
A make / buy / reuse feature development framework for product line evolution

Savolainen, Juha; Mannion, Mike

Published in:
Proceedings of the 20th International Conference on Engineering of Complex Computer Systems

DOI:
10.1109/ICECCS.2015.14

Publication date:
2014

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Savolainen, J & Mannion, M 2014, A make / buy / reuse feature development framework for product line
evolution. in Proceedings of the 20th International Conference on Engineering of Complex Computer Systems.
IEEE, pp. 31-39. https://doi.org/10.1109/ICECCS.2015.14

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline@GCU

https://core.ac.uk/display/293881944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICECCS.2015.14
https://researchonline.gcu.ac.uk/en/publications/2f627359-9853-4f4b-83b6-6b239ffe9005
https://doi.org/10.1109/ICECCS.2015.14


A Make / Buy / Reuse Feature Development Framework for Product Line Evolution 
 

Juha Savolainen 
Danfoss Power Electronics A/S 

Ulsnaes 16300 Denmark, 
JuhaErik.Savolainen@danfoss.com 

Mike Mannion 
Glasgow Caledonian University 
70 Cowcaddens Road, Glasgow 

m.a.g.mannion@gcu.ac.uk 
 

 
Abstract— In software product lines, feature development 

options can be categorized as make or buy or, a variation on buy, 
called reuse.  In transaction economic cost theory a group of 
features is an asset and there is an increasing correlation between 
an asset’s relative importance to a supplier and the decision to 
make rather than buy.  In this paper we argue that the make or 
buy decision should also consider an asset’s relative importance 
to the set of customers who buy the products containing the asset 
and we present a decision-making feature development 
framework that factors in feature relative importance to supplier 
and customer.  To evaluate our framework we compared its 
recommendations with actual decisions made on three different 
industrial product lines.  Our results showed broad consistency 
between framework guidance and actual practice, but revealed 
some instances not adequately explained by the framework.  

Keywords—feature, product line, make-buy 

I.  INTRODUCTION 
A software product line business strategy focuses on 

commercial objectives and the development and evolution of 
supporting strategies to achieve the objectives e.g. marketing, 
sales, product development, and customer support.  The 
continuous alignment of all these strategies depends on several 
contextual factors including demand patterns, product 
architecture, brand, culture, structure, governance, markets, 
competitors, geographical location, and recognition and 
reward systems.  A common recurring technical challenge as 
the product portfolio and competitive landscape evolves over a 
long period of time is choosing the approach to construction 
for some particular group of product features.  This paper 
provides a make/buy/reuse decision-making framework for 
constructing four different product feature types in the context 
of three different business strategies. 

The discipline of transaction cost economics [1] provides a 
broad theoretical context to situate our contribution.  A 
transaction is an economic exchange of an asset (goods or 
services).  The decision to organize transactions within an 
organization or to outsource them on the open market—the 
make or buy decision—depends on the relative transaction 
cost values of each approach.  Cost values are evaluated 
against a range of criteria including consideration of asset 
specificity to the supplier (e.g. specialized physical and human 
capital, firm-specific knowledge, operational capabilities), the 
amount of uncertainty about the future, third party capability 
and reliability, transaction frequency, the ready availability of 
technology to continue to access the asset, and the costs and 
benefits of various contracting alternatives.  However Klein 

[2] noted from a range of empirical studies that make was 
more likely to occur the greater the asset specificity. 

In this paper an asset is some subset of all the features in a 
software product line.  Product feature development options 
are categorized as make, buy i.e. acquire-and-integrate-as-is, 
or a variation on buy called reuse i.e. acquire-and-integrate-
by-adaptation where “acquire” can include commissioning by 
a third party, the purchase of a 3rd party product, the 
deployment of open source software or reusing from another 
part of the same organization.  In practice all three options are 
often deployed for different groups of features.  We argue that 
an asset’s specificity evolves and that at any given time it 
should be judged not only by a consideration of its relative 
importance to a supplier but also by its relative importance to 
the set of customers who buy the products containing the 
asset, and we present a make/buy/reuse decision-making 
framework for different levels of specificity.  Our Research 
Question was framed as: What advice can be given to guide 
make or buy or reuse features given the differing relative 
importance of the feature to the customer and the supplier? 

In section III we explain how a product feature’s relative 
importance is perceived from both a Customer’s and 
Supplier’s perspective and how such designations can change 
over time.  In section IV we describe three broad Supplier 
business and engineering strategies and explain how this 
strategic context affects perceived importance.  Section V sets 
out a make/buy/reuse decision framework and sections VI and 
VII explains how we used the framework to review a 
frequency converter product line infrastructure.  Sections VIII 
and IX discuss the value and limitations of the framework. 

II. RELATED WORK 
Williamson [3] argues that minimization of transaction 

costs could be achieved by aligning transactions with 
governance structures i.e. markets or vertical integration 
within an organization or hybrids that combine some level of 
central coordination and protection for specific investments 
with market incentives e.g. organizations with highly 
decentralized assignments of decision rights, or franchises.  
Markets usually provide the greatest incentive structures to 
maximize profits, whilst vertical integration offers greater 
protection for specific investments and provides relatively 
efficient mechanisms for responding to change where 
coordinated adaptation is necessary, albeit with additional 
bureaucratic costs. 

Bidwell [4] argued that a firm’s ability to achieve 
transaction cost alignment is shaped by the interaction 

mailto:JuhaErik.Savolainen@danfoss.com
mailto:m.a.g.mannion@gcu.ac.uk


between the structure of the organization and the nature of the 
decision problem.  Often different organizational units focus 
on the problems of managing governance-related issues of 
cost and organizational flexibility on the one hand, and 
managing knowledge and the development process on the 
other.  Such differentiation allows problems to be simplified to 
a level where individual decision makers can manage them but 
can create difficulties in solving problems that have 
simultaneous implications for the goals of different units, or 
problems that require information that is dispersed among 
different parts of the organization. 

In psychophysics Weber-Feschner’s Law [5] defines the 
concept of a just-noticeable difference (JND) i.e. the amount 
something must be changed in order for a difference to be 
noticeable.  For suppliers the challenge is to understand how 
much they can or need to change their products, to surpass the 
JND threshold, in order for their customers to perceive a 
significant improvement.  This will inform pricing charges. 

In a software product line context this paper is a 
contribution to product line scoping.  A product line scoping 
process consists of product portfolio scoping, domain scoping, 
and asset scoping [6].  Product portfolio scoping identifies 
products and features to be included in a product line.  
Domain scoping identifies the principal common functional 
areas of the product line domain.  Asset scoping identifies 
specific assets with costs and benefits estimation from them.  
Different methods have been presented that cover different 
degrees of detail for each of these steps [7-11] and a 
comparison of these approaches, harmonized with the 
international standards (i.e., ISO/IEC 12207 and 15288) in 
both process and general terminologies is presented in [12]. 

At the product level the issues of make or buy have also 
been a focus for considering the merits of whether to deploy 
Commercial-Off-The-Shelf solutions.  Most of this work has 
been presented in the context of developing a new system and 
whether at the outset to acquire one or more COTS.  This 
choice is not easy, and in [13], the authors argue that COTS 
evaluators need to understand the impact of COTS software 
products on the system development process, determine 
evaluation requirements for COTS software, develop COTS 
software evaluation criteria, select COTS software evaluation 
techniques, employ a COTS software evaluation process that 
addresses the inherent trade-offs.  In [14] a comprehensive 
overview is presented of many of the make-buy-commission 
decisions in product development including cost (direct costs, 
indirect costs, opportunity costs), capability (to make, to 
acquire, to manage commissioning, to support maintenance), 
scheduling constraints, staff availability, and the expected 
quality and fitness of purpose of the feature delivered that 
each alternative offers.  Pohl et al [15] present an example of 
an engineering process for selecting a high-level COTS 
components during domain design (CoVARS – Component 
selection that considers Variability, Architecture and 
Requirements).  It has three principle stages: component 
screening, detailed component evaluation and component 
selection.  However it acknowledges that other non-technical 
factors such as alignment to business strategy, legal aspects 

and return on investment are outside its scope. 
The focus of this paper is on the strategic business issues 

to consider when implementing features.  So although we have 
assumed a compositional approach to implement variability, 
we are less concerned here with the method of architectural 
construction.  For example, in delta modelling [16], diverse 
systems are represented by a designated core system and a set 
of deltas describing modifications to the core system.  A 
particular product configuration is obtained by applying the 
changes specified in the applicable deltas to the core system.  
Typically an architectural delta can add, remove and modify 
components and alter the communication structure between 
these components.  The decision to do so should be informed 
by the framework presented in this paper. 

III. FEATURE DEVELOPMENT 
A feature is an end-user visible characteristic of a system 

and their role in software product line variability modeling 
was first developed in Feature-Oriented Domain Analysis 
[17].  Most software product line engineering projects now 
include the significant task of identifying and describing the 
key features of each product in the product line [18].  The set 
of product descriptions is captured in a single feature model 
that contains all common and variant features of the software 
product line at different levels of abstraction.  It can be helpful 
to organize a feature model as a forest, in which the features 
are related to each other in parent-child relationships where 
the children can be said to elaborate the detail of a parent 
feature.  Feature model representations are often some 
combination of text-based, logic-based, or set-algebraic based. 

Feature models are not the only modelling tool deployed in 
software product line development, and they are often used in 
combination with others e.g. use-cases, scenarios, orthogonal 
variability models [19].  However they have proved to be an 
enduring concept because they are straightforward 
conceptually and visually to model commonality and 
variability, to add additional information to each feature, o 
view and navigate between different levels of the forest, and to 
use the model to derive the features of a new product that 
satisfy the constraints in the feature model. 

A. Customer Perspective 
From a customer perspective features can be separated into 

different categories to help with the positioning of a product in 
its market segment.  Kano [20] identified five categories of 
customer features that have different effects on customer 
satisfaction.  “Delighting” features are value-adding, and those 
that have a very positive effect on customer satisfaction; 
“One-dimensional” features are those that customers expect to 
have but extra effort to improve the quality beyond industry-
standard level can increase satisfaction proportionally; “Must-
be” features are those that customers expect to be working at 
industry-standard level but extra effort to improve their quality 
will have little effect on satisfaction though their absence will 
cause dissatisfaction; “Indifferent” features are those whose 
presence or absence has no effect on customer satisfaction; 
“Reverse” features are those whose presence causes 
dissatisfaction.  In this paper we have considered “Must-be” 



and “One-Dimensional” in the same category and called them 
Qualifiers (essential but not differentiating), renamed 
“Delighting” as  Differentiators (essential but differentiating), 
“Indifferent” as “Don’t Need – Don’t Care” and “Reverse” as 
“Don’t Need – Don’t Want”. 

A Qualifier is a feature that needs to be fulfilled for a 
product to compete in a single market segment.  Often, 
omitting a single qualifier feature affects whether a product 
will successfully compete in its market segment.  A product 
that satisfies only qualifier features is a market-entry, base 
product or commodity in which price becomes the sole basis 
for its competitiveness in its market segment (which from a 
development perspective relies on keeping costs low through 
product development efficiencies).  Therefore, whilst a 
product needs to have the right set of qualifier features, this set 
is not sufficient for uniquely positioning the product in a 
selected market segment.  For example a Qualifier feature of a 
mobile phone is the ability to make a telephone call. 

 

 
Fig. 1. Qualifier and Differentiator Features 

A Differentiator is a feature that helps to make a product 
distinctive from other products in its market segment.  Often 
this is a functional feature e.g. a TV feature in a mobile phone.  
Sometimes it is property of a feature e.g. its cost, quality, 
brand name.  For example luxury brand mobile phones often 
have fewer functional features than top of the range mobile 
phones but are differentiated by packaging and casing. 

A Don’t Need – Don’t Care feature arises when suppliers 
find it more cost efficient to provide customers with features 
that they do not need because they are so inter-dependent with 
other Qualifiers or Differentiators that they do need.  If these 
features do not reduce some preferred aspect of quality below 
a desired threshold e.g. security, performance, customers are 
often not concerned if these features are included. 

A Don’t Need – Don’t Want feature arises when suppliers 
provide a Don’t Need feature that either does reduce a 
preferred aspect of quality below a desired threshold or there 
is a perception that it will do so, to the extent it leads to 
unwanted customer dissatisfaction. 

Fig. 1 shows a set of product line features in which dark 
circles represent Qualifiers, light ones Differentiators.  The 
dotted line scope shows a base product containing only 
Qualifier features.  The solid line scope shows a differentiating 
product containing Qualifier and Differentiator features. 

B. Supplier Perspective 
From a Supplier’s perspective, the set of products in a 

product line is often captured in a feature model that contains 
all the features of all products and in which the features are 
related to each other in parent-child relationships.  The exact 
structure and content of feature models varies and often when 
models become complex they are partitioned e.g. to allow the 
connection of various layers of feature refinements, to 
distinguish external variability (visible to customers) from 
internal variability (hidden from customers) [15]. 

Each feature has a variability property value: common, 
shared, or unique.  Common features are those that are 
common to all of the products in the current scope of the 
product line.  Shared features appear in some but not all 
products.  Unique features are in exactly one product in the 
product line.  After time, some features can become no longer 
required or no longer supplied.  It can be useful to denote 
these features as Obsolete for the purposes of keeping a trace 
history.  The value of a feature model lies in the cleanliness 
and efficiency with which it can be used to derive the features 
of a new product that satisfy the feature model constraints. 

TABLE I.  FEATURE RELEVANCE:  CUSTOMER & SUPPLIER PERSPECTIVES 

Customer Perspective Supplier Perspective 
Qualifier Common 
Differentiator Shared if differentiator is shared with other 

products in market segment, else Unique. 
Don’t Need, Don’t Care Common, Shared or Unique 
Don’t Need, Don’t Want Obsolete 

A significant challenge for a supplier is to determine the 
appropriate property value for each feature as the product line 
evolves so that each product satisfies a set of customer needs 
but its development is aligned with the supplier’s business and 
engineering strategy, and can be adapted efficiently without 
significantly effecting revenue and profit streams.  Table I 
shows how Customer and Supplier Perspectives can be 
aligned with Qualifiers provided as Common features, and 
Differentiators as Shared or Unique features.  Alignment can 
be difficult because of feature interconnectedness. 

C. Feature evolution 
As market segments and product needs change, there is an 

evolving tension between what a market wants (customer-led 
changes) and the efficiency and effectiveness with which the 
supplier can respond (supplier-led changes).  Some changes 
are gradual and can be predicted, others are disruptive and 
cannot.  Poor change management can affect performance, 
brand identity and reputation which in turn affects market 
brand positioning, pricing models, and hence sales and profits. 

Customer-led changes evolve continually for different 
reasons e.g. new owners or executives change strategy, new 
legislation, competition, economic buying power, attitudinal 
changes in society, different cultures.  For example, consumer 
increases in economic buying power combined with an 
emotional desire to take moving pictures, led to a demand by 
mobile phone customers (retailers) for mobile phone suppliers 
(manufacturers) to supply video-cameras as a standard feature 
in mid-range mobile phones, after a long period in which they 
were available only in high end phones.  Retailers were no 
longer willing to pay a premium to manufacturers for the 



video camera feature.  In effect the video-camera feature 
moved from being a Differentiator to being a Qualifier. 

Supplier-led changes also evolve for different reasons e.g. 
new owners or executives change strategy, new legislation, 
performance improvements are made to the assets in the 
product line architecture, new engineering tools and 
technologies emerge that engineering staff choose to deploy, 
product managers make changes because their performance 
pay is weighted towards reuse, technical staff expertise 
changes over a long period of time as people change jobs and 
different ideas are introduced. 

Common features tend to remain unchanged and hence 
stable during product line evolution though their 
implementation may change, for example because of new 
technology.  However the total number of common features 
often tends to increase over time because many product line 
organizations tend to add new features to a base product.  
Shared or unique features can be more volatile during product 
line evolution because their role as a distinguishing 
characteristic for the product in the market segment can 
change.  For example at the same as demand for video-
cameras in mid-range mobile phones increased, the cameras 
themselves were being reduced in physical size whilst offering 
the same quality and hence costing less and so it became 
commercially viable for mobile phone manufacturers to 
include them even in low-end mobile phone markets which 
were less demand-driven for that feature.  In effect the video-
camera feature moved from being a Shared feature in high-end 
phones to a Common feature. 

Another factor to consider as a market evolves is whether a 
feature is domain dependent or domain independent i.e. 
whether a feature continues to be developed solely or 
principally for the product line of which it is a part 
(dependent) or whether it is also offered as a feature of another 
product line in a different market sector and its development is 
carried out by a third party organization (independent).  In a 
mobile phone, an example of a domain dependent feature is 
the ability to make a telephone call, whereas an example of a 
domain independent feature is a video-camera, the 
development of which originated and continues to be led by 
companies in the photography industry. 

As a market evolves, some features move from being 
domain dependent to domain independent.  For example, 
software applications (“Apps”) that come bundled with mobile 
phones were originally domain dependent and developed in-
house by mobile phone manufacturers.  Nowadays, a thriving 
“app” market has emerged in which a greater variety of better 

and cheaper apps have been developed by many third-parties, 
making them domain independent. 

IV. BUSINESS STRATEGIES 

Fig. 2. Software Platform Development Strategies 

The decision about which feature development option 
(make, buy, reuse) to deploy must be informed by the product 
line supplier’s overarching business strategy.  In Fig. 2 we 
have adapted the platform-market grid from [21].  The vertical 
axis shows three different generalized business strategies.  The 
horizontal axis shows different market segments.  We have 
assumed for the purpose of this paper that the platform 
development strategy for each choice of business strategy is to 
leverage systems and subsystems across market segments. 

The three business strategy generalizations may not be a 
perfect fit to any one company but they can be helpful for 
analysis, understanding and evaluation of an organization’s 
current status, future plans and trajectory. 

With a Cost Leadership / Low Cost / Low Performance 
business strategy an organization targets a market segment and 
competes on price by minimizing costs.  The corresponding 
engineering strategy is Product Efficiency characterized by 
making the product effective and efficient within tight budget 
constraints through developing a product platform in which 
Qualifiers and Common Features are prioritized over 
Differentiators and Shared/Unique features, constraining the 
loci for changes by reducing product variations, designing a 
common reference architecture, developing components that 
are used in each product with few variations, improving 
process efficiencies, getting access to a large source of low cost 
resources, and enhancing vertical integration. 

TABLE II.  FEATURE DEVELOPMENT DECISION FRAMEWORK 

 Qualifier 
(Common - 

Domain Independent) 

Qualifier 
(Common - Domain 

Dependent) 

Differentiator 
(Shared/Unique  

Domain Independent) 

Differentiator 
(Shared/Unique – 

Domain Dependent) 
Product Efficiency Buy Buy  Buy Make 

Niche Product Buy Reuse Buy/Reuse Make 
Product Customization Buy/Reuse Reuse/Make Reuse Make 

 
 
 

 

 Market 
Segment 

A 

Market 
Segment 

B 

Market 
Segment 

…N Business 
& Engineering Strategies 
Differentiation Focus 
High Cost, High Performance 
 
Product Customisation 

   

Differentiation 
Mid-Range, Mid-Performance 
 
Niche Market 

   

Cost Leadership 
Low Cost, Low Performance 
 
Product Efficency 

   

  
  

Horizontal platform 

Horizontal platform 

Horizontal platform 



With a Differentiation / Mid-Range / Mid-Performance 
business strategy an organization targets a set of market 
segments with a product that has a unique combination of 
Qualifiers and Differentiators and price that is valued by 
customers.  The corresponding engineering strategy is Niche 
Product characterized by a product platform with an 
architecture that is designed for high numbers of Qualifiers 
and Differentiators i.e. high variation management and asset-
based reuse, but with a focus on quality and innovation for the 
feature combinations on offer.  Each product is formed by 
tailoring selected assets from a base of common assets using 
pre-planned variation mechanisms, adding any new 
components that may be necessary, and assembling the 
collection according to the rules of a common, product-line-
wide architecture.  

With a Differentiation / High Cost / High Performance 
business strategy an organization targets a market segment but 
provides specific products to suit the needs of individual 
customers generating high customer loyalty allowing them to 
pass on higher costs and charge higher prices.  The 
corresponding engineering strategy is Product Customization 
characterized by a product platform to support a compositional 
approach of increasing numbers of Differentiators, in which 
variability management becomes de-centralized and the 
product line architecture only guarantees that the components 
can be connected together.  Over time each product assumes its 
own maintenance trajectory separate from other products, there 
is little or no product line or reuse, and the technical strategy is 
effectively single-system development with some reuse. 

V. FEATURE DEVELOPMENT FRAMEWORK 
Table II shows a feature development framework to 

provide advice to suppliers for different overarching business 
and engineering strategies.  The framework assumes that 
reliable third parties exist from whom features can be bought 
or reused at an acceptable level of quality and with whom 
satisfactory contractual arrangements can be established. 

A. Qualifiers – Domain Independent 
For Qualifier features that are domain independent, buying 

often becomes the preferred choice regardless of strategy to 
enable greater economies of scale to be achieved.  Qualifier 
features represent a sound basis for reuse and hence to form 
part of a product line platform.  However, from a commercial 
perspective the value of Qualifier features is often low.  Few 
customers are willing to pay a premium for these features 
being met.  The implication is that they should be realized at 
the lowest cost possible.  The competitor that can achieve the 
greatest economies of scale in creating these features is likely 

to have competitive advantage.  However for a product 
customization there may be instances when reuse is required. 

B. Qualifiers – Domain Dependent 
For Qualifier features that are domain dependent the 

decision on the development approach is more difficult.  In 
principle the widespread inclusiveness of a Qualifier feature 
does not make it an attractive proposition to create a tailor-
made new solution and deploying a domain dependent 
technology may reduce the future ability to acquire 
technologies.  For all strategies the preferred option is to buy, 
and when this is not possible then reuse is most likely, 
although occasionally, it may be that make is the cheapest 
option.  A preferred compromise arises when the product line 
organization has previously created other legacy systems, 
products or technologies which can be reused, perhaps after 
refactoring.  Sometimes, if market circumstances are suited, 
suppliers may collaborate to implement a set of Qualifiers that 
they recognize must be in every product regardless of the 
supplier.  For example in the automotive industry, many 
automobile manufacturers, suppliers and tool developers 
collaborated to develop a standardized automotive architecture 
to assist with developing vehicular software [22].  This 
enabled partners to benefit from reduced costs for the 
Qualifiers against other global suppliers not in the consortium, 
and to focus on competing on Differentiators i.e. specific 
software applications in each vehicle.  The less the sharing 
across competitor products the less likely this approach will 
succeed. 

C. Differentiators – Domain Independent  
For Differentiator features that are domain independent, 

buy or reuse is the preferred strategy and the choice between 
the two is often determined by the drive to keep costs low 
versus the complexity and seamlessness of integration which 
require some adaptation.  But the expertise may require 
adaptation depending on the existing configuration and 
properties of the product line it is being integrated with. 

D. Differentiators – Domain Dependent  
For Differentiator features that are domain dependent then 

make is the preferred strategy.  These features will often be a 
source of competitive advantage.  Even if the business strategy 
is cost leadership, for features that provide a product with 
unique characteristics then making the feature product specific 
can be more efficient and effective than trying to reuse and 
adapt similar realizations.  For example most mobile phone 
manufacturers are exploring new packaging and presentations 
of existing functionality e.g. curved screens, taking advantage 
of elasticity properties in new materials. 

TABLE III.  FREQUENCY CONVERTER FEATURES CATEGORIZATION 

Domain Qualifier 
(Common - 

Domain Independent) 

Qualifier 
(Common - Domain Dependent 

Differentiator 
(Shared/Unique  

Domain Independent 

Differentiator 
(Shared/Unique – 

Domain Dependent 
General 

frequency 
converters 

Operating system (OS) 
Generic middleware (MW) 
Typical field busses (FB) 

Basic motor control (MC) 
Basic application behavior (AP) 

Programmability (P) Advanced motor control (AMC) 
Advanced application behavior 

(AAP) 
 



VI. CASE STUDY: A FREQUENCY CONVERTER PRODUCT 
LINE 

Danfoss Power Electronics A/S (DPE) is a division of 
Danfoss Corporation, a Danish company with more than 
24000 employees around the world.  DPE manufactures a 
wide range of electrical and electronic products including 
industrial frequency converters.  Frequency converters are 
used to change the frequency and magnitude of the constant 
grid voltage to a variable load voltage and hence to optimize 
the speed of electric motors used to control many industrial 
processes.  If there is no frequency converter, then the electric 
motor runs either at full speed or is not running.  Frequency 
converters allow savings of up to 60% of the energy consumed 
in an electric motor, a significant statistic when considered 
against the global volume of electric motors used in industrial 
processes.  Fig. 3 shows a typical industrial automation 
application that has many mechanical parts, and is driven by 
an electric motor using some kind of transmission. 

Frequency converters have a long lifespan e.g. 15 years, 
and the frequency converter platform tends to change 
significantly during this time (in terms of functionality, 
hardware, software infrastructure).  A key challenge is to take 
advantage of advances in technology within the frequency 
converter without modifying its external behavior within the 
customer system it is deployed.   For example some customers 
want a new frequency converter with some new features but 
also want it to have exactly the same behavior including 
timing characteristics as the old frequency converter.  Other 
customers require the same features but with faster response 
times to run new applications.  Additional complexity arises 
when customers combine frequency converters from different 
generations without updating the software of the old frequency 
converters. 

We used the framework set out in Table II to evaluate the 
construction of groups of product features of three different 
frequency converter product lines.  Product Line A means a 
representative product of a product line constructed within the 
context of a Product Efficiency business strategy.  Product 
Line B means a representative product of a product line 
constructed within the context of a Niche Product business 
strategy.  Product Line C means a representative product of a 
product line constructed within the context of a Product 
Customization business strategy.  To simplify discussion we 
focus on the differences in the construction decisions for 
groups of product features that occur in each of the product 
lines.  In practice our initial intention was to make the analysis 
only on the feature space, to serve as an input to the 
architecture design phase.  However we realized that we 
needed to iteratively evolve both the feature specification and 
the architectural design.  The entire process took us about 6 
months to complete.  Table III shows examples of frequency 
converter feature groups for each of the four different feature 
variability types. 

A. Qualifiers (Common - Domain-Independent): 
Each frequency converter requires operating system 

services, to get access to the basic memory, processing, and 

communications services of the underlying hardware.  Often, 
an abstracted communication system is provided in terms of 
basic middleware services that may hide the deployment of 
software components for more distributed system 
architectures.  In addition, the support for basic field buses 
(e.g. those that adhere to PROFINET the open standard for 
industrial Ethernet [23]) and analogue/digital I/O terminals are 
common domain independent features that nearly all 
frequency converters are expected to support. 

B. Qualifiers (Common - Domain Dependent) 
The main behavior of a frequency converter is that it 

changes the speed of an electronic motor.  For this, it needs 
motor control algorithms that are specific to the motor type 
(e.g. permanent magnet motor or induction motor).  The basic 
ability to control one motor type is a qualifier that is common 
to all frequency converters, but clearly domain dependent.  
Similarly, basic application control e.g. controlling a fan by 
giving a desired RPM rating is a qualifier but domain 
dependent. 

 
Fig. 3. A typical industrial application with a frequency converter 

C. Differentiators (Shared/Unique Domain Independent) 
A Programmable Logic Controller (PLC) allows the 

deployment of standardized simple programming languages to 
create, modify or extend the application behavior of the 
frequency converter.  Drive manufacturers that support PLC 
programmability can increase the value of their frequency 
converter for customers.  However, PLCs are common across 
many industrial automation environments thus making them 
domain independent differentiators. 

D. Differentiators (Shared/Unique Domain Dependent) 
There are also domain-specific differentiators that are an 

area of continuous development to guarantee sufficient 
differentiation and value-add compared with the competition.  
Advanced motor control and application control features 
belong to this category.  For example in some applications it 
can be differentiating to offer motor controls that have a fly-
start i.e. an ability to start controlling an already moving 
motor, or in vertical lift applications it can be differentiating to 
offer functions such as load compensation or reduction of 
swinging of the load. 

VII. RESULTS 
Table IV shows the result after our analysis.  The bold text 

in each cell represents the original recommendation of the 
framework.  The other values represent what was actually 
done for each of the product lines.  Broadly, the framework’s 
recommendation was consistent with actual practice.  The 
shaded boxes show where there were significant differences. 



A. Qualifiers (Common - Domain-Independent) 
Product Lines A and B used open source derived software 

for their middleware and operating systems.  Product Line C 
did not have an operating system or basic middleware 
behavior at all.  It was to be deployed in a highly resource-
constrained environment so it had chosen a bare metal 
implementation without abstracting the hardware at all and 
implemented directly only the required basic services to 
reduce both memory and processing power requirements to 
the absolute minimum.  So while in general these basic 
functions are not differentiating and the framework holds, in 
this particular case the need to aggressively reduce memory 
and use a smaller microprocessor (to reduce the bill of 
materials and hence cost) led to a customized development.  
We say more on this in Section VIII. 

The basic field buses were initially created for Product 
Line B.  Typically the basic fieldbus stack was purchased but 
the organization was responsible for integrating this field bus 
into the frequency converter.  As the fieldbus implementations 
existed already in-house Product Line A reused it directly.  
Product Line C did not have a basic fieldbus interface only so 
customer specific realization was required. 

B. Qualifiers (Common - Domain Dependent) 
When the development work for Product Line B started, 

there were no commercially available basic motor control 
implementations.  Since advanced motor control features are a 
significant differentiating factor, creating a structure for the 
basic motor control that can be easily extended for advanced 
functions was important and therefore each of the product 
lines had their own basic motor control features. 

The implementation for Product Line B is the most 
extensive as it also has the most advanced motor control 
features.  When implementing the basic motor control for 
Product Lines A and C the developers had detailed knowledge 
of the motor control of Product Line B.  This made the motor 

control structures of Product Lines A and C more optimized 
subsets of the motor controls of Product Line B. 

In hindsight, some refactoring of the implementation of 
Product Line B in both motor controls of Product Lines A and 
C could have been made using a common asset.  However at 
the time independent execution was favored over reuse. 

Similarly, as the initial application focus was different for 
the different product lines they produced completely 
independent implementations of the basic application 
behavior.  Also for Product Lines B and C the ability to easily 
extend the application behavior with advanced application 
functions drove the decision of independent implementation. 

C. Differentiators (Shared/Unique Domain Independent)  
Only Product Line B has a programmable environment that 
allows the customers to create their own programs that will 
then run inside the frequency converter.  This environment 
and the corresponding programming tools have been acquired 
from an external company. 

D. Differentiators (Shared/Unique Domain Dependent) 
For Product Line A there are no advanced motor or 

application control features as the product line is aimed at the 
low cost market and differentiating domain specific features 
are not needed here.  Product Lines B and C have made both 
their advanced motor control and application control 
functionality independently as also the basic functionality for 
both was of independent development. 

VIII. DISCUSSION 
The framework presented in Table II is a useful tool to 

help to take stock, expose and re-evaluate the role of reuse 
activity as a contributory factor to the underlying supplier 
business model.  We recognize it provides only general level 
guidance on approaches to the realization of features and that 
the final decision to make, buy or reuse must factor in other 
issues as set out in [14]. 

TABLE IV: FREQUENCY CONVERTER FEATURES - AFTER ANALYSIS 

Product line Qualifier 
(Common - 

Domain Independent) 

Qualifier 
(Common - 

Domain Dependent 

Differentiator 
(Shared/Unique  

Domain Independent 

Differentiator 
(Shared/Unique – 

Domain Dependent 
A - Product Efficiency Buy 

(OS) Buy – Open source 
(MW) Open source 
(FB) Buy (Reuse)  

Buy 
(MC) Reuse/Make 

(AC) Make 

Buy 
 (P) N/A 

Make 
(AMC) N/A 
(AAC) N/A 

B - Niche Product Buy 
(OS) Buy – Open source 
(MW) Buy - Open source 

(FB) Buy 

Reuse 
(MC) Make 
(AC) Make 

Buy/Reuse 
 (P) Buy 

Make 
(AMC) Make 
(AAC) Make 

C- Product 
Customization 

Buy/Reuse 
(OS) Make – bare metal 

(MW) N/A 
(FB) N/A (only I/O) 

Reuse/Make 
(MC) Reuse/Make 

(AC) Make 

Reuse 
 (P) N/A 

Make 
(AMC) Make 
(AAC) Make 

 
OS – Operating System   MW - Middleware  FB – Field Bus  
MC – Motor Control    AC – Application Control   P – Programmable Environment 
AMC – Advanced Motor Control;  AAP - Advanced Application Control 

 
  



In general the advice to buy in a solution when a Qualifier 
is Domain Independent is sound, this allows internal developer 
focus to be maintained on creating differentiating features.  
However if differentiating functionality relies significantly on 
the structure of how the basic qualifying functionality is 
implemented it tends to drive a decision to keep creating also 
qualifier functionality.  The main reason is to guarantee that 
the differentiating functionality and the interface between the 
qualifier and differentiating features can be created quickly 
and with good quality.  Having full control of assets also 
assists transforming previously differentiating functionality to 
qualifiers as the markets change.  We noticed that as more and 
more application functions are added to frequency converters, 
many of them become Qualifiers. 

Having existing assets within the company tends to 
increase the likelihood of reuse, more so than buying in assets 
externally.  However, one must also consider, besides the 
initial cost, the amount of future changes and maintenance 
investment i.e. the degree to which a feature is stable or 
volatile.  In principle the more volatile a feature the more 
likely the decision is concerned with the risks and costs of 
managing several changes.  Passing these risks on to a third 
party provider can be an attractive option but much depends 
on the price premium that the third party provider will place 
on managing this risk compared to managing it in-house. 

Successful product lines tend to evolve over long period of 
time.  We observed that over time standardization and 
commercial offerings tend to emerge that often cover non-
differentiating functionality and drive down the cost and by 
doing so effectively transform previously differentiating 
functionality into qualifier.  New choices emerge during the 
evolution of the product line that were not available initially.  
Organizations are typically very reluctant to abandon software 
that has been used to create value even if it would be highly 
beneficial.  However external efforts to standardize 
functionality may force a company to adopt a commercial 
offering instead of its own in-house solution.  For example the 
standardization of application functionality from the OpenPLC 
consortium may eventually force all the product lines in our 
case study to change their qualifier functionality to match the 
interface of the OpenPLC function blocks [24].  A variation on 
this theme is to split original features into domain independent 
and domain specific parts based on feedback by software and 
hardware architects, allowing new opportunities to outsource 
some of the development work.  The lesson here is to continue 
to explore new ways to realize existing features in 
architectural design and implementation. 

Organizational structures can also significantly affect 
development decisions.  If product lines are geographically 
distributed and independently managed, product line managers 
may often make product line development decisions 
principally from the perspective of their own local interests 
without considering the impact on other market segments.  In 
this case study, the decision to create a bare metal 
implementation for Product Line C rather than reusing the 
operating system from product line B would probably not have 

happened if greater global, cross-platform governance had 
been in place. 

Changes in hardware capabilities change tend to drive 
reuse or buy options.  Historically, embedded systems have 
been using highly dedicated solutions.  However, frequent 
increases in processing power and memory are starting to 
enable the use of more standard solutions originating from 
non-embedded domains. 

Earlier we remarked that the evidence from a range of 
empirical studies [2] had noted that make was more likely to 
occur the greater the asset specificity.  We do not claim to 
have conducted an empirical study but our experience from 
the case study seems to support that assessment. 

IX. THREATS TO VALIDITY 
We recognize that in this qualitative research using three 

case studies that there are some threats to its validity. 
Objectivity: The formation of this feature development 

framework was based on the authors’ experiences of the 
telecommunications domain over multiple projects and 
product lines.  The authors were not involved in any of the 
case studies described and hence not involved in any of the 
make/buy/reuse decisions made in each one. 

Generalizability: We selected three case studies that we 
viewed as representative of each of the three business strategy 
dimensions.  Given that DPE has constructed a wide range of 
industrial frequency converters for different clients in different 
settings we recognize that a sample size of three is small but 
the complexity of each case constrained what we were able to 
examine in the limited time available.  We also recognize that 
what we selected as representative case studies might be 
viewed differently by other researchers who might make other 
choices. 

Credibility: Our understanding about the decisions that 
were made and their rationale was formed by documents and 
interviews with some of the practitioners who worked on each 
case study.  However some of the decisions on these long-
lasting product lines were taken 10 years earlier by people that 
are no longer employed by DFE, and we needed to rely on 
other colleagues’ interpretation about why such decisions were 
taken which may be different from the actual original reasons.  
In addition, we did not share the framework with the 
interviewed practitioners, and so the categorization of the 
make/buy/reuse decisions was done by the researchers and 
poses a threat of incorrect categorization for each decision.  
We also acknowledge that when we applied the framework to 
each case study we did so at a particular point in time.  We 
have not evaluated the application of the framework on the 
same case study over a sustained period of time. 

X. CONCLUSIONS 
Whilst a corporate engineering commitment to reuse is at 

the core of product line development, reuse is simply an 
enabler for profitability of the product line organization and it 
is important to find the right balance so that reuse is not 
undertaken for its own sake.  In a fast-moving product space, 
where first mover product feature advantage can make a 



significant difference to market share, the development 
efficiency of the unique differentiation characteristics is likely 
to take precedence over development for reuse.  This typically 
means some form of agile product specific development on 
top of the common platform. 

Traditional product line scoping has focused on variability 
of the product line features and the assets that realize those 
features.  We believe that splitting features into qualifying and 
differentiating features for each market segment assists in 
making the right decisions in terms of make, buy or reuse 
decisions for real industrial product lines.  In this paper, we e 
have presented a framework to model possible choices related 
to making, buying and reuse features based on the business 
strategy of the product line.  The framework was reassuringly 
consistent in its recommendations with actual practice for 9 
out of 12 development decisions.  However just as important 
is that the framework provided a vehicle for helping 
stakeholders see development choices within the broader 
evolving context of the business strategy from the supplier’s 
perspective and changing needs from customers’ perspectives, 
all of which in turn led to better decisions being made by the 
stakeholders involved.  We acknowledge that in some 
instances the recommendation proposed by the framework did 
not align with actual practice, and we are currently testing the 
framework against other product lines to understand the extent 
we may need to modify it. 

REFERENCES 
[1] R. H. Coase. “The Nature of the Firm”, in The Firm, the Market and the 

Law. Chicago: University of Chicago Press, 1937. 
[2] P. Klein, The Make-or-Buy Decision: Lessons from Empirical Studies in 

C. M´enard and M. Shirley (eds.), Handbook of New Institutional 
Economics, Springer, 2005, pp435–464. 

[3] O. Williamson, “Strategizing, Economizing, and Economic 
Organization”, Strategic Management Journal, vol 23, 1991, pp. 75–94. 

[4] M. Bidwell, “Problems Deciding: How the Structure of Make-or-Buy 
Decisions Leads to Transaction Misalignment Organization Science”, 
Articles in Advance, 2009 INFORMS, pp. 1–18. 

[5] G. T. Fechner, H. E. Adler, D.H. Howes, and E.G.Boring, Elements of 
Psychophysics. Holt, New York, 1966 

[6] J. Bosch, Design and Use of Software Architectures: Adopting and 
Evolving a Product- Line Approach. Addison-Wesley, 2000. 

[7] P. Clements and L. Northrop, Software Product Lines: Practices and 
Patterns. Addison-Wesley, 2002. 

[8] I. John, J. Knodel, T. Lehner, and D. Muthig, “A Practical Guide to 
Product Line Scoping”, Proceedings of the 10th International Conference 
on Software Product Lines, 2006, pp3-12. 

[9] J-M. DeBaud, and K. Schmid, “A Systematic Approach to Derive the 
Scope of Software Product Lines”, Proceedings of the 21st International 
Conference on Software Engineering, 1999, pp34-43. 

[10] K. Schmid, and M. Schank, “PuLSE-BEAT -- A Decision Support Tool 
for Scoping Product Lines”, Software Architectures for Application 
Product Families, Lecture Notes in Computer Science 1951, 
Proceeedings of the International Workshop IW-SAPF-3, ed F van der 
Linden, Springer, 2000, pp65-75. 

[11] K. Schmid, S. Thiel, J. Bosch, S. Johnsson, M. Jaring, B. Thome, and S. 
Trosch, Scoping, Eureka Σ! 2023 programme, Deliverable 1.2.4, ITEA 
99005, ESAPS, 2001. 

[12] J. Lee, J, S. Kang, and D. Lee, “A Comparison of Software Product Line 
Scoping Approaches”, International Journal of Software Engineering 
and Knowledge Engineering, Vol. 20 No.5, 2010, pp637-663. 

[13] S. Comella-Dorda, J. Dean, G. Lewis, E. Morris, P. Oberndorf, and E. 
Harper, A Process for COTS Software Product Evaluation, Carnegie 
Mellon University Software Engineering Institute, Technical Report 
SEI-2003-TR-017, July 2004. 

[14] http://www.sei.cmu.edu/productlines/frame_report/MBMC.htm (last 
accessed 1 January 2015). 

[15] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line 
Engineering: Foundations, Principles and Techniques, Springer-Verlag 
New York, Inc., Secaucus, NJ, USA, 2005 

[16] I Schaefer, L. Bettini, L.V. Bono, F. Damiani, and N. Tanzarella, “Delta-
oriented Programming of Software Product Lines”, Proceedings of the 
14th International Conference on Software Product Lines, Sept 2010, pp 
77-91. 

[17] K. C. Kang, S G Cohen, J. A. Haess, W. E. Novak, and A S. Peterson, 
Feature-Oriented Domain Analysis (FODA) Feasibility Study, Software 
Engineering Institute Technical Report, Carnegie Mellon University 
Software Engineering Institute, Technical Report, CMU/SEI-90-TR-
021, Nov 1990. 

[18] P. Clements, Product Line Engineering Comes to the Industrial 
Mainstream 
http://www.biglever.com/extras/PLE_Industrial_Mainstream_Whitepape
r.pdf (last accessed 30 Sept 2015). 

[19] S. Buhne, K. Lauenroth, and K Pohl, “Modelling Requirements 
Variability across Product Lines”, Proceedings of the 13th IEEE 
International Conference on Requirements Engineering, 2005, pp. 41-52. 

[20] N Kano et al., "Attractive Quality and Must Be Quality," The Journal of 
Japanese Society for Quality Control, 1984, VOL?? pp. 39-48.  

[21] The Power of Product Platforms, M Meyer and A. P. Lehnerd, Simon & 
Schuster 1997. 

[22] www.autosar.org (last accessed 1 July 2015). 
[23] http://w3.siemens.com/mcms/automation/en/industrial.-

communications/profinet/pages/default.aspx (last accessed 1 July 2015). 
http://www.plcopen.org/index.html (last accessed 5 July 2015). 
 

 

http://www.sei.cmu.edu/productlines/frame_report/MBMC.htm
http://www.autosar.org/

	I.  Introduction
	II. Related Work
	III. feature development
	A. Customer Perspective
	B. Supplier Perspective
	C. Feature evolution

	IV. Business strategies
	V. Feature development framework
	A. Qualifiers – Domain Independent
	B. Qualifiers – Domain Dependent
	C. Differentiators – Domain Independent
	D. Differentiators – Domain Dependent

	VI. Case Study: A Frequency Converter Product Line
	A. Qualifiers (Common - Domain-Independent):
	B. Qualifiers (Common - Domain Dependent)
	C. Differentiators (Shared/Unique Domain Independent)
	D. Differentiators (Shared/Unique Domain Dependent)

	VII. results
	A. Qualifiers (Common - Domain-Independent)
	B. Qualifiers (Common - Domain Dependent)
	C. Differentiators (Shared/Unique Domain Independent)
	D. Differentiators (Shared/Unique Domain Dependent)

	VIII. Discussion
	IX. THREATS TO VALIDITY
	X. Conclusions
	References


