it significantly higher or lower than non-SO

code change?

RQ4 Does SO contain buggy code snippets that reused in mobile software codebase?
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Figure 5.1: An example of buggy SO code snippets reused in an industrial project.

5.2 Motivating Example

Existing studies [24, 42, 161] revealed that mobile developers seek assistance regarding implementation prob-

lems during app development by asking questions in SO, and even for open-source mobile apps, developers

reused SO code snippets for different purposes. However, although the studies are performed with open-

source projects, there is no existing knowledge concerning reusing SO code snippets in industrial mobile

apps where external code cloning is almost prohibited or limited, especially from crowd-sourced sites [158].

Additionally, the question is raised regarding the bug-proneness of resued SO code in mobile apps. Therefore,

we present the motivation of our research, where SO code snippets have been reused in mobile apps of the

ABCD (blinded for reviewing purpose) software company and later induced bugs. Figure 5.1 portrays an

example where an answer post1 with a code fragment that was reused in a project named “DingFree” of

ABCD company of its 108th revision and later in 113th revision, the reused SO code snippets is deleted to

fix a crash bug.

The answer post1 illustrates a solution to the functional issue that maintained a specific location within

a circle. Using the timestamps (answer posted date and project commit date), we can determine that the

SO code snippet was cloned or reused in the industrial project after it was available on SO. However, in

the 112th revision, the reused code-block occurred a system crash when it lost internet connectivity (as per

commit message of 113th revision). As SO code elements induce software bugs (as of motivating example),

the detailed analysis of SO code snippets is warranted significantly regarding bug occurrence and further

maintenance.

1https://stackoverflow.com/questions/32840709/
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5.3 Related Work

Abdalkareem et al. [24] conducted an exploratory study on several open-source Android apps to understand

the usage of code elements from SO. They mainly investigated the how much, why, when and who questions

related to cloning code from SO. Additionally, they mentioned that the Java files with SO code snippets

experienced more bug-fixing changes than before the reuse of SO code. However, they did not analyze

whether the reused SO code snippets were indeed responsible for bugs or not. Moreover, their study was

limited to SO code fragments that have a length of 30 or more lines, whereas the lengths of SO code were

below 20 lines in most cases in the entire dataset. Our study analyzed the impact of SO code elements

reused in open-source and industrial mobile apps in the context of bug-proneness and change-proneness in

later revisions. We selected all the Java code snippets (except traditional loop or if-else statement) from SO

answer posts and investigated to what extend SO code elements could be responsible for software bugs and

later maintenance. As a result, developers and practitioners from mobile industries would understand the

implications of reusing SO code elements into their apps.

Lotter et al. [120] investigated code reuse between SO and open-source software (OSS) from SourceForge

and GitHub. Their research aimed to find the code clone rate 1) within SO posts, 2) between SO and OSS

and 3) between one OSS to another OSS. Their quantitative analysis showed around 1% of SO code reuse

within popular Java projects, and code reuse from one OSS to another revealed up to 77.2%. They also

talked about the appropriate use of code reuse and awareness of attribution requirements. Similar kind of

study [126] examined key trends and inspect the co-change patterns of code fragments on SO and GitHub

projects.

Nikolaidis et al. [58] presented a relationship between the presence of reusing code taken from SO and

technical debt (TD) of a target system and found that TD density is significantly lower and also majority

of reused code maintained the design and code rule violations, which confirmed the high efficiency and

code quality of SO code snippets. Where another study [155, 156] says, SO contains around 20% outdated

code which might create TD in future software maintenance and 66%-69% developers never check license

requirements at the time of reusing SO code snippets.

A preliminary study [27] investigated the behaviour of SO code snippets on software cohesion and reveal

that in 70% of copied cases, SO code reduces the cohesion of recipient classes and, therefore, lowers the code

quality. Their analysis indicated that developers should be more concerned when reusing SO code into their

projects’ code-base. Another research [129] evaluated the code quality of SO answers’ code fragments in

terms of reliability and programming practices.

SO is a profoundly popular learning and knowledge-sharing online crowd-sourced forum where users ask

for help on various domains. Among them, web and mobile apps related topics asked and discussed more

and more by the developers [42]. Rosen et al. [161] showed that mobile developers usually ask about almost

all issues related to apps development, where mobile apps configuration and user interface got the highest
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number of questions to answer. According to the evidence of [25, 161], it says that mobile app developers

get knowledge or code snippets and use them in their projects if needed, both on open-source and industrial

platforms.

Several studies have been conducted on mobile app development regarding code reuse. For example, Ruiz

et al. [168] observed that in several Android apps, around 23% of Java classes inherit from one of the base

classes API and 27% from domain-specific classes. In addition, they examined 217 mobile apps and concluded

that another app completely reuses these apps. Other studies [131, 189] showed that mobile apps intensely

rely on third-party libraries and APIs.

Apart from all existing researches on open-source mobile apps and code reuse from SO, here in this study,

we explore several industrial mobile apps written on Java along with open-source and investigate the SO

code usage and stability in further maintenance. Furthermore, we also inquire about the bug-proneness and

reasons for SO code reusing both for open-source and industrial mobile software perspectives. However, to

the best of our knowledge, no existing studies covered industrial projects. Furthermore, to what extent the

actual implications of SO code elements differ from open-source mobile apps regarding usability, software

bugs and later code maintenance was not investigated earlier.

5.4 Study Design and Dataset Preparation

This study intends to perform an empirical analysis on the reuse of SO code in open-source and industrial

mobile apps. In order to understand the additional maintenance effect of reused SO code, we extract all code

fragments from SO answers related to Java and select five open-source and five industrial mobile apps for

exploratory analysis. Figure 5.2 depicts the overall approach of this study. The following subsections discuss

the dataset preparation and experimental design of our study.

Figure 5.2: Overall methodology of our study.

5.4.1 Mobile Apps Dataset Preparation

To find reuse code from SO in mobile apps, we require source code from the mobile apps’ codebase. For

this study, we select ten open-source and industrial mobile projects. These apps have variations in domains,
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sizes, number of revisions, and whether another study [24] used them as a dataset. An important factor for

selecting these apps is considering a broad range of application domains such as travel, music and video,

shopping and so on. We also choose the most popular and satisfactory apps of the ABCD software company

in diverse domains with differing sizes and revisions. All of these mobile apps are downloaded from online

GitHub2 repositories (for open source projects) and BitBucket3 which is the development site of ABCD

Software company (for industrial projects). Table 5.2 shows an overview of mobile apps data preparation

steps.

Table 5.2: Preparation of Mobile dataset from codebase.

Step # Quantity

Total number of open-source mobile apps 5

Total number of industrial mobile apps 5

Total number of revisions (both in open-source and industrial) 18, 528

Total number of revisions where Java code change 11, 405

Total number of ‘.java’file created using diff result 1, 18, 474

Average lines of code per file (excluding outliers) 12.61

and Median (excluding outliers) 8.00

We extracted all the revisions (aka. commits) of each mobile apps from the respective repositories and

got 18, 528 revisions of the entire 10 projects. Developers usually add, modify or delete code segments in each

revision to solve particular issues or features, and it might be the high time of reusing code from open-source

development sites such as SO. Numerous operations (additions, deletions, and modifications) are performed

during the development stages and eventually form a final revision. So, it is not an efficient idea to study

code reuse from SO only in the last revision and therefore, we consider each revision to the time of this study

conducted. Next, we make .java files (in original filename) by integrating all the code differences between

to consecutive revisions identified by UNIX command diff. We separate the latest revisions’ changes as

new (newly added or modified code) and earlier revisions’ changes as old (previous code that was deleted

or modified at later revision). For example, if there is a file named SampleFile.java in revision n and n+1,

then the newly added/modified code in revision n+1 and the deleted code from revision n will be formed

SampleFile new.java and SampleFile old.java, respectively.

We experienced code-change in 11, 405 revisions that constructed 1, 18, 474 Java files that will be used

in the clone detection stage along with SO code snippets. We excluded all the code snippets containing

only variable renaming, adding extra import statements or identifiers to reduce the dataset being compared

effectively. We also calculated the average lines of code and got 12.61 LOC per file while excluding the

outliers.

2https://github.com/
3https://bitbucket.org/product
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5.4.2 SO Dataset Preparation

TO build the SO code snippets dataset, we download SO posts from Stack-Exchange Data Explorer [1] via

SQL query. The site [1] aims to make queries from SO original database covering every data and metadata of

SO posts like authors, question body, answers, votes, creation date and so on. But the limitation is that it can

return only fifty thousand rows at a time while performing a particular query. Therefore, we apply the same

query mentioned with post tag ‘java’ again and again and get the result from the beginning to August 04,

2021. In that time, SO contained 53, 603, 853 posts and 4, 073, 112 posts with ‘java’ tag containing 6, 495, 603

answers. A similar study by Abdalkareem et al. [24] further filtered with ‘Android’ tag to reduce the dataset,

while another study Cheon et al. [49] illustrated that Android and Java apps often share the same codebase

because of having unique programming language. As a result, we stick to consider all the code fragments

tagged with ‘java’.

Table 5.3: Preparation of SO dataset from answer posts.

Step # Quantity

All posts in the SO dataset(up-to August 04, 2021) 53, 603, 853

All posts tagged with ‘java’ 4, 073, 112

Number of answers present in ‘java’tag 6, 495, 603

Number of answers contain code snippets 2, 169, 249

Number of code snippets contain Java code 2, 159, 056

Code snippets with > 20 lines 2, 17, 064

Code snippets with >= 10and <= 20 lines 3, 76, 730

Code snippets with < 10 lines 1, 575, 450

Average lines of code per snippets (excluding outliers) 9.07

In the next step, we identify the relevant answers which have code snippets. We find 2, 169, 249 answers

have code snippets containing Java and non-Java (ex. JavaScript, XML, and stack traces) code. To separate

the Java code, first, we extract the code snippets with the help of HTML tag ‘< code >< /code >’, which

surrounds the code elements. And then, we make individual .java files for each code snippet. Next, to

eliminate the non-Java code elements, we apply regular expressions to get only code snippets that secure

proper Java syntax. After eliminating non-Java code, we also delete the statements that started with ‘import’,

‘Scanner’, and blank lines, and finally get 2, 159, 056 Java files ready for future experiments.

We determine the number of lines of each code snippet and find the minimum length of one line and the

maximum length of 1, 458 lines with an average of 9.07 lines of code per file. A prior research [149] suggested

that the excellence of quality of code depends on the number of votes it holds. Accordingly, Abdalkareem
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et al. [24] focused only on code snippets containing 30 lines of code which have high average votes than

the code snippets of less than 30 lines. In our case, we consider all the code snippets received from SO

answers. Because, when preparing the mobile apps dataset, we found code changes (additions, modifications

or deletions) between two consecutive revisions, mostly 5 to 15 lines of code, and some were even less than

five lines of code. Therefore, we wanted to find every possible code reuse from SO answers that have lower

code lines. Besides, at the end of comparing SO and mobile apps code snippets, we check manually to remove

the lower lines of reused code fragments (if any) that might contain common and straightforward code, such

as if-else and loop statements. Table 5.3 summaries how we prepared this final number of SO code snippets.

5.4.3 Detection of Reused Code from SO

After preparing the SO code snippets and mobile apps code-change throughout the app lifetime dataset, it

is time to find the SO code fragments reused in both open-source and industrial mobile apps. Therefore, we

apply CCFinderX [96], a clone detection tool that follows the token-based approach to identify exact (i.e.

Type 1) and near-miss (i.e. Type 2) clones, which implies that the two source code fragments have a similar

syntax except for variety in identifiers and literals. We restricted our experiment to Type 1 and Type 2

clones to reduce the number of potential false positives associated with the Type 3 clone, created by adding

and deleting code lines in Type1 and Type 2 clones. Moreover, we also did not consider Type 4 or semantic

clone (same results but different implementation) for this study.

Since CCFinderX detects clones using token matching, we must set the number of tokens it should

consider while detecting similar code. This study wanted to know the detailed use of SO code, even for

smaller code snippets. So we set the token match count 50, which is the lowest and default configuration of

CCFinderX. There are several reasons behind the selection of CCFinderX. 1) it can work on code snippets

having syntactical errors, while other clone detectors need compilable code snippets as input. As almost all

code snippets from SO and mobile apps are not complete and have syntax issues, CCFinderX is best suited

for these kinds of datasets; 2) it detects exact and near-miss clones, which is the main goal of investigating

our research questions; 3) it provides great efficiency in CPU and memory usage. The prerequisite to run

CCFinderX is a 32 bit operating system (we use Windows 7 and it does not work in Windows 8 or above)

and python version 2.6 (not work on python 2.7 or above). Initially, we faced difficulties related to memory

issues when executing all datasets at a time because it has more than two million Java files. Later, we split

the SO dataset into five halves and ran them multiple times separately with mobile apps dataset and got

smooth clone result with acceptable running time; 4) it returns multiple clones (if any) of varied sizes in

single code fragment and such cases, we considered the largest matched clone.

So far, we discuss the first part of clone code detection shown in Figure 5.2. When analyzing CCFinderX

outputs after a sequence of processing to get exact line numbers of clones, we saw a large number of code

clones between apps vs SO, apps vs apps, SO vs SO, and even a single code snippet has multiple identical

smaller code blocks. An existing research [38] showed that SO itself is a source of duplicate code segments.
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Therefore, ignoring other clones, we selected only the clone pairs between SO and mobile apps Java files.

Still, we are not aware whether the mobile apps’ developers reused those code fragments from SO or not.

To identify the actual reused code from SO, we followed the idea of Abdalkareem et al. [24] and assembled

the answers’ post date (not questions’ post date) and mobile apps commit date of each clone pair. If the

commit date is later than the date of the answer post in SO, we consider these code elements reused in the

development stages of the corresponding mobile apps. All the qualitative and quantitative analyses regarding

reuse clone pairs, lines of code newly added, modified or deleted are described in Section 5.5.

5.4.4 Statistical Significance Analysis

We verify some of our experimental results using two statistical methods. First, Cohens’ kappa coefficient

(k) [4], which is a measurement to evaluate inter-rater agreements between two raters. For example, one

of our research questions (RQ2) needs classification agreements between two graduate students on the same

resources. The coefficient score helps to assess their mutual agreements and acceptability of the classification.

Cohens’ kappa coefficient (k) value varies between -1 to +1, and the more positive value, the more efficient

the agreement is. Second, Mann Whitney U test (also called Wilcoxon Signed Rank Sum test) [12] is a

non-parametric statistical method that allows statistical inference without making the assumptions that the

sample has been taken from a particular distribution (i.e., normal). We employ the Mann Whitney U test for

independent samples data to encounter the significance between open-source and industrial, SO and non-SO

code snippets of mobile apps. Besides, we consider 5% level of significance and two-tailed test (because of

testing statistical significance in both directions and calculating the p-value) and observe the critical U value

from the statistical chart [6].

Table 5.4: Statistics of CCFinderX output.

Item # Quantity

Total number of clone pairs betn SO & mobile apps 41, 644

Total number of code snippets originally reused 1, 302

Total number of unique posts reused 176

Total number of revisions used SO code 327

Total number of Java files contained SO code 210

Total lines of code from unique posts reused 2, 958
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5.5 Experimental Results and Analysis

Before digging into our research questions, we wanted to perform a preliminary analysis on CCFinderX

output to quantify how many clone pairs are detected as clones between SO and mobile apps’ code snippets.

Initially, many clones were detected between SO code snippets, between SO and mobile apps’ code snippets,

and between mobile apps’ code snippets. But, for this study, we extracted only the clone pairs that detected

between SO code elements and added code fragments of mobile apps of each revision. As a result, we detected

41, 644 clone pairs where SO code snippets matched with the same code snippets from mobile apps having

different lengths of clone size. Ignoring the duplicates and getting the largest clone size, we got 1, 302 SO

code snippets used originally in the mobile app’s codebase according to timestamp (SO answers’ post date

prior to the commit date). We also experienced multiple reuses of one single code snippet of SO that dig up

1, 302 individual SO answers snippets with 2, 958 lines of Java code. Throughout our ten mobile apps, SO

code is used in 327 commits and 210 Java file contain the reused SO code snippets. Table 5.4 and Table 5.5

represent the statistics of CCFinderX output and our subject systems with its type, domains, total number

of revisions and average lines of code, respectively. In this section, we elaborately justify our experimental

findings and relate them to find the answers to our aforementioned research questions.

Table 5.5: Subject systems and percentage of reused code from SO.

Projects Type Domain Revisions ALOC Code Reuse(%)

Siga Industrial Entertainment 519 3211 4.61

Bolt Mobile Industrial Service Provider 170 2165 4.20

Its Mylife Industrial Life Style 230 1921 1.92

Trusted Industrial Online Directory 182 32317 0.66

Ding Free Industrial Finance 240 11443 1.42

AnagramSolver Open Word 50 45728 0.03

Andlytics Track Open Shopping 1524 38274 0.65

Ankidroid Open Education 9298 49185 1.80

Frostwire Open Media & Video 6027 243848 0.40

Tramhunter Open Travel 288 10783 0.63

Average 1.68

Median 1.04
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5.5.1 Answering the first research question (RQ1)

RQ1: What is the amount of SO code snippets reused in mobile apps? Is there any quantitative

difference between open-source and industrial mobile apps regarding the reuse of SO code? If

so, is it significant?

Motivation: Code reuse is a frequent trend among developers, especially from open-source development

sites like SO. Although several studies [58, 156, 178] revealed that SO might have toxic code elements which

increase technical debts or even produce software bugs, developers use code from SO regularly. A prior study

[24] showed that open-source mobile developers reuse code fragments in their apps but did not study such

insights in the context of industrial mobile apps. In closed-source development environments, external code

reuse is limited or almost impossible to protect source code from leaking [158]. A survey of 23 industrial

developers from 17 different companies presented that more than 95% of developers frequently clone or

reuse code from crowd-source development sites like GitHub and SO. Although industries give less access to

external source code, it is promising to know the amount of SO code used in closed-source mobile apps and

find out the difference between open-source and industrial mobile apps in terms of SO code usages. If there

is some difference, then we need to know they are statistically significant or not.

Methodology: To find the answer, we calculated the percentage of reused SO code present in each

app with their average lines of code. Previous research Abdalkareem et al. [24] also considered the same

open-source mobile apps as we did. But our dataset preparation in both SO and mobile apps was utterly

different than Abdalkareem et al. [24]. In particular, we selected all the SO code snippets to feed into the

clone detector (CCFinderX) where they used only code fragments that contain 30 lines of code or more. It

creates a huge gap where the majority of SO code snippets are less than 20 lines (See statistics in Table 5.3).

Therefore, it is needed to recalculate the percentage score of reused code from SO in open-source projects,

and which would give us the actual scenario of SO code reuse in open-source projects.

Table 5.5 (column 6) shows the percentage score of cloned code reused by each mobile app. For example,

among the industrial apps, “Siga” has the highest amount (4.61%) of code elements came from SO answers’

posts and also had the lead among all projects, and “Trusted” has the lowest number (0.66%) of SO code

snippets. In open-source projects, “Ankidroid” and “AnagramSolver” possessed the highest (1.80%) and

lowest score (0.03%) respectively where “AnagramSolver” had the lowest amount of SO code elements in all

projects. We also measured the average amount of SO code reused for an app is 1.63%, and the median is

1.04%.

If we closely analyze the percentage of code reuse (in Table 5.5 column 6) in mobile apps, it seems industry

developers use SO code more than open-source developers. To verify the difference and know the statistical

significance, we apply the Mann Whitney U test [12] with a 5% level of significance and two-tailed test. With

five industrial and fine open-source projects, we got critical value of U at α = 0.05 is 2 [6]. From the test

calculator [12], we obtained U statistics is 2, which is equal to U critical and p-value is 0.03662, which is less

than 0.05 (at 5% level of significance). Hence, the difference is statically significant that says, in our dataset,
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industrial mobile apps have more reused SO code elements than open-source mobile apps.

Answer to RQ1: Although studies noted that SO has code smells and commercial companies have

limited or no access to external source code, developers from open-source and industries reuse code snippets

from SO in their apps’ development stage. Moreover, we found closed-source projects have higher ratio in

reused SO code than open-source, and their distribution is statistically significant.

5.5.2 Answering the second research question (RQ2)

RQ2: What are the possible reasons for reusing SO code? Are industry developers reuse code

for similar purposes as open-source developers?

Motivation: As we experienced in the first research question, open-source and industry developers use

SO code in their codebase, and closed-source mobile apps have more SO clone code than open-source. Now

the question is, what are the possible reasons for reusing SO code snippets. Is the reuse pattern different

in open-source and closed-source mobile apps? By answering this research question, developers from both

environments can better understand the purpose and usage of SO code snippets in their apps development

stages. Additionally, it is promising to know how SO helps industry people where commercial organizations

have limited access to external source code, especially open-access sites. Overall, this RQ reveals some insight

into the usability of SO Java code snippets in Android app development.

Table 5.6: Purposes of SO code reuse in mobile apps.

Categories
% of Commits

Open Source Industrial Overall

Enhancing existing code 28.67% 36.36% 29.45%

Adding new features 19.11% 42.42% 21.47%

Refactoring 10.58% 0% 9.51%

API usage 4.10% 0% 3.68%

Fixing bugs 19.45% 9.09% 18.41%

Test 6.48% 6.06% 6.44%

Other 11.60% 6.06% 11.04%

Methodology: To answer this aforementioned research question, we followed similar qualitative analyses

as as of Abdalkareem et al. [24]. But the difference is that at the time of finding reuse purposes of SO code

snippets, prior study [24] examined only commit messages. However, we considered both commit messages

and SO code snippets reused in specific revisions and manually classified them in seven predefined categories

as of Abdalkareem et al.[24]. Their experiment [24] contained only 135 commits that cloned SO code in the

22 selected open-source mobile apps because they restricted their analysis to only SO code snippets with 30
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lines of code or more, which prevented the actual reuse of code snippets in mobile apps. We considered all

code snippets from SO and ensured that all the clone pairs truly reused identified by the CCFinderX clone

detector in mobile apps development both in the open-source and industrial sectors. As a result, we spotted

a total of 327 commit messages (294 for five open-source projects and 33 for five industrial projects) and 209

Java files that carried SO code snippets of our ten mobile apps.

To categorize the selected commit messages, two graduate students independently and separately investi-

gated the commit messages associated with SO code snippets used in the corresponding commits and finally

classified them into seven groups (i.e., enhance existing code, adding new features, refactoring, API usage,

fixing bugs, test and other). Each graduate student completed their groups by reading and analyzing commit

messages and code snippets and sometimes learning from comments in original SO answers’ posts. After com-

pleting the classification, they shared their findings and decided the group of commits messages that arose

difficulties to classify. Finally, they met on an agreement and categorized 327 commits into seven groups.

Table 5.6 depicts the percentage of commits reused SO code snippets of each category of possible reused

purposes. The columns of Table 5.6 represent seven categories, percentage of commits only for open-source

mobile apps, percentage of commits only for industrial mobile apps and overall percentage of commits for

both open-source and industrial mobile apps respectively.

Before discussing the result of categorization, we performed Cohens’ kappa coefficient [4] to evaluate the

level of agreement between the two graduate students. Therefore, we determined the coefficient k that shows

the level of agreement between the two students to be +0.803, and it is an excellent reliable agreement to

justify the categorization [64].

In Table 5.6, we can see that around 51% commits of our selected mobile apps use SO code for enhancing

or modifying existing code and for the purpose of adding new features. Although the number of investigated

commits varies between open-source 294 commits (1.71% of all commits) and closed-source 33 commits

(2.46% of all commits) projects, industry projects have more reused code from SO than open-source projects

(discussed and visualized in Section 5.5.1 and Table 5.5). So, it is promising to know the individual score of

each category both for open-source and industrial mobile apps. Hence, we calculated the score and found that

open-source developers mostly reuse SO code to enhance their existing code (28.67%), where industry people

mostly employ SO code snippets for adding new features (42.42%) in their projects. Additionally, there was

no usage of SO code in industrial projects regarding refactoring and API. Commercial organizations usually

avoid open-source API or third-party libraries because of security concerns, probability of bug occurrence

and having licenses violations issues [26]. However, even most software industries develop their own secure

libraries and use them in their projects. According to the selected industrial projects, reuse API from SO

might have harmful effects or license violation issues that prevent API insertion in commercial mobile apps.

Refactoring is the way to improve the internal structure of functions or codebases without changing the actual

behaviours. Unfortunately, our selected industrial projects did not use SO code snippets regarding refactoring

(0%), but open-source did (10.58%). Therefore, industry people do not regularly change already developed
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properties or features because commercial projects typically receive proper instructions and specifications

from targeted customers or clients directly and are developed by the same team (all the industrial projects

in our dataset are developed by the same team of ABCD software company). Additionally, refactoring is

labour-intensive, costly, and an error-proneness process that might increase maintenance work [106]. On the

other hand, many collaborators or developers shared open-source projects from different parts of the world

(projects “Ankidroid” has more than 110 collaborators) and designed and kept open for all. According to

our investigation, open-source developers often need to change design patterns while keeping the goal fixed,

and SO code snippets significantly associate with overcoming these issues.

Our analysis also reveals that SO is a great resource of potential code snippets that help bug-fixing in open-

source (19.45%) and industrial (9.09%) mobile apps. Although the percentage is low for industrial projects,

developers from both environments always seek assistance when needed from SO experts, and commercial

companies also encourage to get help by posting questions and share knowledge by answering questions [3].

Besides, SO code snippets also help in testing or reviewing code quality in both development environments.

Finally, category “Other” contains the commit messages that were not descriptive enough to classify and

also, the two raters did not become capable of making a precise classification by examined actual reused SO

code. Commit messages like “tags”, “dump version 2.0”, “cleaning” are classified as “others”. However, this

was a small percentage of the spotted commits and whatever the reasons, developers reuse SO code snippets

significantly in their mobile apps.

Answer to RQ 2: Based on RQ2 findings, the SO community will have an idea about what purposes

developers from open-source and industrial mobile apps use SO code snippets to support more effectively

by providing error-free and bug-proneness-free Java code. Open-source developers mainly reuse SO code to

enhance existing code, where industry developers reuse for appending new features to their mobile apps.

SO has also contributed to refactoring and API usage in open-source projects where commercial companies

avoid these because of maintenance costing and security issues. Moreover, developers from both platforms

get help regarding bug-fixing from SO answers. Finally, the researchers and the developers’ community will

know how SO resources are used in mobile app development. If the SO community can develop techniques

to manage fraudulent API, code smells and other bug-proneness matters, it might be an excellent resource

for the mobile developers’ community.

5.5.3 Answering the third research question (RQ3)

RQ3: How stable are the reused code snippets? What is the rate of change of SO code snippets

throughout the app evolvement? Is it significantly higher or lower than non-SO code change?

Motivation: From the above research questions, we learned how much SO code resued and for what

purposes in mobile app development stages. Although SO is one of the most popular crowd-sourced sites, prior

studies [58, 156, 178] revealed that SO code might be toxic and, therefore, might need further maintenance

after the reuse, which is not cost-effective. Thus, it might be promising to know the behaviours of reused

SO code in our selected open-source and industrial mobile apps. Moreover, developers can reuse SO code
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more effectively if they know the actual performances of SO code in real systems. By this research question,

we would get the insights into what extend SO code needs additional maintenance work and find out the

modification differences with non-SO code throughout the evolution process of mobile apps.

Methodology: At the time of preparing the mobile dataset, we identified the code fragments, which are

modified and deleted in the subsequent commits by UNIX diff command. We extracted the code elements

and named them as “ old.java” in corresponding apps’ revisions. Like each commits’ newly added code

elements, we also applied CCFinderX to find the SO clone fragments, which are modified and even deleted

in a particular commit. From the CCFinderX output, we separated the clone pairs where SO code snippets

matched with “ old.java” files (such as ConnectionHelper old.java). Then, we manually examined each new

and old file to confirm whether the clone block was changed in the new revisions. For example, suppose one

clone is paired between SO code snippet and the ConnectionHelper old.java file in commit n (the reused

SO code was reused in one of the commits between 1 to n − 1 ). The commit n also has the new file as

ConnectionHelper new.java, which is created by the modification of ConnectionHelper old.java for the next

revision n + 1. In the next step, we identified the SO code snippet from the ConnectionHelper old.java

(the old file also contains code elements other than SO code which are modified or deleted from the current

revision) and compared it with the ConnectionHelper new.java files’ code elements. If the identified SO

code snippet was changed or missing, we concluded that SO code experienced code-changes and therefore,

noted the number of lines of code which were changed. After checking all the matched SO code snippets

manually, we counted the lines of code that were modified or deleted and calculated the rate of code-change

by the following equation 5.1. We also determine the code-change rate of non-SO code utilizing the output of

diff command and average lines of code of each project via equation 5.2. Table 5.7 shows all the calculated

values of SO and non-SO code. To determine the stability of SO and non-SO code, we used the concept

of [69, 108, 123] considering lines of code changed throughout all revisions. There are other methods of

measuring stability regarding modification frequency and code age which are not applicable for this situation

because there is a full possibility of having non-SO code in each revision but SO code are not. In equations 5.1

and 5.2, CRSO and CRNSO stand for the percentage of code-change rate in SO and non-SO code respectively.

CRSO =
LOCs changed in SO Code ∗ 100

LOCs reused from SO
(5.1)

CRNSO =
LOCs changed in non-SO Code ∗ 100

ALOCs of non-SO ∗ total commits
(5.2)

In Table 5.7, the rates of lines of code changed in SO code is much higher than in non-SO code. For

example, project “Its Mylife” has a maximum code-change rate of 70.27% (26 lines changed out of total 37

lines of code reused from SO), and two mobile apps experienced no change in reused code snippets from SO.

Thus, the overall change rate is 21.26% (629 lines modified or deleted out of 2958 lines of code in total),

and 25.57% SO answer posts (45 out of 176 posts) are modified or deleted after being reused in mobile
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Table 5.7: Percentage of code change rate between reused SO and non-SO code.

Projects % rate of SO code change % rate of non-SO code change

Siga 25.00% 0.66%

Boltmobile 8.79% 1.10%

Its Mylife 70.27% 1.86%

Trusted 0.00% 0.05%

Ding Free 11.04% 0.98%

AnagramSolver 0.00% 0.06%

Andlytics Track 16.14% 0.12%

Ankidroid 25.59% 0.57%

Frostwire 23.09% 0.02%

Tramhunter 36.76% 0.42%

apps’ codebase. Although more than 74% SO code snippets are consistent throughout the app evolution, the

code-change rate of SO code is still much higher than non-SO code and hence, SO code is less stable than

non-SO. To find the statistical significance between the code-change rate of SO and non-SO code, we apply

the Mann Whitney U test [11] with a 5% level of significance and two-tailed test. From the statistical chart

[6], we got the U -critical = 23 for the 5% level of significance. From the Mann Whitney U test, we calculate

U -statistic = 20, which is less than U -critical and p-value = 0.02575, which is less than 0.05. Hence, the

SO and non-SO code-change rate distribution is different and statically significant, proving that SO code are

more change-prone than non-SO code.

Answer to RQ3: According to our analysis, 21.26% lines of code and 25.57% of reused SO posts in the

selected ten mobile apps experienced further maintenance. The change rates are much higher in SO code

than in non-SO code, which is statistically significant. Although the majority of the SO code is unchanged,

the change-proneness is not to be disregarded. Therefore, developers should be careful when reusing code

snippets from SO. Now, the concern is what proportion of code-change was performed at the time of bug-

fixing. Thus, we can get insights into the bug-proneness of SO code reused in mobile apps. Although

developers from both open-source and industrial apps reused SO code elements to fix bugs (according to

RQ2), it is equally important to explore whether SO code induce software bugs or not. We discuss this

concern in our next research question.

5.5.4 Answering the fourth research question (RQ4)

RQ4: Does SO contain buggy code snippets that reused in mobile software codebase?

Motivation: In the previous research question, we acknowledged that SO code needs more maintenance

than non-SO code. As a result, questions might arise about why the developers updated the code. Was it
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for regular code changes or bug-fix changes? Abdalkareem et al. [24] claimed that the files that reused SO

code experienced more bug-fixing changes after the reuse. In specific, the number of bug-fix commits before

reusing SO code is lower than the number of bug-fix commits after the reuse. But they did not investigate

whether the SO code snippets were responsible for the bugs after the reuse or not. Also, we learned from

RQ2 that 18.41% of commits reused SO code snippets to fix software bugs. So, it is necessary to analyze

the behaviours of SO code fragments either reliable for bug-fixing or responsible for occurring bugs. Thus,

developers can act accordingly to the beneficial or adverse effects of SO code elements while using in project

codebase.

Table 5.8: Characteristics of SO code for bug-fixing and bug generation.

Projects #BC #BC added SO code #BC modified SO code

Siga 70 2 2

Boltmobile 17 1 0

Its Mylife 26 0 1

Trusted 30 0 0

Ding Free 42 0 1

AnagramSolver 5 0 1

Andlytics Track 140 3 1

Ankidroid 1598 40 2

Frostwire 713 13 5

Tramhunter 11 1 0

Percentage of total bug-fix commits: 2.26% 0.49%

Percentage of total number of posts: 36.81% 7.98%

Methodology: To find the answer to RQ4, first, we identified the bug-fixing commits (BC) after SO

code were reused for the first time following the idea of Mockus et al. [132] to spot six specific keywords

(i.e., “bug”, “fix”, “fixup”, “error”, “crash”, and “fail”) in the commit messages. However, Barbour et al.

[41] proved that the probability of success using the idea of Mockus et al. [132] is 87% for desktop subject

systems, which is acceptable. We also manually scrutinized all the commit messages of each industrial and

open-source project and found 93-100% accuracy scores. Second, we determined the number of bug-fixing

commits that reused SO code from the investigation result of RQ2 (SO code reuse for bug-fixing) and the

number of bug-fixing commits that modified or deleted the previously used SO code fragments to fix bugs

from the analyses of RQ3. If one or more code fragments are deleted or modified in a particular bug-fix

commit, then it is an implication that the modifications of those code fragment(s) were necessary for fixing

the corresponding bug. We noted that these code fragments are responsible for that bug occurrence. It is

84



also true for newly added code fragments in bug-fixing commits, noting that the code fragments are used to

solve the occurred bugs. The number of total bug-fixing commits, the number of bug-fixing commits reused

SO code, and the number of bug-fixing commits that modified or deleted SO code snippets of each project

are shown in Table 5.8.

From Table 5.8, we see that about 2.26% of overall bug-fixing commits used SO code (obviously along with

non-SO code if needed) to solve software bugs that occurred in the codebase. Open-source projects reused

more SO code snippets (2.31% of total open-source bug-fixing commits) to solve software inconsistencies than

industrial projects (1.62% of total industrial bug-fixing commits). On the other hand, only 0.49% of overall

bug-fixing commits modified or deleted SO code snippets to fix the confronted bugs. Nevertheless, the SO

code snippets occurred more bugs in industrial projects (2.16% of industrial bug-fixing commits) than open-

source (0.36% of open-source bug-fixing commits) which turned modification or deletion of SO code. On the

contrary, 36.81% of SO answers’ posts were used to fix bugs, and only 7.98% of SO answers created bugs in

later revisions (the total unique SO answers’ post reused in our mobile dataset is 176. Details are in Table

5.4). Although a limited portion (7.98%) of the reused SO posts created software bugs, it is not negligible

toward the quality of mobile apps. Moreover, a single bug could be responsible for catastrophic incidents

that could cost massive economic disruption4, including fatalities that result in death or severe injuries such

as pedestrian fatality by an autonomous car5, Boeing-737 Max tragedies6, Therac-257, scheduling errors

for mammography tests of elderly British women, leading to hundreds of premature deaths8 and so on.

Therefore, although SO is one of the most popular crowd-sourced sites and developers from distinguishing

platforms get benefits from reusing SO code elements, developers should carefully reevaluate SO code when

incorporating it into the software codebase. Because reused SO code fragments induced bugs in our selected

mobile apps and hence, SO is a possible source of buggy code along with other code smells such as outdated

code, attributions and licence violations [156]. A potential code review technique is warranted to strengthen

SO code elements that might increase code quality and minimize app inconsistencies.

In general, the answer score and the answerers’ reputation score reveal the quality of an answer for a

particular question. The higher the answer score of an answer post, the more efficient it is. The answer score

depends on the number of upvotes and downvotes it gets from the users of the SO community. A regular user

can see only the difference between upvotes and downvotes as an answer score. Additionally, the upvotes

and downvotes score affects the reputation score of a user. The higher the reputation of a user can be more

trusted and received new privileges than low-reputation users [2]. In this experiment, we intensely scrutinized

the answer scores and users’ reputation scores of the SO answer posts resued for bug-fixing and generated

bugs in our selected open-source and industrial mobile apps. According to our analyses, we could not find any

correlation among users’ reputations, answer scores, buggy, and non-buggy SO code snippets. For example,

4https://tek.io/2FBNl2i
5https://bbc.in/3B44YRH
6https://abcn.ws/3jl21WV
7https://bit.ly/2KU9IR2
8https://bit.ly/2E1fYap
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two answerers of the two buggy-SO code snippets have reputation scores 19,806 and 425, respectively. On the

other hand, users with reputations 875 and 21,737 posted non-buggy-SO code snippets of asked questions.

Although [2, 124] says that a user with a high reputation score has diverse subjects expertise, the answers

given by the user might be negatively valued by other SO users. For example, a user with a reputation of

more than 7K has given an answer with a score of -1. Likewise, we noticed buggy and non-buggy answers

with +5 and -1 answer scores. So, both user reputation and answer score seem inadequate to authenticate

the code quality when reusing code fragments from SO. Possible supports might consolidate from domain

experts at the time of answer submission regarding code quality. However, manual code quality analysis is

strenuous and time-consuming, referring to an automatic code review system integrated with SO.

Answer to RQ 4: SO code are frequently reused in mobile apps to assist bug-fixing commits, especially

for open-source apps. On the other hand, the industrial projects reused less SO code for bug-fixing but

experienced higher bugs occurred by the SO answer posts than opensource projects. The percentage of SO

posts that generated bugs is limited but can not be ignored as software bugs can cost even life beyond the

limit.

5.6 Threats to Validity

To detect the reused code snippets from SO, we analyzed the output of CCFinderX [96], which may suffer from

confounding configuration choice problem [200] that might have influenced our study outcomes for different

settings of the tools. The setting that we used for CCFinderX for this experiment are considered standard

and with these settings, CCFinderX has been shown to detect Type 1 and 2 clones with high accuracy [96].

However, there might have been false positives. To help mitigate this issue, we manually examined all the

clone pairs identified as reused code snippets and ensured all the pairs were indeed clones to each other.

Like Abdalkareem et al. [24], we considered commits’ and SO answer posts’ timestamp to identify

the reused code fragments (SO answer posts’ date is prior to the commit date). So, it might be possible

that the detected code snippets were not originally reused rather, the performed commits were delayed

by the developers. In RQ2, we determined why developers reuse code from SO by categorizing commit

messages manually. However, the categorization may be biased and inclined to human error. Two of our

graduate students (previously worked as mobile apps developer) manually investigated the commits messages

and reused code fragments to alleviate this threat. Then they gave their opinions regarding each commit

classification and came to the point of agreement. We also applied Cohens’ kappa coefficient [4] to evaluate

their mutual agreement and got an excellent inter-rater agreement with the value of +0.803.

Finally, we examined industrial mobile apps collected only from the ABCD software company. Addi-

tionally, we have also analyzed open-source projects developed by different-sized distinguish teams, where

industrial apps mostly share the same development team.
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5.7 Conclusion

Code cloning or reusing from one source to another is a frequent phenomenon at the stages of the development

of any software system. In this study, we conducted experiments regarding the usage and implication of SO

code snippets in ten open-source and industrial mobile apps. As a result, we noticed that the ratio of reused

SO code snippets varies for different mobile apps. Furthermore, industrial mobile apps carried more SO

code elements than open-source apps, and the difference is statically significant. The overall purpose of

using SO code fragments is to enhance existing code elements but specifically, closed-source projects used

SO code to add new features into mobile apps. Additionally, the resued SO code snippets are more change-

proneness and need potentially high maintenance than non-SO code throughout the evolution of the app

lifetime. Moreover, developers from the mobile industry reused SO code snippets to fix software bugs, but

also experienced software inconsistencies because of the reuse code fragments. Our study outcomes indeed

provide some relevant insight into the reuse of SO code in mobile apps development. Our findings inform

the SO community to what extent the SO code snippets are reused in mobile apps and then acknowledges

the consequences of buggy SO code by making efficient code fragments in their answers. Our study further

implies that, the users of more expertise should participate in answers evaluation and improvement regarding

the code quality so that mobile developers can have benefits to the secure use of SO code snippets with

proper attributions and license requirements. Automatic investigation of code level properties (code review)

that prevent further bug occurrence and notify developers about the code smell before reusing in mobile apps

might be an extension of our work in the future, as well as integrate more industrial and open-source projects

along with other crowd-sourced sites.
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6 Conclusion

6.1 Concluding Summary

The development of mobile apps has become to be one of the fastest-growing areas of software communities.

With the growth of mobile apps usage and associated intelligent technologies, the maintenance of mobile

apps is inevitable regarding enhancing performances, applying advanced development, reducing error, and

overall steady customer satisfaction. To help mobile app developers regarding software development and

later maintenance, we conduct three studies in the context of bug classification, bug-proneness and stability

of source code during app evolution stages, comparative analysis between open-source and industrial mobile

apps, source code reuse from Stack Overflow (SO) and the consequences in bug-fixing and bug creation and

finally significant premise to choose better code snippets for SO. We believe our conducted studies contribute

significant insights into the mobile development environment both in open-source and commercial projects.

Our first study collected 2,700 mobile apps bug reports collected from different open-source developer

sites (e.g., GitHub, F-droid, Trac, and Google Code). Then, we applied several supervised and unsupervised

machine learning algorithms to classify the collected Android and iOS mobile bug reports. However, almost

all the existing similar studies used traditional desktop-based software bug reports to categorize a maximum

of three classes where we classified mobile bug reports into four classes (i.e., Crash, Energy, Functionality,

and Security) to understand the bug severity in more specific contexts which help take appropriate decision

and allocate related resources in urgent basis. Therefore, we first attempted to apply a clustering algorithm

(i.e., K-means) to categorize the bug reports into four classes. However, due to excessive overlapping among

class types, we did go for manual labeling. Finally, after so many manual hours of two graduate students,

we labeled each bug reports based on specific features. We also prepared a feature set of each type of bug

that helps to classify the newly occurred bug. We fed the features into five supervised algorithms and got the

most acceptable result for the Support Vector Machine (SVM) algorithm with an f1 score of 91%. Apart from

some shortcomings such as data imbalance (explored more than a hundred Android and iOS applications

to find security and energy bug reports but experienced inadequate numbers), our analysis helps mobile

developers and maintainers to take appropriate actions and resources clearly (because bugs are reported in

developer sites are sometimes messy and not properly formatted) and get insight into which bug types of

mobile application are frequently proclaimed so that developers give more attention in this regard.

In the second study, we did an in-depth comparative analysis of eleven open-source and industrial Android

and iOS mobile apps bugs and change- proneness in clone and non-clone code. In addition, our study analyzed
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all significant types of clones (Type 1, Type 2, and Type 3) and non-clone code to determine their consequences

in bug occurrence and maintenance throughout the project evolution. According to our investigation, clone

code (especially Type 2 and Type 3) are more bug-prone than non-clone code. Furthermore, we observed

that code clone occurs more frequently in industrial projects but experiences a lower change in Type 1 clone

code than in open-source projects. We also conducted a comparative study between mobile and non-mobile

applications and found that mobile apps are less bug-prone than non-mobile apps while code cloning. By

this research, mobile developers can get insights into the negative effect of code cloning that cloning or

reusing similar code from one file to another or one project to another might have the meaningful possibility

of occurring bugs into their apps and need more maintenance. In addition, the study is also promising

to understand clone management in open-source and industrial mobile software maintenance and make it

understandable to treat mobile and non-mobile (desktop) apps equally.

The third study showed a practical use of source code of crowd-sourced developer sites, specifically Stack

Overflow (SO), in the context of mobile applications. We investigated ten open-source and closed-source

mobile apps written in Java with the immense resources of SO questions and answers. We selected only

the answers which contained only Java code snippets. For the mobile dataset, we extracted all the added,

modified, and deleted source code from the thousands of revisions of each mobile apps. According to our

experimental results, industrial mobile apps contained more SO code elements than open-source apps. In

order to understand the statistical significance, we applied the Mann-Whitney U test and got a significant

result. In industrial projects, developers reuse SO code mostly for adding new features when developers

from open-source mostly do for enhancing existing features. We also experimented with the behaviour of SO

code elements throughout the app evolution and found that SO code snippets are more change-prone than

non-SO code elements. SO code snippets also help fix potential bugs but later make inconsistencies in the

apps, especially for closed-source projects. We did an intensive analysis on buggy and non-buggy SO code

properties to get insights about choosing bug-free code fragments. We tried to correlate users’ reputation

scores, answer scores, buggy and non-buggy code snippets but failed because a user with a high reputation

score shared buggy code snippets in SO and vice versa. Likewise, we noticed buggy and non-buggy answers

with high and low answer scores. So, both user reputation and answer score seem inadequate to authenticate

the code quality when reusing code fragments from SO. Possible supports might consolidate from domain

experts at the time of answer submission regarding code quality and automatic code review systems integrated

with SO. With the outcomes of our study, the SO community knows to what extent the SO code snippets

are reused in mobile apps and then acknowledges the consequences of buggy SO code by making efficient

code fragments in their answers. As a result, SO experts would explore more potential techniques and tools

to make code snippets more reliable for reusing in mobile apps development.

For study 2 (Chapter 4) and 3 (chapter 5), we answered a total of nine research questions (five for study

2 and four for study 3). Table 6.1 shows a short summary of each research questions.
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Table 6.1: A short summary of all research question of this thesis study.

Serial Question Summary Answer

RQ1 What is the rate of change in clone and
non-clone code in bug-fixing commits?

Type 2 and Type 3 clones are more bug-
prone than non-clone code, statically sig-
nificant.

RQ2 What are the impacts and characteris-
tics of clone code and non-clone code
throughout the evolution of non-bug-
fixing commits?

Clone code has higher maintenance and
prolongation (for most projects) than
non-clone code but not statically signifi-
cant.

RQ3 Are clones more prevalent in open source
or industrial mobile applications?

Industrial projects have higher clone ra-
tios than open-source statically signifi-
cant.

RQ4 Is the change-proneness of code clones in
the open-source mobile apps similar to
that of the code clones in the industrial
mobile apps?

Open-source projects have more erro-
neous clone fragments (Type 1) than in-
dustrial projects,statically significant.

RQ5 Is there a difference in terms of clone
and non-clone code change in bug-fixing
commits between mobile and non-mobile
apps?

Mobile apps have a lower bug-fix change
than non-mobile apps

RQ6 What is the amount of SO code snip-
pets reused in mobile apps? Is there any
quantitative difference between open-
source and industrial mobile apps re-
garding the reuse of SO code? If so, is it
significant?

Code ratio varies, average LOC 1.68%,
median 1.04%. Higher SO code in in-
dustrial projects than open-source, stat-
ically significant.

RQ7 What are the possible reasons for reusing
SO code? Do industry developers reuse
code for similar purposes as open-source
developers?

Mostly for enhancing existing code and
adding new features. No refactoring and
API usage in industrial projects.

RQ8 How stable are the reused code snip-
pets? What is the rate of change of
SO code snippets throughout the app
evolvement? Is it significantly higher or
lower than non-SO code change?

SO code are less stable than non-SO code
i.e., high change-prone, statically signif-
icant.

RQ9 Does SO contain buggy code snippets
that reused in mobile software codebase?

SO contains buggy code. Domain exper-
tises’ participations and automatic code
review tools are warranted.
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6.2 Future Work

In this thesis, we focus most on the source code copied from different sources and pasted in mobile app

codebase and their possible implication regarding maintenance, software bugs, and bug reports classification.

We plan to extend our study along with building tool support to the following concerns in the future.

Bug Report Classification Framework and Recommendation for Solutions Based on Historical

Events:

In our first study (Chapter 3), we classified bug reports based on supervised algorithms. We plan to extend

this study by collecting more bug reports and generating algorithms to get significant features automatically.

Then, we try to prepare a framework that will be attached with app development sites (where developers

and users report app inconsistencies) so that the reported bug is classified accordingly. Additionally, based

on historical data, i.e., what kind of actions and resources were allocated in similar situations, the framework

can suggest possible actions to mitigate the reported inconsistencies. Thus, it could save both time and cost.

Toxic Code Detection at the time of Cloning:

Clone code experienced more software bugs than non-clone code (according to study 2 in Chapter 4). So, we

plan to build a plugin that will be installed with the developers’ IDE. When the developers try to clone code

fragments from one file to another, one project to another, or from any crowd-sourced sites such as SO, they

get a warning based on the features of previously cloned code that created software inconsistencies after the

reuse. This plugin will help mobile developers be more careful when cloning code from internal or external

sources and working as a history-driven application. Existing IDE-based clone detection approaches [215]

could be adapted first to detect mobile app clones in real-time and then to have features like detecting toxic

cloned fragments at the time of cloning. Along the same line, it would be interesting to see what sort of

changes [34], in particular what types of changes that developers make in copy/pasted code are more likely

to introduce bugs and then warn the developers in real-time.

It would be also interesting to see which copied fragments have more possibilities of replicating bugs

[86] and for what types of clones [138] at the time of reuse and take necessary actions in advanced. By

understanding the evolution of mobile app clones as of traditional software [172] could provide insights in the

above studies proposed. This could also help find the mobile app clones that are more important candidates

for refactoring as of SPCP-Miner [139].

Automatic Code Completion and Cross Language Answers Code Snippets:

In study 3 (Chapter 5), we showed mobile developers reused SO code snippets in their developed apps, and

most of them are deleted or modified in a later revision. So, we plan to design a code completion generator

that will automatically refactor the code snippets, which has the possibility of occurring bugs. That means
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changing the code element without altering its functionality. Additionally, we experienced fewer resources for

other mobile development areas such as iOS than Android apps. Therefore, a developer from iOS (e.g., Swift,

Objective C) might be faced similar problems as developers from Android (i.e., Java). As a result, developers

need the same code snippets in their targeted languages. We also plan to integrate the functionality with

the code generator for better community services.
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