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Design-by-analogy is a powerful approach to augment traditional concept generation
methods by expanding the set of generated ideas using similarity relationships from solu-
tions to analogous problems. While the concept of design-by-analogy has been known for
some time, few actual methods and tools exist to assist designers in systematically seeking
and identifying analogies from general data sources, databases, or repositories, such as
patent databases. A new method for extracting functional analogies from data sources
has been developed to provide this capability, here based on a functional basis rather
than form or conflict descriptions. Building on past research, we utilize a functional vec-
tor space model (VSM) to quantify analogous similarity of an idea’s functionality. We
quantitatively evaluate the functional similarity between represented design problems
and, in this case, patent descriptions of products. We also develop document parsing
algorithms to reduce text descriptions of the data sources down to the key functions, for
use in the functional similarity analysis and functional vector space modeling. To do this,
we apply Zipf’s law on word count order reduction to reduce the words within the docu-
ments down to the applicable functionally critical terms, thus providing a mapping pro-
cess for function based search. The reduction of a document into functional analogous
words enables the matching to novel ideas that are functionally similar, which can be
customized various ways. This approach thereby provides relevant sources of design-by-
analogy inspiration. As a verification of the approach, two original design problem case
studies illustrate the distance range of analogical solutions that can be extracted. This
range extends from very near-field, literal solutions to far-field cross-domain analogies.
[DOI: 10.1115/1.4028093]

1 Introduction

Design-by-analogy using computational support methods offers
a means to expand the set of considered concepts to entire online
databases of concepts. The objective of this research is to develop
appropriate algorithms and tools to enable web-based search for
design analogies. With such an approach, a designer will be able
to methodically search the vast amount of design information
available online in patent archives. The resulting analogous con-
cepts will be used to complement and infuse the concept genera-
tion process by introduction of nonobvious analogies resulting in
innovative conceptual designs.

This research utilizes previous work encompassing functional
modeling and representation of design concepts, online informa-
tion retrieval from text-based databases, and concept similarity
metrics to develop a systematic method for extracting near- and
far-field analogies based on functional similarity [1–15]. Our hy-
pothesis is that a patent-based analogy search algorithm utilizing a
functional representation in a formalized tool can be used to iden-
tify nonobvious functional analogies for design concept genera-
tion more effectively than traditional key word searching for
analogous designs. A key feature here is to make use of functional
representations rather than component form of conflict representa-
tions. The underlying hypothesis is that functional analogies are
useful within the conceptual design process to improve ideation
outcomes.

1.1 Functional Modeling. Complementary to many design
methodologies and philosophies, the use of functional analogies
has been promoted as an important technique for synthesizing

innovative and novel solutions, and research has empirically veri-
fied this effect [16,17]. For effective application of these func-
tional analogy based concept generation techniques, design
problems may be represented by a set of solution-neutral functions
to minimize design fixation and enable a large number of concepts
to be considered [8,15,18].

Pahl and Beitz created the hierarchical structure of the
functional basis and the five categorical functions of which all
functions are more specific instances [15]. Building off of this
foundational work, Otto and Wood present a process of develop-
ing a functional representation of a concept beginning with an
abstracted black box formulation of the overall product function
with input and output flows [8]. The black box model is then
decomposed into subfunctions interconnected by associated flows,
resulting in a repeatable function structure representing the inter-
nal functionality of a concept [4,5]. A number of functional mod-
els may be developed for a given design problem, depending on
process choices and associated flows [8].

Extensive efforts have produced a standard language for repre-
senting functions and flows associated with each subfunction
called the functional basis [6,7]. In particular, Cheong et al. and
Shu et al. have made significant contributions to the field of
biomimetic design and design-by-analogy through finding biologi-
cally meaningful keywords that correspond to the functional basis
[19], as well as using natural language techniques to extract func-
tionally relevant information and inspiration from biology texts
[20].The functional basis consists of a set of function and flow
words used as verb–object couples to describe the action imparted
on the flows a function. Pahl and Beitz showed all function verbs
can be abstracted hierarchically into more abstract function verbs,
generally into five overall “categorical functions” [15]. This set of
functions forms a basis that can thereby provide a standard taxon-
omy for describing a design concept and enables physical sys-
tems, concepts or products to be functionally represented and
compared.
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Functional modeling is also used to identify modules and inter-
face boundaries, such as that devised by Stone and Wood to trans-
form product function into alternative product layouts by
identifying modules for modular product architectures [21]. This
information can be used to simplify a complex functional model
as well as discover opportunities to improve manufacturability,
maintainability, and reliability early in the design process through
function sharing and proper interface design, such as in Ref. [22].

For our purposes here, a standardized functional model also
facilitates archiving and retrieval of design knowledge. To that
end, several systems have been developed to store the design
knowledge contained in the functional models for design reuse
[23–27]. In addition, computational tools have been developed to
exploit the knowledge contained in the design repositories for the
purpose of concept variant generation [28–31]. These works lend
credence to the assertion that functional modeling is a useful engi-
neering language for indexing design concepts.

One limitation of the functional modeling methodology of Otto
and Wood [8] is that process choices made initially about what
kind of inputs will go into the system on the user side necessitates
selection of flow variables early in the conceptual design process
[8]. The single, domain-dependent model can lead to missed
opportunities for novelty and innovation. Instead functional
modeling should be considered more broadly in the context of
modeling user and environmental activities and functions, and al-
ternative process choices considered through higher levels of
abstraction that lead to alternative functional models [8]. We
explore this through matching using the functional basis
approach.

1.2 Analogical Reasoning. Understanding the cognitive pro-
cess involved in forming analogies is fundamental to the develop-
ment of any tool or methodology that seeks to improve the
conceptual design process. Analogy can be viewed as a mapping
of knowledge from one situation (source) to another (target),
enabled by a supporting system of relations or representations
between situations [32–34]. The process of analogical comparison
fosters new inferences and promotes construing problems in new
insightful ways. The potential for creative problem solving is
most noticeable when the situation domains are very different
[16,35]; this can be conceptualized as drawing inspiration from a
domain of expertise or application that is unrelated to the target
domain, such as using biological phenomena to inspire the design
of mechanical devices. In general, it is rare to find a designer with
expertise in more than one technical field of application, making
designing in this manner difficult to perform. The literature on
design-by-analogy, distance has been defined thus far in a rela-
tively qualitative and subjective manner—“near-field” being
when the target and source of the analogy originate from the same
domain of application, and “far-field” being when the target and
source of the analogy are from different domains. Work has been
done to further formalize and potentially quantify distance of
analogy using computational text analysis and structuring of
design databases [36], but the field on the whole has not yet
defined distance of analogy in a more formal way. The cognitive
analogical process is based on the representation and processing
of information, and therefore can be implemented in algorithms
given an appropriate representation of the information [37,38].

Design-by-analogy has great potential to produce innovative
design. Previous research has shown usage of analogy can miti-
gate the effects of design fixation [39]. Theoretically, a robust
design-by-analogy methodology would enable designers to iden-
tify nonobvious analogous solutions, even in cases where the map-
ping between concepts is tenuous or the concepts are from
different domains. Such different but analogous concepts can be
identified by creating abstracted functional models of concepts
and comparing the similarities between their functionality. Appro-
priate functional representation of design concepts is as critical to
the successful implementation of design-by-analogy as is

developing a systematic approach to search for and evaluate the
utility of functionally similar concepts.

Researchers have worked to facilitate design-by-analogy with a
few different strategies, including creating design processes/meth-
odologies, creating ways to translate from one domain of expertise
to another, and creating ways to retrieve useful information for an-
alogical stimuli. On the process front, researchers have used prob-
lem reformulations, function structures, constraint analysis, and
other strategies to achieve design-by-analogy. For example, Goel
et al. also use functional modeling and functional indexing to cre-
ate a system called KRITIK that autonomously generates new
conceptual designs based on a case library of previously existing
designs [40,41]. Bhatta et al. developed a project called IDeAL,
which uses a function-behavior-structure model-based approach
to design-by-analogy through pattern finding, constraint analysis,
and problem reformulation [42,43]. Navinchandra et al. developed
a nonfunctional approach using case based reasoning in a tool
called CADET, to retrieve and synthesize case design components
for more effective combination and better design [44]. Qian and
Gero created an exploration medium for between-domain analo-
gies using function-behavior-structure design prototypes [45].
FunSION, a computational tool developed by Liu et al., takes
qualitative functional input and output requirements, and gener-
ates physical embodiments of design solutions [46,47].

For translating between domains to facilitate analogical transfer
of knowledge, Hacco and Shu also developed structured
approaches utilizing biomimetic principles for generating con-
cepts, which provides a systematic process for identifying analo-
gous concepts [48]. They also use a functional semantic
representation, in which keywords are derived that relates the
function to the biological processes. A search is then preformed
using standard biological processes from biology textbooks as the
reference database. Charlton and Wallace created a web-based
tool for finding pre-existing engineering components for reuse in
nonstandard applications in new designs to reduce manufacturing
costs [49]. Nagel et al. created an engineering to biology thesaurus
to reduce the expertise barriers to biologically inspired design
[50].

For retrieval of analogical stimuli or potential analogical sour-
ces for transfer, Chakrabarti et al. created idea-inspire, a database
and software tool that automates analogical search in a natural
and artificial systems database to provide inspiration in the design
process [51,52]. Yang et al. worked to create thesauri using infor-
mation retrieval from informal design documentation for reuse in
the design process [53,54], in addition to creating the DedalAI
system to automatically index design concepts in electronic note-
books for retrieval and reuse [55]. Ahmed developed a system for
helping designers to index and build a knowledge network based
on engineering designer queries, which generates associations
between concepts, with the end goal of aiding in the search for in-
formation, reformulation of a query, and prompting design tasks
[56]. Linsey et al. [57–59], Seger et al., [60] and Segers and De
Vries [61], and Verhaegen et al. [62] develop approaches to ana-
logical retrieval and reasoning through linguistic (semantic word)
associations, problem rerepresentation, and mappings.

Linguistics research has shown that verbs are inherently rela-
tional by nature and impose fewer psychological constraints com-
pared to nouns [63]. Verbs represent relational concepts whereas
nouns are object-reference concepts. In the following section,
functional representation making use of verbs is proposed for
design problems to leverage the cognitive flexibility of the action
verb.

As discussed previously, the functional modeling approach of
Otto and Wood using the function-flow basis is a useful method
for representing design intent, but the specification of the flow
inputs has the consequence of defining the solution domain due to
the process choices. A truly solution-independent representation
should not fix the design space within a particular domain.
Besides the exploration of multiple, simultaneous functional mod-
els, this can be accomplished by removing the flow objects from
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the verb–object functional model, and focusing on the verbs. The
resulting abstract verbal representation is entirely conceptual,
relational, and solution independent.

The representation is greatly simplified as common functions
acting on different flows collapse into a single verb. It is acknowl-
edged that the semantic representation as expressed in abstracted
basis functions lacks the granularity necessary to be useful for
concept generation [64]. Additionally, it is acknowledged that the
abstract basis functions were derived from a functional model that
was created with both functions and flows, and thus the functions
by necessity have some latent albeit much reduced dependency/
relationship to the flows and solution domain. The representation
scheme will use lower level functional (tertiary and correspond-
ents) to specify the design problem. The functional modeling
approach naturally provides hierarchical semantics that can asso-
ciate near- and far-field concept descriptions.

1.3 Patent Datasets. Patents have been considered sources of
analogies and concepts that can lead to innovative solutions [65].
In addition to the sheer volume of information contained in the
patent database, all the concepts within the database must be both
useful and novel. “Useful” is defined as being functional and oper-
able, and “novel” is defined as being nonobvious and having not
previously existed in the public domain [65].

Another valuable feature of the patent database for design infor-
mation retrieval is the patent classification structure of the U.S.
Patent and Trademark Office (USPTO). Approximately 450 well-
defined primary classification categories have been established to
organize and group patents according to the field of invention.
The classification system is a powerful element that benefits infor-
mation retrieval by enabling data clustering for more efficient pre-
sentation and organization of search results [65]. Patents are
structurally well formed with distinct partitions, and the sections
that contain the embedded design information are the abstract,
claims, and description. The regular structure of the documents
will enable relatively simple implementation of natural language
processing techniques to extract functional information. A review
of patent search and information extraction literature exposed a
dearth of literature on function extraction and concept generation
from patents in general. Much of the literature is related to the
topics of patent invalidity searches and patent informatics [66,67],
but the same information extraction principles will be applied for
deriving the patent functionality.

A significant focus of the literature has been computational design
aids using the patent database. The theory of inventive problem solv-
ing (TRIZ) is the basis of many of these design aids. It is a theory
which presents heuristic rules, or principles, to assist designers to
overcome impasses in functional reasoning based on previous classi-
fication of patents in terms of contradictions [68]. Zhang et al. have
used the functional basis in combination with TRIZ to create an axio-
matic conceptual design model [69]. Using textual analysis of patents
for use in TRIZ, Cascini and Russo presented a way to automatically
identifying the contradiction underlying a given technical system
[70]. To identify relevant candidates for TRIZ automatically, Souili
et al. developed a method using linguistic markers [71,72].

The mapping of patents has been an additional area of signifi-
cant research. A method of extracting inherent structure in textual
patent data has been implemented for both studying and support-
ing design-by-analogy [36,73,74]. Szykman et al. have built
design repositories to share and reuse elements of designs in the
development of large scale or complex engineering systems [75].
Koch et al. developed PatViz to allow for visual exploration of
queries and complex patent searches using many kinds of patent
data, in which the graph views are created by the user [76].
Mukherjea et al. found semantic associations between important
biological terms within biomedical patents, using a semantic web
with the intent of aiding in the avoidance of patent infringement
[77]. Chakrabarti et al. used a topic model to analyze patent data,
leading to a taxonomy or hierarchical structure [78].

While the U.S. patent database is a ripe repository to support
design-by-analogy and is organized by a helpful classification sys-
tem through the USPTO, the size and complexity make it very dif-
ficult to access analogically inspiring information. Attempts to aid
in the search and use of the patent database include theories like
TRIZ and their resulting tools [68,69,79–89], along with many
more research driven tools and methods [40,62,90–92]. Previous
work in this field most often relies deeply on users and designers
to create their own analogies, or search through large quantities of
results.

In summary, there is a rich body of research on functional mod-
eling and representation of concepts, a rich body of research on
design-by-analogy, and a rich body of research on patent indexing
and analysis. However, these three sets of works remain independ-
ent. We have brought these works together to apply the natural de-
scriptive capability of functional modeling to draw analogies
between functionally described design problems and functionally
described patent documents. In Sec. 2, the underlying mathemati-
cal formalism to represent functionality is reviewed, the function
VSM. Then, the modeling and matching algorithms are reviewed,
followed by discussion of the finding and presentation of analo-
gous patent documents and how they could be used within a
design process. We then present a case study, and compare the
method to traditional patent searching to test for efficacy.

2 Methodology and Embodiment Tool

The development and implementation of the function vector
approach to analogy search is a five-step process shown in Fig. 1.
It begins by constructing a controlled vocabulary of functions
extracted from the patent database (i.e., mapping the general func-
tional basis to an equivalent functional language basis for patents),
making use of the hierarchical structure of the functional basis.
Once a complete set of patent function terms is compiled, a basis
set of the patent function terms is defined. Then, the patent docu-
ments are indexed against the functional basis to create a vector
representation of the patent database. Query generation and simi-
larity ranking tools are then developed to query and retrieve the
patents with the highest degree of relevance to the functional
description of a given design problem. Finally, the most relevant
patent results are presented to the user. These steps are now
detailed.

2.1 Knowledge Database Processing. As shown in Fig. 1,
the first step of the five-part process involves retrieving the design
document (patent) information in the form of text, parsing that
text, and then implementing tokenizing, or braking down passages
of text into their individual words or “tokens,” and word stem-
ming, or reducing words to their base or root form. Figure 2
depicts further detail of the parts involved in this initial step of
processing the patent documents. The VSM of information re-
trieval is used as the basis of the analogy search method devel-
oped in this work [93]. VSM was first developed in the early
1970’s to overcome several limitations of the Boolean model,
such as lack of search result relevancy ranking, strict query syntax
requirements, and query expansion limitations [1,2]. In VSM, a
document is represented as a vector of terms. The terms are words
and/or phrases extracted from the documents themselves using
natural language processing techniques [94,95]. To represent a
document as a vector of terms, each term in the vocabulary
becomes an independent dimension in an n-dimensional space,
where n is the number of vocabulary terms. All of the documents
in the database are mapped onto the vector space using indexing
algorithms. In the most basic algorithm, binary values are
assigned for each dimension according to whether the term occurs
in the document, 1 for present and 0 for absent, but typically a
weighting factor is applied to the occurring terms [93]. The two
common weighting factors are the term frequency (tf), which is
the frequency of occurrence within a specific document, and the
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Fig. 1 Overview of the functional analogy search development

Fig. 2 Knowledge database processing involves parsing, tokenizing, and stemming textual content of 65,000 random patents
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document frequency (df), which is the frequency of occurrence
across documents [9,10].

The resulting term-document matrix is a matrix of size m� n,
where m is the number of documents in the collection, and n is the
number of terms, and is typically a very sparse matrix given that
relatively few terms occur within a single document. A variant of
the standard VSM model called latent semantic indexing (LSI) or
latent semantic analysis can be used to reduce the dimensionality
of the term-document matrix [9]. Using term co-occurrence infor-
mation, singular value decomposition (SVD) methods map the
document terms to a reduced concept space [96]. In this context,
concepts are groups of terms that are synonyms, hypernyms, and
troponyms of each other. For example, the terms car, truck,
pickup, and automobile are synonyms and/or hypernyms, where a
hypernym is defined as a generalized term that more specific
terms fall under. Troponyms apply only to verbs and are defined
as verbs that more specifically describe the action. For example,
march is a troponym of walk. Using SVD, the four terms can be
clustered into a single dimension. Applied across the entire term-
vector, the n-dimensional space, typically in the thousands of
terms, is reduced to a k-dimensional space, typically in the hun-
dreds of concepts, and the dimensionality of k is a system parame-
ter that must be tuned to optimize the mapping [97].

Some drawbacks to LSI are high computational requirements
for the SVD algorithm and difficulties in adding documents to the
database. Adding large numbers of new documents to a database
without recomputing the SVD can lead to skewed similarity
results and omitted terms. This issue is particularly significant in
the patent database where documents are continually added [9].
Conflicting reports of the performance improvement relative to
the standard VSM query are reported in the literature. Dumais
[97] reports an average performance increase of 5%, and Moldo-
van et al., [96] found only a 5% improvement over VSM for appli-
cation of LSI specifically to patent searches. Given the added
computational overhead, issues with document additions, and
marginal performance improvement, the standard VSM approach
was chosen over LSI as the search engine model for this research.
Issues of polysemy, where a word has multiple meanings, and
synonymy, where multiple words have the same meaning, are
overcome through query mapping heuristics using one-to-many
term mapping; in other words, query mapping rules are devised
such that a single query term is mapped to multiple document
terms, allowing for the simplified query to capture a range of pat-
ents that possess the same general functionality.

One of the powerful aspects of the VSM model is that queries
can be mapped to the term-vector space using the same algorithms
as the document mapping. This flexibility removes the syntactic
constraints on the query structure and provides a simple, straight-
forward metric for evaluating similarity between the query and
the documents [9]. In the term-vector space, the similarity
between the query vector and a document vector is equivalent to
the angle between the vectors. The cosine of the angle between
the vectors is a commonly used metric since it has the useful prop-
erties of varying from 0 for orthogonal vectors and 1 for identical
vectors [2]. Finally, as stated above, an aspect of the VSM model
that is exploited in this research is the capability to establish query
mapping rules to map a single query term to multiple document
terms. The ability to utilize this synonymy leads to the retrieval of
a range of patents with the same general functionality. For exam-
ple, if the single query term were “divide,” as shown in Table 1,
synonymous terms such as “section, branch, partition, segregate,
dissect, etc.” would also be included in the query.

Because purely manual indexing is very tedious and resource
intensive, tools were developed to preprocess the patents using
natural language processing techniques. The patent text is parsed
directly from HTML to extract information, such as the title,
abstract, description, claims, and patent class. Stop words lists are
used to eliminate unnecessary terms, such as articles and preposi-
tions [10]. In addition, word stemming algorithms are applied to
the retrieved text to further consolidate terms. A modified Porter

stemming algorithm is applied to terms to strip suffixes, e.g., -ing,
-s, -es [98]. The Porter stemmer is too aggressive for the purpose
of this research; for example, component-noun terms connector
and connection are stemmed to the function term connect using
Porter [98]. A modified prefix stripping algorithm was created to
extract root functions. Stripped prefixes include “sub,” “re,” “un,”
“de,” “under,” “mis,” “over,” “pre,” “post,” “non,” “counter,”
“out,” “inter,” “micro,” “up,” “super,” “en,” “co,” “dis,” “hyper,”
“ultra,” and “anti”. A major component of automated indexing of
the patents involves part-of-speech (POS) tagging. Here, we used
TreeTagger, an open-source POS tagging program chosen based
on high accuracy of tagging in natural language documents. Tests
of accuracy have shown it to be over 95% accurate [3]. TreeTag-
ger program identifies the POS from sentence structure using

Table 1 Examples from the expanded functional basis vocabu-
lary for the secondary functions of divide and import

Primary Secondary Correspondents

Branch Divide Section
Divide
Segment
Branch
Sort
Partition
Tab
Miss
Diverge
Fractionate
Cube
Segregate
Dissociate
Graduate
Quantize
Parse
Allot
Buck
Dissect
Dismantle
Shred
Interdigitate
Packetize
Compartmentalize
Part
Separate
Digitalize
Modularize
Butcher
Sectionalize

Channel Import Permit
Insert
Input
Introduce
Inlet
Accept
Admit
Fetch
Inflow
Breathe
Aspirate
Import
Invite
Ingest
Invade
Inhale
Include
Obtain
Receive
Enter
Cannulate
Induct
Internalize
Imbibe
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probabilistic, binary decision trees [3]. Automated indexing was
validated with manual verification.

2.2 Functional Vocabulary Generation. A primary goal of
this research is to identify and extract a complete set of functions
covering the entirety of the patent database. Figure 3 depicts the
process involved in this second step of the development of the
search methodology. Completeness of the function vocabulary is
evaluated using two metrics: cumulative functions versus number
of patents indexed and function document frequency versus term
chronological order. After indexing 65,000 randomly selected
patents (limited by the maximum database size), a set of approxi-
mately 1700 functions are identified. A secondary database could
be constructed to expand the capability beyond 65,000 patents if
completeness has not been achieved, but this step is not necessary
per the results presented next. In Fig. 4, cumulative functions plot-
ted versus patents illustrates that the metric has reached a horizon-
tal asymptote, and furthermore convergence was reached at
approximately 61,000 patents. This asymptote provides a verifica-
tion that the function vocabulary does in fact converge to finite
set. Therefore, any user of the methodology need not recreate this
list of 1700 patent basis functions; our one-time generation of this
list suffices. On the other hand, this can be periodically rechecked
easily, and is presented in detail here for scientific repeatability of
the development method.

The plot in Fig. 5 shows the document frequency of the func-
tion versus the order in which the function was first identified.
The document frequency measures how often a term occurs across

all patents. Statistically, high document frequency terms will be
found earlier due to the random sampling. The trend shown in
Fig. 5 is clearly confirmed with the functions’ document frequen-
cies clustering below 1% of searchable patents as a function of
order found. The 1% threshold is chosen not based on a hard limit,

Fig. 3 Functional vocabulary generation involves checking for convergence of functional
terms, defining function regimes using zipf’s law, and using wordnet/thesaurus to perform af-
finity mapping, defining functional vocabulary hierarchy

Fig. 4 Cumulative functions versus number of patents indexed
with horizontal asymptote at �1700 functions and 61,000 pat-
ents verifying convergence of function vocabulary
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but from the insight that terms below that level are excluded from
99% of the remaining patents. The low resolving power of these
low frequency terms means little value is added to search queries
by including them, since they will have no impact on similarity
for the vast majority of patents. The resolution power of terms as
a function of frequency is a reflection of Zipf’s law [11,12,94],
here not for all written documents, but rather only for patent
documents.

The frequency of words follows a power law distribution
(straight line on log–log scale) and the resolving power is analo-
gous to a Gaussian distribution, where both very high frequency
terms and very low frequency terms have low resolving power.
This reasoning for the high frequency terms is the underlying jus-
tification for using the stop words lists. The upper and lower cut-
offs are therefore thresholds and can be selected based on consid-
ering how many additional documents one seeks to consider ver-
sus the risk in excluding too many documents. No direct equation
exists to make this determination, where others have advocated a
trial and error tuning process [9]. The function vocabulary identi-
fied in the indexing process is plotted in Fig. 5, using log–log
axes. A Zipf distribution was fit through the data for comparative
purposes, as shown in Fig. 6, quantifying the resolving power of
different terms.

Examining Fig. 6, when compared to Zipf’s law, three different
regimes of function frequency distribution can be identified and
are label as: ubiquitous, generic, and process-specific. Ubiquitous
functions occur so frequently across all patents that they offer lit-
tle value for determining similarity or relevance, per Zipf’s

theory. These functions can be considered to lie above the upper
cut-off, chosen to be all terms that occur in more than 50% of pat-
ents. Examples of these functions are provide, use, etc. The ubiq-
uitous functions, which account for 50 of the 1700 terms, are to be
removed from the final function vocabulary index. Generic func-
tions have a good balance between frequency and specificity to
enable better distinction between patent vectors within the cosine
similarity metric. Examples of these functions are shape, rotate,
etc. Process-specific functions occur in very few patents and
would be below the lower cut-off region. Blindly following the
resolving power hypothesis, these terms should be removed from
the function index as well, but the rarity of the function may in
and of itself lead to novel solutions. The retention of these few
extra terms does not impact the computational overhead since the
converged and complete functional vocabulary consists of just
over 1700 terms after removal of the ubiquitous functions. The
patent-based functional analogy search methodology can now be
developed using the functional vocabulary derived in this section
of work.

After the final set of functions is vetted per the process
described previously, affinity diagramming, and thesaurus con-
struction techniques were used to create a hierarchical structure
for the 1700 word functional vocabulary, modeled after the func-
tional basis [7,8]. The affinity diagram technique is used to group
like-terms together into subgroups of hypernyms and synonyms.
Unusual or unfamiliar words were checked against existing the-
sauri to select the proper grouping. The iterative process created
secondary functions with similar numbers of correspondent sub-
functions. The function subgroups were split or merged accord-
ingly to attain consistent numbers of functions in each subgroup.
The detailed procedure, all performed entirely computationally
except for the use of the thesaurus and WordNet in steps 1 and 4
below, for developing the hierarchical structure of the expanded
functional basis is given as follows:

(1) Sort all terms into primary basis functions using thesaurus
and WordNet according to synonymy and hypernym rela-
tionships [13,14].

(2) Rank verbs within each primary group by document
frequency.

(3) Review verbs and extract five highest frequency terms.
These terms become initial secondary functions.

(4) Group remaining correspondent functions within each sec-
ondary group using thesaurus and WordNet hierarchical
relationships [13,14].

(5) Rank verbs within each secondary group by document
frequency.

(6) Separate groups that contain more than 50 verbs into multi-
ple secondary function groups.

(7) Iterate on grouping process to produce secondary function
groups with similar number of correspondent functions.

The resulting structure of the expanded functional basis vocab-
ulary is 1700 unique functions organized into 74 groups of sec-
ondary functions. The secondary functions and associated
correspondents are mapped into the eight (8) primary functions.
Table 1 illustrates the hierarchical structure for two of the second-
ary functions: divide and import.

This result is readily scalable to add new patents. Utilizing the
structure of the function vocabulary, a patent search sample data-
base was constructed by indexing additional patents against the
completed function vocabulary. For the purposes of this research,
a representative sample database of patents was constructed from
a subset of the USPTO patent database. Three continuous selec-
tions of 100,000 patents each were chosen to be indexed. The pat-
ent groups were selected chronologically, with the first selection
from patents 3,560,000 to 3,660,000, the second selection from
patents 5,000,000 to 5,100,000, and the final selection from pat-
ents 7,500,000 to 7,600,000, spanning the years from 1971 to
2009. The reasoning behind this is that the creation of patents is
exponentially increasing with time; so, it follows that if a random

Fig. 5 Term-document frequency versus order, showing the
frequency falls below a 1% threshold (occur in <�45,000
patents)

Fig. 6 Function vocabulary document frequency versus rank
order comparison with zipf’s power law distribution
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set was chosen from the entire database, many more would be
from recent years than from further in the past. Choosing three
sets within three ranges of patent numbers coming from three
distinct bands of time was an attempt to get a more even set of
patents temporally. After omitting repealed or missing patents, the
sample database consists of approximately 2,75,000 patents
mapped into document vectors, resulting in an approximately
275,000� 1700 patent vector matrix. The whole of the patent
database was not indexed, as this was an example implementation
of the methodology, in addition to the limitations of the current
hardware and software prototype implementation; however, it is
not unreasonable to achieve this goal in the near future.

2.3 Query Formulation and Evaluation. The next step (step
3 in Fig. 1) of the research was to formulate the means to query
the database of patents and functions. The detailed process for this
third step in the development of the methodology is depicted in
Fig. 7. The binary document vector matrix contains both the func-
tional content information for each patent as well as the term-
document frequencies across all patents indexed. The term-
document frequency and the patent functional content are used to
derive the similarity metric for ranking the search results. As dis-
cussed previously, the document frequency (df) is a common term
weighting scheme and in particular the inverse document fre-
quency (idf) is used to weight rare terms higher than common
terms [9,10]. The inverse document frequency is given as

idft ¼ log
N

dft
(1)

where N is the total number of documents and dft is the document
frequency of term t. Previous research has shown more specific
function verbs can yield more novel solutions [99], and the idf
weighting yields a higher cosine similarity score for patents that
contain process-specific functions. The idf is calculated for each
term, and each element of the document vector matrix is scaled
according to the calculated weight for that term. Furthermore,

each document vector is normalized to generate a patent docu-
ment unit vector matrix. The normalization is completed to sim-
plify the cosine similarity calculation. The patent functional
content (fcm) metric is a normalized measure of the total func-
tional content with a specific patent. The equation for the fcm
metric is given as

fcmk ¼
total number of terms in patentk

total number of terms in database
(2)

The fcm metric increases the weighting of patents with high
functional content. The reasoning for including this metric is a hy-
pothesis that functionally rich patents, or those which contain a
large number of functional terms and thus explicitly address more
functionalities, contain more information that can be mapped as
analogies. The total relevancy score is then defined as a linear
combination of the two components: the idf-weighted cosine
similarity metric and the patent functional content metric. This is
summarized in Table 2.

The linear combination within the total relevancy score is
weighted with two coefficients, alpha, a, and beta, b. These coeffi-
cients are tuning parameters used to bias the relevancy ranking to-
ward a higher weighting on either the cosine similarity or the
functional content metric. The tuning parameter weights were
explored empirically through a parametric evaluation process by

Fig. 7 Query formulation and evaluation involves creating a sample patent database of 275,000 patents, defining how to build
query vectors for chosen primary and secondary functions, and establishing a relevancy scoring for any patent in the data-
base to a given functional query

Table 2 Metrics for calculating similarity between the docu-
ment and query vectors

� Query-Patent cosine similarity
cos h ¼ Query � Patent

Querykk � Patentkk

� Patent functional content
FCM ¼

RPatenttermsðtÞ
NumTerms

� Total relevancy criteria Score ¼ a � cos hþ b � FCM
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running multiple patent searches and finding values that produced
patents sufficiently near- and far-field.

To do this, a Query Generator Tool was created to automate the
process of constructing the patent query vector. The graphical
user interface builds the query using the expanded functional basis
vocabulary hierarchical structure. First, as shown in Fig. 8, the
user selects the primary high level function corresponding to the
high level functionality derived from the functional model of the
design problem. Next, the user selects one of many secondary
functions, which are more detailed versions of the primary func-
tion, corresponding to the specific functionality that will be
retrieved. Once the secondary function is selected, the interface
populates the query vector with all correspondent terms associated
within the secondary function. Additional secondary functions can
then be selected to further populate the query vector for a particu-
lar primary function. The new query vector is then saved once all
secondary functions are chosen. The process can then be repeated
for additional primary functions. An example of functional model-
ing of a design problem and the subsequent primary and second-
ary functional term selections are detailed in Sec. 3.

2.4 Information Retrieval and Data Clustering. Once the
query construction is complete, the information retrieval and clus-
tering task is next needed, shown as step 4 in Fig. 1. This step is
depicted in greater detail in Fig. 9. This is implemented in a
search result viewer, shown in Fig. 10. The viewer performs mul-
tiple functions including calculating the cosine similarity, fcm,
and total relevancy score, extracting the top results and clustering
the results by patent class. The cosine similarity is calculated for
all documents simultaneously by first normalizing the query vec-
tor to form the query unit vector, and then calculating the dot
product of the unit query vector with the document vector unit
matrix using the equation

cossimilarity ¼ qT � d (3)

where cossimilarity is a vector containing all cosine similarity scores
for the dot product of the query vector, q, and the document vector
matrix, d. The total relevancy vector is calculated by the linear
sum of the cosvector and the functional content metric vector,
weighted by the user-defined a and b coefficients, respectively.

The top n results as specified by the user are retrieved, sorted by
total relevancy score and clustered by primary patent classifica-
tion. As shown in Fig. 11, the similarity scores for the individual
patents are clearly indicated in the first column of the results list.
The average relevancy score for the patent class is given before
the title to help the user quickly identify patent classes with high
potential for identifying functionally relevant patents.

Selecting one of the search results automatically opens a web
browser window with a portable document format (PDF) version
of the selected patent, by making calls to online patent databases
such as2, and using their patent viewer. The PDF version is dis-
played due to the fact the patent illustrations are included, as
opposed to the text-only version of the patent.

To determine the optimal weighting for the total relevancy
score coefficients, several searches were conducted over various
function combinations. The search result viewer interface enables
the coefficients to be varied in real-time for the same search
query, allowing for multiple iterations for the same function
query. Following a trial-and-error process where b is varied from
1 to �1 keeping a¼ 1, the search results provided more function-
ally relevant results for negative values of the fcm coefficient b.
This result contradicts the thought that functionally rich patents
are more readily mappable to functional analogies. We found the
fcm metric not as useful as it intuitively appears. Patents with
high fcm were thought to contain a high percentage of function
terms. In practice, however, instead, positive values of b skew the
results toward long patents since, statistically, patents that contain
more text will contain more function verbs. Elucidating useful
analogies from these broad patents is cognitively more difficult
than functionally focused patents. Therefore, empirically, the
default values for a and b are set to 1 and �0.2, respectively,
which focused the total relevancy score toward functionally
focused patents.

2.5 Integration Into Design Process. The last step of the
method (step 5 in Fig. 1) is to make use of the resulting patents
presented. The steps described in Secs. 2.1–2.4 are combined into
a structured methodology for identifying analogous patents. With
the concept generation process, the analogy search methodology

Fig. 8 Query generator user interface

2Freepatentsonline.com

Journal of Mechanical Design OCTOBER 2014, Vol. 136 / 101102-9

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jmdedb/930608/ on 04/06/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



is used as a supplemental technique to more traditional concept
generation methods, such as brainstorming, brainsketching, and
the CSketch/6-3-5 method [8,100–102]. Figure 11 depicts how the
analogous patent search presented in this paper might fit into a
product design workflow. Device functionality developed early in
a functional modeling phase can be used directly to create func-
tional semantic representations of the design problem by simply
stripping the verbs from the functional description. These function
verbs can then be mapped to the primary and secondary functions
through the expanded functional basis vocabulary. The query gen-
eration tool can then be utilized to create the query function

vector for the device. The search result viewer algorithms identify
the functionally similar patents in which analogies to the design
problem likely exist. Then, the user can review these sorted pat-
ents and consider them for analogical solutions back to the origi-
nal problem domain. To consider the efficacy of this approach and
others, the function analogy search methodology above is applied
to a case study problem, and compared against the more tradi-
tional approach of simply using keyword patent searches.

3 Case Study Evaluation of Conceptual Design

Phase Efficacy

Two case studies utilized to evaluate the methodology pre-
sented in this paper is the design of an automated window wash-
ing device and the design of a guitar pick up winder. For the first,
the problem is to design a self-contained window cleaning device.
Once initialized, the device will begin an automated routine for
removing dirt, film, and debris from the window surface without
user interaction. The general problem statement allows for multi-
ple process choices such as the power source and cleaning
method. The blackbox functional model and the more simplified
functional model showing core functionality for a battery-
powered device that utilizes a liquid media for cleaning are shown
in Fig. 12. Other alternative process choices for a power source
are solar-power and fuel cells, among others. Alternative cleaning
method process choices omit the cleaning fluid and rely on me-
chanical or other energy-domain removal of debris.

The functional semantic representation of the simplified model
becomes

Import: Transform: Transmit: Regulate: Couple: Support: Remove

Further generalizing the model into the primary functions
results in the functional semantic representation given as

Channel: Branch: Convert: Control: Connect: Support

A separate analogy search is performed by the first author for
each primary function using the secondary functions most relevant

Fig. 9 Information retrieval and data clustering involves entering desired primary and secondary functions into query genera-
tor, exploring top 500 patents in search result viewer clustered by uspto patent class, viewed in PDF form with online patent
database website

Fig. 10 Search result viewer showing average total relevancy
score for patent class and individual total relevancy score for
identified patents

101102-10 / Vol. 136, OCTOBER 2014 Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jmdedb/930608/ on 04/06/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Fig. 11 Integration into design process involves input from user generated functional model-
ing of design problem into patent analogy search, use as one of many possible design inspira-
tion methods/aids during concept generation

Fig. 12 Black box functional model (top) and simplified functional model (bottom) of core
functionality for an automated window washer
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to the original design problem. The multiple search approach is
used to maximize the relevancy score resolution for each query.
The secondary functions utilized for each search query are:

• Channel! Import, Transmit, and Translate
• Branch! Remove, Clean, and Disperse
• Convert! Transform and Treat
• Control! Control and Adjust
• Connect! Connect, Mount, and Couple
• Support! Secure and Align

All searches are performed using the default values for the total
relevancy score metric of a¼ 1 and b¼�0.2. The top 500 results
are retrieved for each search. Table 3 summarizes the relevant pat-
ents compiled from the search results for the queries listed above.

The fourth patent identified for the window cleaning device
(Patent No. 5,086,533) is a very near-field analogy to the proposed
design problem. The device shown in Fig. 13(a) utilizes a squee-
gee mechanism with a fluid application system to automatically
clean windows. A second cleaning device, shown in Fig. 13(b), is
used for automatically cleaning floors.

The second patent identified is a floor cleaning robot (Patent
No. 6,883,201) solution, better known as the iRobot RoombaTM,
performs the same desired functionality as the automated window
washer, but the application is in a different domain (floors versus
windows). Therefore, this solution is a far-field analogy that is
readily adaptable to the window cleaning domain. The missing
functionality of coupling the device to a window can be derived

from other far-field analogies such as the eightth patent identified,
a wafer polishing patent (Patent No. 7,559,825), which utilizes
vacuum to couple the device to the wafer surface. A purely me-
chanical means of traversing vertical surfaces is described in Pat-
ent No. 5,033,586 for a transportable construction elevator, shown
in Fig. 13(c), using a pulley mechanism.

Finally, entirely novel methods of cleaning surfaces are
identified using the patent-based functional analogy search meth-
odology. The sixth patent identified, Patent No. 5,025,632,
describes an innovative process for cleaning surfaces utilizing a
combination of cryogenically cooled fluids and mechanical abra-
sion. Although the cryogenic solution may not be feasible in
applications of cleaning glass surfaces, the purpose of the tool is
to stimulate novel problem solving by identifying both near- and
far-field analogies. The case study applied the search methodol-
ogy to the design problem of the automated window washer. Six
individual searches are performed and the compiled results
include both near- and far-field analogies. Among the far-field
analogies are novel solutions for coupling the device to vertical
surfaces using vacuum or transportable pulley systems and for
removing debris using cryogenic fluids. The case study performed
utilizing the analogy-based search engine shows that both near-
and far-field analogies can be quickly interpreted and derived
from the patents obtained.

The second case study was chosen to illustrate that the compu-
tational method presented in this paper could be utilized to repro-
duce, if not improve on, the solutions for the classic design-by-

Table 3 Combined search results for the automated window washer

Patent title Patent nos.

[0.19507] Methods for cleaning materials 7556654
[0.15162] Autonomous floor-cleaning robot 6883201
[0.14184] Swimming pool vacuum cleaner with rotary brush 5044034
[0.13631] Device for cleaning a window glass 5086533
[0.1916] Powered cleaner/polisher 7565712
[0.13631] Method and apparatus for cryogenic removal of solid materials 5025632
[0.15685] Washing Device for cleaning a cylinder of a printing machine 5035178
[0.13624] Method of polishing a semiconductor wafer 7559825
[0.18867] Vehicle washing apparatus 5077859
[0.15076] Apparatus for supporting a direct drive drilling unit 5038871
[0.15398] Construction elevator assembly 5033586
[0.17476] Method and system for maintaining equal and continuous flows of liquid to and from intermittently operating apparatus 3589389

Fig. 13 Patent analogy search results. (a) Automated window cleaning device, an example of a near-field analogy (Patent No.
5,086,533), (b) automated floor cleaning device, an example of a far-field analogy (Patent No. 6,883,201), (c) transportable ele-
vator system for vertically traversing buildings under construction (Patent No. 5,033,586).

101102-12 / Vol. 136, OCTOBER 2014 Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jmdedb/930608/ on 04/06/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



analogy problem of the guitar pickup winder. McAdams and
Wood [103] compare the functionality of the pickup winder,
which is used to manufacture electromagnetic coils for electric
guitars, to a database of 68 products. The five most functionally
similar products are shown in Table 4, where k is the normalized
similarity index.

In Fig. 14, a simplified functional model of the pickup winder
is given which includes the top six functions as determined from
the weightings of the corresponding customer needs. The generic
top six functions are: import, secure, position, regulate, guide,
and allow rotational degrees of freedom (DOF) as shown in the
solid boxes. In the expanded patent functional basis, the functional
semantic representation maps as follows:

• Import: Channel! Import
• Secure: Support! Secure
• Position: Support! Place
• Regulate: Control! Control
• Guide: Channel! Direc
• Allow rotational DOF: Channel! Rotate

After the mapping from the original functional model to the
expanded basis is established, the search for analogous patents is
performed utilizing relevance ranking weights of a¼ 1 and
b¼�0.2 and the top 10,000 results are reviewed.

The first phase of the case study was to determine whether the
patent search could extract the analogous products from Table 4.
Figure 15 shows the example of the search result for the fruit
peeler. Considering the relative sparseness of patents included in
the prototype database (�6% of electronically available patents),
the search results are very successful with the search coverage
including three of the five top analogous devices.

Figure 16 depicts sample illustrations for the three analogous
devices retrieved: a fruit peeler, a fishing reel with disengageable
spool, and a belt sander.

It must be noted that a large pool of search results is required to
identify the three analogous patents. The spinning reel and belt
sander occurred within the top 1000 search results, but the fruit
peeler is not retrieved until a group of the top 10,000 results are
extracted. The large number of patents required to extract the fruit
peeler analogy is caused by a highly populated query vector

resulting from multiple Secondary functions used in the query
generation. With each Secondary function mapping to an average
of 20 correspondents, the total number of terms in the query vec-
tor is approximately 120 terms and leads to poor resolution with
respect to the cosine similarity metric. One of the significant
insights gained through this case study is multiple searches on
individual functions improves discrimination among the search
results. Despite the relevancy resolution issues encountered, an
additional patent was found that, if implemented into the pickup
winder design, would provide a novel means of controlling the
wire tension.

In Fig. 17, a tension control mechanism for a musical instrument
excites the wire with a known frequency and measures the
response. The tuning device automatically adjusts the tension
to bring the frequency response to within the specified range.
A device using piezoelectric actuators to control the tension,
actuate the wire and sense the frequency response can be designed
into an advanced version of the pickup winder if constant tension is
critical for enhanced pickup performance or process control
consistency.

A separate publication presents results of an experiment
designed to elucidate the effects of presenting functionally analo-
gous patents, identified using the method developed in this paper,
during concept generation on the quantity and novelty of design
solutions. For details of the study, the reader is referred to Refs.
[104,105].

Table 4 Results of similarity calculation for the pickup winder
[103]

Product Similarity index, k

Pickup winder 1.0
Fruit and vegetable peeler 0.78
Electric can opener 0.74
Electric sander 0.73
Fishing reel 0.72
Cheese grater 0.69

Fig. 14 Simplified functional model of a guitar pickup winder

Fig. 15 Search results for pickup winder generic functions
showing fruit peeler analogy
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4 Limitations and Future Work

The computational methodology presented in this paper has
been shown to be effective in two case studies: identifying func-
tional analogies from the patent database and increasing the nov-
elty of concepts generated during ideation. Significant further
experimental validation is required to ensure that the methodology
is indeed effective for multiple types of design problems in many
different contexts. Although the initial results are promising, con-
tinued improvements to the search engine design could further
enhance the tool’s efficacy. The first improvement proposed is
simply increasing the patent database coverage. The computa-
tional capacity of the current prototype could be refined into a
more user-friendly tool.

Further research is needed to optimize the total relevancy score
metric. Including patent length normalization in the patent func-
tional content metric could minimize the bias resulting from longer
patents including a broader range of function terms. Additionally,
a rigorous experimental study to determine the optimal relevancy
score coefficient weights must be conducted to verify the results
from the parametric process utilized in this research.

Additional extensions to the search engine to be investigated
are the inclusion of customer needs utilizing system attribute
terms as adjectives. The attribute terms would be implemented as
context limiters used to augment the similarity metric. Some
examples of attribute term adjectives are quickly, cheap, light, etc.
Another proposed extension to the search methodology imple-
mentation is applying the method ultimately to analogical search

across large-scale and less structured data, such as the world wide
web. Finally, a potential further expansion of the work is into the
exploration of the knowledge and learning that occurs when ana-
logical transfer occurs between a source and target field, as is
facilitated with this methodology.

5 Conclusions

The patent-based functional analogy search methodology pro-
vides an organized method for identifying functionally similar
patents independent of the patent solution domain. The domain-
independent search capability is achieved through the systematic
derivation of a complete functional vocabulary extracted from the
target knowledge base of the USPTO patent database. Several nat-
ural language processing algorithms are developed and imple-
mented to identify a finite set of function verbs, and the functions
are organized into an expanded functional basis vocabulary with a
hierarchical structure. The 1700 function terms are utilized to gen-
erate a searchable document vector matrix consisting of approxi-
mately 275,000 patents. Search interfaces were created to enable
effortless access to the vast design information contained in the
limited sample of the patent database. Additional insight gained in
the model development is the knowledge that patents that are lon-
ger are more difficult to map analogically due to the longer list of
functional verbs. Two case studies were conducted to evaluate the
methodology. Despite the limited patent coverage in the prototype
patent database, the search process extracted three of the five top
analogous products for the pickup winder case study, and showed
promisingly useful results for the window washer case study as
well. Key insights gained from the case studies were generating
large query vectors by searching over multiple primary and sec-
ondary functions detrimentally reduces the total relevancy score
metric resolution, requiring the user to search many more patents
to extract the desired patent analogies. Going forward, the search
approach is best used by performing multiple searches over fewer
functions. The computational methodology presented in this paper
shows promise as the foundation of an automated function-based
design-by-analogy inspiration tool.
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