130 research outputs found

    A knowledge-based ideation approach for bio-inspired design

    Get PDF
    Bio-inspired design (BID) involves generating innovative ideas for engineering design by drawing inspiration from natural biological phenomena and systems, using a form of design-by-analogy. Despite its many successes, BID approaches encounter research challenges including unstructured data and existing models that hinder comprehension and processing, limited focus on finding biological knowledge compared to defined problems, and insufficient guidance of the ideation process with algorithms. This paper proposes a knowledge-based approach to address the challenges. The approach involves transforming unstructured data into structured knowledge, including information about natural sources, their benefits, and applications. The structured knowledge is then used to construct a semantic network, enabling designers to retrieve information for BID in two ways. Furthermore, a three-step ideation method is developed to encourage divergent thinking and explore additional potential solutions by drawing inspiration and utilizing knowledge. The knowledge-based BID approach is implemented as a tool and design cases are conducted to illustrate the process of applying this tool for BID

    Design of a visually enhanced searchable database for exploration and application of biomimicry in interior design

    Get PDF
    Biomimetics in Design Biomimicry is an approach to design that extracts design inspiration and principles from natural systems and organisms. When effectively integrated into the design process, this approach can yield products and systems that offer a variety of potential economic and environmental benefits. The research presented here examines some strategies and methods that can assist designers with the successful incorporation of biomimetics into the design process. These include approaches to integrating biomimicry into the design process, strategies to improve the exploration and identification of biological sources of inspiration, and methods to assist with the productive application of biomimetics to design challenges. Additionally, an Excel based tool was also created to assist designers with the integration of biomimetics into the design process

    Towards a design process for computer-aided biomimetics

    Get PDF
    Computer-Aided Biomimetics (CAB) tools aim to support the integration of relevant biological knowledge into biomimetic problem-solving processes. Specific steps of biomimetic processes that require support include the identification, selection and abstraction of relevant biological analogies. Existing CAB tools usually aim to support these steps by describing biological systems in terms of functions, although engineering functions do not map naturally to biological functions. Consequentially, the resulting static, functional view provides an incomplete understanding of biological processes, which are dynamic, cyclic and self-organizing. This paper proposes an alternative approach that revolves around the concept of trade-offs. The aim is to include the biological context, such as environmental characteristics, that may provide information crucial to the transfer of biological information to an engineering application. The proposed design process is exemplified by an illustrative case study

    Modeling inspiration for innovative NPD: lessons from biomimetics

    No full text
    International audienceIn biomimetic design, nature - natural phenomena, systems or organisms - is used as a source of inspiration for producing new ideas or concepts. While being widely recommended this approach lacks rigorous analysis and manageable systematization that would be needed in industrial contexts. Better modeling of this process of bioinspiration is a condition for applying bioinspiration to stimulate innovation in a controlled way. This paper presents a model for bioinspiration based on the framework of the C-K design theory. This model was elaborated considering a review of the existing literature on methods for implementing biomimetic design and an analysis of selected biomimetic product development case examples. The results reveal the main roles of biological knowledge in the design process (1) indication of a "design direction", meaning an expansion on the concepts space, (2) indication of knowledge domains where no or few knowledge is available, (3) reorganization of the knowledge base, activating knowledge bases that would not otherwise be activated. This improved understanding of the bioinspiration process outlines more sophisticated and profound conditions that have to be managed for creating value

    Paradigms for biologically inspired design

    Get PDF
    Biologically inspired design is attracting increasing interest since it offers access to a huge biological repository of well proven design principles that can be used for developing new and innovative products. Biological phenomena can inspire product innovation in as diverse areas as mechanical engineering, medical engineering, nanotechnology, photonics, environmental protection and agriculture. However, a major obstacle for the wider use of biologically inspired design is the knowledge barrier that exist between the application engineers that have insight into how to design suitable products and the biologists with detailed knowledge and experience in understanding how biological organisms function in their environment. The biologically inspired design process can therefore be approached using different design paradigms depending on the dominant opportunities, challenges and knowledge characteristics. Design paradigms are typically characterized as either problem-driven, solution-driven, sustainability driven, bioreplication or a combination of two or more of them. The design paradigms represent different ways of overcoming the knowledge barrier and the present paper presents a review of their characterization and application

    Facilitating Design-by-Analogy: Development of a Complete Functional Vocabulary and Functional Vector Approach to Analogical Search

    Get PDF
    Design-by-analogy is an effective approach to innovative concept generation, but can be elusive at times due to the fact that few methods and tools exist to assist designers in systematically seeking and identifying analogies from general data sources, databases, or repositories, such as patent databases. A new method for extracting analogies from data sources has been developed to provide this capability. Building on past research, we utilize a functional vector space model to quantify analogous similarity between a design problem and the data source of potential analogies. We quantitatively evaluate the functional similarity between represented design problems and, in this case, patent descriptions of products. We develop a complete functional vocabulary to map the patent database to applicable functionally critical terms, using document parsing algorithms to reduce text descriptions of the data sources down to the key functions, and applying Zipf’s law on word count order reduction to reduce the words within the documents. The reduction of a document (in this case a patent) into functional analogous words enables the matching to novel ideas that are functionally similar, which can be customized in various ways. This approach thereby provides relevant sources of design-by-analogy inspiration. Although our implementation of the technique focuses on functional descriptions of patents and the mapping of these functions to those of the design problem, resulting in a set of analogies, we believe that this technique is applicable to other analogy data sources as well. As a verification of the approach, an original design problem for an automated window washer illustrates the distance range of analogical solutions that can be extracted, extending from very near-field, literal solutions to far-field cross-domain analogies. Finally, a comparison with a current patent search tool is performed to draw a contrast to the status quo and evaluate the effectiveness of this work.National Science Foundation (U.S.) (grant number CMMI-0855510)National Science Foundation (U.S.) (grant number CMMI-0855326)National Science Foundation (U.S.) (grant number CMMI-0855293)SUTD-MIT International Design Centre (IDC

    Function Based Design-by-Analogy: A Functional Vector Approach to Analogical Search

    Get PDF
    Design-by-analogy is a powerful approach to augment traditional concept generation methods by expanding the set of generated ideas using similarity relationships from solutions to analogous problems. While the concept of design-by-analogy has been known for some time, few actual methods and tools exist to assist designers in systematically seeking and identifying analogies from general data sources, databases, or repositories, such as patent databases. A new method for extracting functional analogies from data sources has been developed to provide this capability, here based on a functional basis rather than form or conflict descriptions. Building on past research, we utilize a functional vector space model (VSM) to quantify analogous similarity of an idea's functionality. We quantitatively evaluate the functional similarity between represented design problems and, in this case, patent descriptions of products. We also develop document parsing algorithms to reduce text descriptions of the data sources down to the key functions, for use in the functional similarity analysis and functional vector space modeling. To do this, we apply Zipf's law on word count order reduction to reduce the words within the documents down to the applicable functionally critical terms, thus providing a mapping process for function based search. The reduction of a document into functional analogous words enables the matching to novel ideas that are functionally similar, which can be customized various ways. This approach thereby provides relevant sources of design-by-analogy inspiration. As a verification of the approach, two original design problem case studies illustrate the distance range of analogical solutions that can be extracted. This range extends from very near-field, literal solutions to far-field cross-domain analogies.National Science Foundation (U.S.) (Grant CMMI-0855326)National Science Foundation (U.S.) (Grant CMMI-0855510)National Science Foundation (U.S.) (Grant CMMI-0855293)SUTD-MIT International Design Centre (IDC

    Natural Language Processing in-and-for Design Research

    Full text link
    We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research

    Performance based abstraction of biomimicry design principles using prototyping

    Get PDF
    A key challenge faced by biomimicry practitioners is making the conceptual leap between biology and design, particularly regarding collaborating across these knowledge domains and developing and evaluating design principles abstracted from biology. While many tools and resources to support biomimicry design exist, most largely rely on semantic techniques supporting analogical translation of information between biology and design. However, the challenges of evaluation and collaboration are common in design practice and frequently addressed through prototyping. This study explores the utility of prototyping in the unique context of biomimicry by investigating its impact on the abstraction and transfer of design principles derived from biology as well as on cross-domain collaboration between biologists and designers. Following a survey exploring current practices of practitioners, in depth interviews provided detailed accounts of project experiences that leveraged prototyping. Four primary themes were observed: (1) Approximation; (2) The Prototyping Principle; (3) Synthesis and Testing; and (4) Validation. These themes introduce a unique abstraction and transfer process based on form-finding and collaborative performance evaluation in contrast to the widely accepted semantic language-based approaches. Our findings illustrate how designers and engineers can leverage a prototyping skillset in order to develop boundary objects between the fields of biology and design to navigate challenges uniquely associated with the biomimicry approach
    corecore