2,746 research outputs found

    Towards Verifiably Ethical Robot Behaviour

    Full text link
    Ensuring that autonomous systems work ethically is both complex and difficult. However, the idea of having an additional `governor' that assesses options the system has, and prunes them to select the most ethical choices is well understood. Recent work has produced such a governor consisting of a `consequence engine' that assesses the likely future outcomes of actions then applies a Safety/Ethical logic to select actions. Although this is appealing, it is impossible to be certain that the most ethical options are actually taken. In this paper we extend and apply a well-known agent verification approach to our consequence engine, allowing us to verify the correctness of its ethical decision-making.Comment: Presented at the 1st International Workshop on AI and Ethics, Sunday 25th January 2015, Hill Country A, Hyatt Regency Austin. Will appear in the workshop proceedings published by AAA

    Engineering the Hardware/Software Interface for Robotic Platforms - A Comparison of Applied Model Checking with Prolog and Alloy

    Full text link
    Robotic platforms serve different use cases ranging from experiments for prototyping assistive applications up to embedded systems for realizing cyber-physical systems in various domains. We are using 1:10 scale miniature vehicles as a robotic platform to conduct research in the domain of self-driving cars and collaborative vehicle fleets. Thus, experiments with different sensors like e.g.~ultra-sonic, infrared, and rotary encoders need to be prepared and realized using our vehicle platform. For each setup, we need to configure the hardware/software interface board to handle all sensors and actors. Therefore, we need to find a specific configuration setting for each pin of the interface board that can handle our current hardware setup but which is also flexible enough to support further sensors or actors for future use cases. In this paper, we show how to model the domain of the configuration space for a hardware/software interface board to enable model checking for solving the tasks of finding any, all, and the best possible pin configuration. We present results from a formal experiment applying the declarative languages Alloy and Prolog to guide the process of engineering the hardware/software interface for robotic platforms on the example of a configuration complexity up to ten pins resulting in a configuration space greater than 14.5 million possibilities. Our results show that our domain model in Alloy performs better compared to Prolog to find feasible solutions for larger configurations with an average time of 0.58s. To find the best solution, our model for Prolog performs better taking only 1.38s for the largest desired configuration; however, this important use case is currently not covered by the existing tools for the hardware used as an example in this article.Comment: Presented at DSLRob 2013 (arXiv:cs/1312.5952

    Metalevel programming in robotics: Some issues

    Get PDF
    Computing in robotics has two important requirements: efficiency and flexibility. Algorithms for robot actions are implemented usually in procedural languages such as VAL and AL. But, since their excessive bindings create inflexible structures of computation, it is proposed that Logic Programming is a more suitable language for robot programming due to its non-determinism, declarative nature, and provision for metalevel programming. Logic Programming, however, results in inefficient computations. As a solution to this problem, researchers discuss a framework in which controls can be described to improve efficiency. They have divided controls into: (1) in-code and (2) metalevel and discussed them with reference to selection of rules and dataflow. Researchers illustrated the merit of Logic Programming by modelling the motion of a robot from one point to another avoiding obstacles

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Graphic simualtion test bed for robotics applications in a workstation environment

    Get PDF
    Graphical simulation is a cost-effective solution for developing and testing robots and their control systems. The availability of various high-performance workstations makes these systems feasible. Simulation offers preliminary testing of systems before their actual realizations, and it provides a framework for developing new control and planning algorithms. On the other hand, these simulation systems have to have the capability of incorporating various knowledge-based system components, e.g., task planners, representation formalisms, etc. They also should have an appropriate user interface, which makes possible the creation and control of simulation models. ROBOSIM was developed jointly by MSFC and Vanderbilt University, first in a VAX environment. Recently, the system has been ported to an HP-9000 workstation equipped with an SRX graphics accelerator. The user interface of the system now contains a menu- and icon-based facility, as well as the original ROBOSIM language. The system is also coupled to a symbolic computing system based on Common Lisp, where knowledge-based functionalities are implemented. The knowledge-based layer uses various representation and reasoning facilities for programming and testing the control systems of robots
    • …
    corecore