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ABSTRACT 
Design-by-analogy is an effective approach to innovative concept 
generation, but can be elusive at times due to the fact that few methods 
and tools exist to assist designers in systematically seeking and 
identifying analogies from general data sources, databases, or 
repositories, such as patent databases. A new method for extracting 
analogies from data sources has been developed to provide this 
capability. Building on past research, we utilize a functional vector 
space model to quantify analogous similarity between a design 
problem and the data source of potential analogies. We quantitatively 
evaluate the functional similarity between represented design problems 
and, in this case, patent descriptions of products. We develop a 
complete functional vocabulary to map the patent database to 
applicable functionally critical terms, using document parsing 
algorithms to reduce text descriptions of the data sources down to the 
key functions, and applying Zipf’s law on word count order reduction 
to reduce the words within the documents. The reduction of a 
document (in this case a patent) into functional analogous words 
enables the matching to novel ideas that are functionally similar, 
which can be customized in various ways. This approach thereby 
provides relevant sources of design-by-analogy inspiration. Although 
our implementation of the technique focuses on functional descriptions 
of patents and the mapping of these functions to those of the design 
problem, resulting in a set of analogies, we believe that this technique 
is applicable to other analogy data sources as well. As a verification of 
the approach, an original design problem for an automated window 
washer illustrates the distance range of analogical solutions that can be 
extracted, extending from very near-field, literal solutions to far-field 
cross-domain analogies. Finally, a comparison with a current patent 
search tool is performed to draw a contrast to the status quo and 
evaluate the effectiveness of this work. 
 
1 INTRODUCTION 

Design-by-analogy using computational support methods offers a 
means to expand the set of considered concepts to entire online 
databases of concepts. The objective of this research is to develop 
appropriate algorithms and tools to enable web-based search for design 
analogies. With such an approach, a designer will be able to 
methodically search the vast amount of design information available 
online in patent archives. The resulting analogous concepts will be 
used to complement and infuse the concept generation process by 
introduction of non-obvious analogies resulting in innovative 
conceptual designs.  

This research utilizes previous work encompassing functional 
modeling and representation of design concepts, online information 
retrieval from text-based databases, and concept similarity metrics to 
develop a systematic method for extracting near- and far-field 
analogies based on functional similarity [1-15].  Our hypothesis is that 
a patent-based analogy search algorithm utilizing a functional 
representation in a formalized tool can be used to identify non-obvious 
functional analogies for design concept generation more effectively 
than traditional key word searching for analogous designs.  A key 
feature here is to make use of functional representations rather than 
component form or conflict representations.  The underlying 
hypothesis is that functional analogies are useful within the conceptual 
design process to improve ideation outcomes.   
1.1 Functional Modeling 
Complementary to many design methodologies and philosophies, the 
use of functional analogies has been promoted as an important 
technique for synthesizing innovative and novel solutions, and 
research has empirically verified this effect [16, 17]. For effective 
application of these functional analogy based concept generation 
techniques, design problems may be represented by a set of solution-
neutral functions to minimize design fixation and enable a large 
number of concepts to be considered [8, 15, 18].  

Proceedings of the ASME 2014 International Design Engineering Technical Conferences & 
Computers and Information in Engineering Conference 

IDETC/CIE 2014 
August 17-20, 2014, Buffalo, New York, USA 

DETC2014-34491

This work is in part a work of the U.S. Government. ASME disclaims all interest in the U.S. Government’s contributions.
Downloaded From: http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/asmep/82108/ on 04/06/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 2 Copyright © 2014 by ASME 

Otto and Wood present a process of developing a functional 
representation of a concept beginning with an abstracted black box 
formulation of the overall product function with input and output flows 

[8]. The black box model is then decomposed into sub-functions 
interconnected by associated flows, resulting in a repeatable function 
structure representing the internal functionality of a concept [4, 5].   A 
number of functional models may be developed for a given design 
problem, depending on process choices and associated flows [8].  As 
an example, Figure 1 illustrates an exemplified functional model of a 
Jigsaw system.  This example will be revisited in this paper. 

Extensive efforts have produced a standard language for 
representing functions and flows associated with each sub-function 
called the functional basis [6, 7]. The functional basis consists of a set 
of function and flow words used as verb-object couples to describe the 
action imparted on the flows a function. Pahl and Beitz showed all 
function verbs can be abstracted hierarchically into more abstract 
function verbs, generally five overall “categorical functions” [15].  
This set of functions forms a basis that can thereby provide a standard 
taxonomy for describing a design concept and enables physical 
systems, concepts or products to be functionally represented and 
compared.   

Functional modeling is also used to identify modules and 
interface boundaries, such as that devised by Stone et al. to transform 
product function into alternative product layouts by identifying 
modules for modular product architectures [19]. This information can 
be used to simplify a complex functional model as well as discover 
opportunities to improve manufacturability, maintainability, and 
reliability early in the design process through function sharing and 
proper interface design, such as in [20]. The modules contained in the 
Jigsaw product are signified by the function chains contained in each 
colored box in Figure 1.   

For our purposes here, a standardized functional model also 
facilitates archiving and retrieval of design knowledge.  To that end, 
several systems have been developed to store the design knowledge 
contained in the functional models for design reuse [21-23].  In 
addition, computational tools have been developed to exploit the 
knowledge contained in the design repositories for the purpose of 
concept variant generation [24-26].  These works lend credence to the 
assertion that functional modeling is a useful engineering language for 
indexing design concepts. 

One limitation of the functional modeling methodology of Otto 
and Wood [8] is that process choices made initially about what kind of 
inputs will go into the system on the user side necessitates selection of 
flow variables early in the conceptual design process [8]. In the Jigsaw 

example, a process choice is made to utilize electricity and stored 
electrical energy (battery) for the power source. This is an obvious 
choice for a portable device, but alternative power sources such as fuel 
cells, solar cells, or pneumatically powered devices are expressly 
excluded from consideration. The single, domain-dependent model can 
lead to missed opportunities for novelty and innovation.  Instead 
functional modeling should be considered more broadly in the context 
of modeling user and environmental activities and functions, and 
alternative process choices considered through higher levels of 
abstraction that lead to alternative functional models [8].  We explore 
this through matching using the functional basis approach. 
1.2 Analogical Reasoning 
Understanding the cognitive process involved in forming analogies is 
fundamental to the development of any tool or methodology that seeks 
to improve the conceptual design process. Analogy can be viewed as a 
mapping of knowledge from one situation (source) to another (target), 
enabled by a supporting system of relations or representations between 
situations [27-29]. The process of analogical comparison fosters new 
inferences and promotes construing problems in new insightful ways. 
The potential for creative problem solving is most noticeable when the 
situation domains are very different [16, 30].  The cognitive analogical 
process is based on the representation and processing of information, 
and therefore can be implemented in algorithms given an appropriate 
representation of the information [31, 32]. 

One method with great potential to produce innovative design is 
design-by-analogy. Previous research has shown usage of analogy can 
mitigate the effects of design fixation [33]. Theoretically, a robust 
design-by-analogy methodology would enable designers to identify 
non-obvious analogous solutions, even in cases where the mapping 
between concepts is tenuous or the concepts are from different 
domains. Such different but analogous concepts can be identified by 
creating abstracted functional models of concepts and comparing the 
similarities between their functionality. Appropriate functional 
representation of design concepts is as critical to the successful 
implementation of design-by-analogy as is developing a systematic 
approach to search for and evaluate the utility of functionally similar 
concepts. 

Hacco and Shu also developed structured approaches utilizing 
biomimetic principles for generating concepts, which provides a 
systematic process for identifying analogous concepts [34]. They also 
use a functional semantic representation, in which keywords are 
derived that relate the function to the biological processes. A search is 
then preformed using standard biological processes from biology 
textbooks as the reference database.  Goel et al. also use functional 
modeling and functional indexing to create a system called KRITIK 
that autonomously generates new conceptual designs based on a case 
library of previously existing designs [35].  Bhatta et al. developed a 
project called IDeAL, which uses a function-behavior-structure model-
based approach to design-by-analogy through pattern finding, 
constraint analysis, and problem reformulation [36].  Navinchandra et 
al. developed a nonfunctional approach using case based reasoning in 
a tool called CADET, to retrieve and synthesize case design 
components for more effective combination and better design [37].  
Qian and Gero created an exploration medium for between-domain 
analogies using function-behavior-structure design prototypes [38].  
Charlton and Wallace created a web-based tool for finding pre-existing 
engineering components for reuse in non-standard applications in new 
designs to reduce manufacturing costs [39]. FunSION, a computational 
tool developed by Liu et al., takes qualitative functional input and 
output requirements, and generates physical embodiments of design 
solutions [40, 41].  Chakrabarti et al. created Idea-Inspire, a database 
and software tool that automates analogical search in a natural and 

FIGURE 1: FUNCTIONAL MODEL FOR THE 
BLACK AND DECKER FIRESTORM JIGSAW. 
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artificial systems database to provide inspiration in the design process 
[42, 43].  Yang et al. worked to create thesauri using information 
retrieval from informal design documentation for reuse in the design 
process [44, 45], in addition to creating the DedalAI system to 
automatically index design concepts in electronic notebooks for 
retrieval and reuse [46].  Ahmed developed a system for helping 
designers to index and build a knowledge network based on 
engineering designer queries, which generates associations between 
concepts, with the end goal of aiding in the search for information, 
reformulation of a query, and prompting design tasks [47].  Linsey et 
al. [48-50], Seger et al. [51], and Verhaegen et al. [52] develop 
approaches to analogical retrieval and reasoning through linguistic 
associations, problem re-representation, and mappings. 

Linguistics research has shown that verbs are inherently relational 
by nature and impose fewer psychological constraints compared to 
nouns [53]. Verbs represent relational concepts whereas nouns are 
object-reference concepts.  In the following section, functional 
representation making use of verbs is proposed for design problems to 
leverage the cognitive flexibility of the action verb.  

As discussed previously, the functional modeling approach of 
Otto and Wood using the function-flow basis is a useful method for 
representing design intent, but the specification of the flow inputs has 
the consequence of defining the solution domain due to the process 
choices. A truly solution-independent representation should not fix the 
design space within a particular domain. Besides the exploration of 
multiple, simultaneous functional models, this can be accomplished by 
removing the flow objects from the verb-object functional model, and 
focusing on the verbs. The resulting abstract verb-based representation 
is entirely conceptual, relational and solution independent. For 
example, the functional semantic representation of the Jigsaw in 
Figure 1 can be expressed as abstract basis functions:  
Import : Secure : Release : Transmit : Regulate: Transform : Distribute 

The representation is greatly simplified as common functions 
acting on different flows collapse into a single verb. It is 
acknowledged that the semantic representation as expressed in 
abstracted basis functions lacks the granularity necessary to be useful 
for concept generation [54]. The representation scheme will use lower 
level function (tertiary and correspondent) to specify the design 
problem. The Jigsaw translated into one possible combination of the 
correspondent functions from Table 1 would be represented 
equivalently as:   

Capture : Fix : Release : Convey : Control : Transform : Disperse. 
There are many such possible combinations of tertiary functions 

that map to the abstract form.  The functional modeling approach 
naturally provides hierarchical semantics that can associate near- and 
far-field concept descriptions.  
1.3 Patent Datasets 
Patents have been considered sources of analogies and concepts that 
can lead to innovative solutions [55]. In addition to the sheer volume 
of information contained in the patent database, all the concepts within 
the database must be both useful and novel. “Useful” is defined as 
being functional and operable, and “novel” is defined as being non-
obvious and having not previously existed in the public domain [55].  

Another valuable feature of the patent database for design 
information retrieval is the patent classification structure of the 
USPTO. Approximately 450 well-defined primary classification 
categories have been established to organize and group patents 
according to the field of invention. The classification system is a 
powerful element that benefits information retrieval by enabling data 
clustering for more efficient presentation and organization of search 
results [55]. Patents are structurally well formed with distinct 
partitions, and the sections that contain the embedded design 

information are the abstract, claims and description. The regular 
structure of the documents will enable relatively simple 
implementation of natural language processing techniques to extract 
functional information. A review of patent search and information 
extraction literature exposed a dearth of literature on function 
extraction and concept generation from patents in general. Much of the 
literature is related to the topics of patent invalidity searches and 
patent informatics [56, 57], but the same information extraction 
principles will be applied for deriving the patent functionality. 

A significant focus of the literature has been computational 
design aids using the patent database.  TRIZ is the basis of many of 
these design aids.  It is a theory which presents heuristic rules, or 
principles, to assist designers to overcome impasses in functional 
reasoning based on previous classification of patents in terms of 
contradictions [58].  Zhang et al. have used the functional basis in 
combination with TRIZ to create an axiomatic conceptual design 
model [59].  Using textual analysis of patents for use in TRIZ, Cascini 
and Russo presented a way to automatically identifying the 
contradiction underlying a given technical system [60]. To identify 
relevant candidates for TRIZ automatically, Souilli et al. developed a 
method using linguistic markers [61, 62].  

Patent mining is another area of study in which meta-data is used 
to identify or understand large sets of patents.  For example, patent 
citations have been used to understand the interrelatedness between 
patent technologies, and the benefits of understanding the pre-existing 
knowledge within a domain [63].  Methods have also been created to 
judge possible future market trends, identify prolific inventors, and 
more, for business applications [64, 65].  

The mapping of patents has been an additional area of significant 
research.  A method of extracting inherent structure in textual patent 
data has been implemented for both studying and supporting design-
by-analogy [66-68]. Szykman et al. have built design repositories to 
share and reuse elements of designs in the development of large scale 
or complex engineering systems [69]. Mukherjea et al. found semantic 
associations between important biological terms within biomedical 
patents, using a semantic web with the intent of aiding in the 
avoidance of patent infringement [70].  Chakrabarti et al. used a topic 
model to analyze patent data, leading to a taxonomy or hierarchical 
structure [71].   

While the U.S. patent database is a ripe repository to support 
design-by-analogy, the size and complexity make it very difficult to 
access in a top down way.  Attempts to aid in the search and use of the 
patent database include theories like TRIZ and their resulting tools 
[58, 59, 72-82], along with many more research driven tools and 
methods [35, 52, 83-85].  Previous work in this field most often relies 
deeply on users and designers to create their own analogies, or search 
through large quantities of results. 

In summary, there is a rich body of research on functional 
modeling and representation of concepts, a rich body of research on 
design-by-analogy, and a rich body of research on patent indexing and 
analysis.  However, these three sets of works remain independent.  We 
have brought these works together to apply the natural descriptive 
capability of functional modeling to draw analogies between 
functionally described design problems and functionally described 
patent documents.  In the next section, the underlying mathematical 
formalism to represent functionality is reviewed, the function vector 
space model.  Then, the modeling and matching algorithms are 
reviewed, followed by discussion of the finding and presentation of 
analogous patent documents and how they could be used within a 
design process.  We then present a case study, and compare the 
method to traditional patent searching to test for efficacy. 
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2 METHODOLOGY AND EMBODIMENT TOOL  
The development and implementation of the function vector approach 
to analogy search is a five-step process shown in Figure 2. It begins by 
constructing a controlled vocabulary of functions extracted from the 
patent database (i.e., mapping the general functional basis to an 
equivalent functional language basis for patents), making use of the 
hierarchical structure of the functional basis. Once a complete set of 
patent function terms is compiled, a basis set of the patent function 
terms is defined.  Then, the patent documents are indexed against the 
functional basis to create a vector representation of the patent 
database. Query generation and similarity ranking tools are then 
developed to query and retrieve the patents with the highest degree of 
relevance to the functional description of a given design problem.  
Finally, the most relevant patent results are presented to the user. 
These steps are now detailed.  
2.1 Knowledge Database Processing 
As shown in Figure 2, the first step of the five-part process involves 
retrieving the design document (patent) information in the form of 
text, parsing that text, and then implementing tokenizing, or braking 
down passages of text into their individual words or “tokens”, and 
word stemming, or reducing words to their base or root form. The 
vector space model (VSM) of information retrieval is used as the basis 
of the analogy search method developed in this work [86]. VSM was 
first developed in the early 1970’s to overcome several limitations of 
the Boolean model, such as lack of search result relevancy ranking, 
strict query syntax requirements, and query expansion limitations [1, 
2]. In VSM, a document is represented as a vector of terms. The terms 
are words and/or phrases extracted from the documents themselves 

using natural language processing techniques [87, 88]. To represent a 
document as a vector of terms, each term in the vocabulary becomes 
an independent dimension in an n-dimensional space, where n is the 
number of vocabulary terms. All of the documents in the database are 
mapped onto the vector space using indexing algorithms. In the most 
basic algorithm, binary values are assigned for each dimension 
according to whether the term occurs in the document, 1 for present 
and 0 for absent, but typically a weighting factor is applied to the 
occurring terms [86]. The two common weighting factors are the term 
frequency (tf), which is the frequency of occurrence within a specific 
document, and the document frequency (df), which is the frequency of 
occurrence across documents [9, 10]. 

The resulting term-document matrix is a matrix of size m x n, 
where m is the number of documents in the collection, and n is the 
number of terms, and is typically a very sparse matrix given that 
relatively few terms occur within a single document. A variant of the 
standard VSM model called latent semantic indexing (LSI) or latent 
semantic analysis (LSA) can be used to reduce the dimensionality of 
the term-document matrix [9]. Using term co-occurrence information, 
singular value decomposition (SVD) methods map the document terms 
to a reduced concept space [89]. In this context, concepts are groups of 
terms that are synonyms, hypernyms, and troponyms of each other. 
For example, the terms car, truck, pickup and automobile are 
synonyms and/or hypernyms, where a hypernym is defined as a 
generalized term that more specific terms fall under. Troponyms apply 
only to verbs and are defined as verbs that more specifically describe 
the action. For example, march is a troponym of walk. Using SVD, the 
four terms can be clustered into a single dimension. Applied across the 

FIGURE 2: OVERVIEW OF THE FUNCTIONAL ANALOGY SEARCH DEVELOPMENT 

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/asmep/82108/ on 04/06/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 5 Copyright © 2014 by ASME 

entire term-vector, the n-dimensional space, typically in the thousands 
of terms, is reduced to a k-dimensional space, typically in the hundreds 
of concepts, and the dimensionality of k is a system parameter that 
must be tuned to optimize the mapping.  

Some drawbacks to LSI are high computational requirements for 
the SVD algorithm and difficulties in adding documents to the 
database. Adding large numbers of new documents to a database 
without recomputing the SVD can lead to skewed similarity results 
and omitted terms. This issue is particularly significant in the patent 
database where documents are continually added [9].  Given the added 
computational overhead, issues with document additions, and marginal 
performance improvement, the standard VSM approach was chosen 
over LSI as the search engine model for this research. Issues of 
polysemy, where a word has multiple meanings, and synonymy, where 
multiple words have the same meaning, are overcome through query 
mapping heuristics using one-to-many term mapping; in other words, 
query mapping rules are devised such that a single query term is 
mapped to multiple document terms, allowing for the simplified query 
to capture a range of patents that possess the same general 
functionality. 

One of the powerful aspects of the VSM model is that queries can 
be mapped to the term vector space using the same algorithms as the 
document mapping. This flexibility removes the syntactic constraints 
on the query structure and provides a simple, straight-forward metric 
for evaluating similarity between the query and the documents [9]. In 
the term-vector space, the similarity between the query vector and a 
document vector is equivalent to the angle between the vectors. The 
cosine of the angle between the vectors is a commonly used metric 
since it has the useful properties of varying from 0 for orthogonal 
vectors and 1 for identical vectors [2]. Finally, as stated above, an 
aspect of the VSM model that is exploited in this research is the 
capability to establish query mapping rules to map a single query term 
to multiple document terms. The ability to utilize this synonymy leads 
to the retrieval of a range of patents with the same general 
functionality.  For example, if the single query term were “divide”, as 
shown in Table 1, synonymous terms such as “section, branch, 
partition, segregate, dissect, etc.” would also be included in the query. 

Because purely manual indexing is very tedious and resource 
intensive, tools were developed to preprocess the patents using natural 
language processing techniques.  The patent text is parsed directly 
from HTML to extract information, such as the title, abstract, 
description, claims, and patent class.  Stop words lists are used to 
eliminate unnecessary terms, such as articles and prepositions [10].  In 
addition, word stemming algorithms are applied to the retrieved text to 
further consolidate terms.  A modified Porter stemming algorithm is 
applied to terms to strip suffixes, e.g. –ing, -s, -es [90]. The Porter 
stemmer is too aggressive for the purpose of this research; for 
example, component-noun terms connector and connection are 
stemmed to the function term connect using Porter [90]. A modified 
prefix stripping algorithm was created to extract root functions. 
Stripped prefixes include 'sub', 're', 'un', 'de', 'under', 'mis', 'over', 'pre‘, 
'post', 'non', 'counter', 'out', 'inter', 'micro', 'up', 'super', 'en', 'co', 'dis', 
'hyper', 'ultra', 'anti’.  A major component of automated indexing of the 
patents involves part-of-speech (POS) tagging.  Here, we used 
TreeTagger, an open-source POS tagging program chosen based on 

high accuracy of tagging in natural language documents.  Tests of 
accuracy have shown it to be over 95% accurate [3].  TreeTagger 
program identifies the POS from sentence structure using probabilistic, 
binary decision trees [3].  Automated indexing was validated with 
manual verification. 
2.2 Functional Vocabulary Generation 
A primary goal of this research is to identify and extract a complete set 
of functions covering the entirety of the patent database, depicted in 
step 2 of Figure 2.  Completeness of the function vocabulary is 
evaluated using two metrics: cumulative functions versus number of 
patents indexed and function document frequency versus term 
chronological order. After indexing 65,000 randomly selected patents 
(limited by the maximum database size), a set of approximately 1,700 
functions are identified.   A secondary database could be constructed 
to expand the capability beyond 65,000 patents if completeness has not 
been achieved, but this step is not necessary per the results presented 
next.  In Figure 3, cumulative functions plotted versus patents 
illustrates that the metric has reached a horizontal asymptote, and 
furthermore convergence was reached at approximately 61,000 
patents.  This asymptote provides a verification that the function 
vocabulary does in fact converge to finite set.   Therefore, any user of 
the methodology need not recreate this list of 1,700 patent basis 
functions; our one-time generation of this list suffices.  On the other 
hand, this can be periodically rechecked easily, and is presented in 
detail here for scientific repeatability of the development method. 

The plot in Figure 4 shows the document frequency of the 
function versus the order in which the function was first identified. 
The document frequency measures how often a term occurs across all 
patents. Statistically, high document-frequency terms will be found 
earlier due to the random sampling.  The trend shown in Figure 4 is 
clearly confirmed with the functions’ document frequencies clustering 
below 1% of searchable patents as a function of order found. The 1% 
threshold is chosen not based on a hard limit, but from the insight that 
terms below that level are excluded from 99% of the remaining 
patents. The low resolving power of these low frequency terms means 
little value is added to search queries by including them, since they 
will have no impact on similarity for the vast majority of patents.  The 
resolution power of terms as a function of frequency is a reflection of 
Zipf’s law [11, 12, 87], here not for all written documents, but rather 
only for patent documents.   

The frequency of words follows a power law distribution (straight 
line on log-log scale) and the resolving power is analogous to a 
Gaussian distribution, where both very high frequency terms and very 
low frequency terms have low resolving power. This reasoning for the 
high frequency terms is the underlying justification for using the stop 
words lists.  The upper and lower cut-offs are therefore thresholds and 
can be selected based on considering how many additional documents 
one seeks to consider versus the risk in excluding too many 
documents. No direct equation exists to make this determination, 
where others have advocated a trial and error tuning process [9]. The 
function vocabulary identified in the indexing process is plotted in 
Figure 4, using log-log axes. A Zipf distribution was fit through the 
data for comparative purposes, as shown in Figure 5, quantifying the 
resolving power of different terms.   

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/asmep/82108/ on 04/06/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 6 Copyright © 2014 by ASME 

Examining Figure 5, when compared to Zipf’s law, three different 
regimes of function frequency distribution can be identified and are 
label as: ubiquitous, generic and process-specific. Ubiquitous 
functions occur so frequently across all patents that they offer little 
value for determining similarity or relevance, per Zipf’s theory. These 
functions can be considered to lie above the upper cut-off, chosen to 
be all terms that occur in more than 50% of patents. Examples of these 
functions are provide, use, etc. The ubiquitous functions, which 
account for 50 of the 1,700 terms, are to be removed from the final 
function vocabulary index. Generic functions have a good balance 
between frequency and specificity to enable better distinction between 
patent vectors within the cosine similarity metric. Examples of these 
functions are shape, rotate, etc.  Process-specific functions occur in 
very few patents and would be below the lower cut-off region. Blindly 
following the resolving power hypothesis, these terms should be 
removed from the function index as well, but the rarity of the function 
may in and of itself lead to novel solutions. The retention of these few 
extra terms does not impact the computational overhead since the 
converged and complete functional vocabulary consists of just over 
1,700 terms after removal of the ubiquitous functions. The patent 
based functional analogy search methodology can now be developed 
using the functional vocabulary derived in this section of work. 

After the final set of functions is vetted per the process described 
previously, affinity diagramming and thesaurus construction 
techniques were used to create a hierarchical structure for the 1,700 
word functional vocabulary, modeled after the functional basis [7, 8]. 
The affinity diagram technique is used to group like terms together 
into sub-groups of hypernyms and synonyms. Unusual or unfamiliar 
words were checked against existing thesauri to select the proper 
grouping. The iterative process created secondary functions with 
similar numbers of correspondent sub-functions. The function sub-
groups were split or merged accordingly to attain consistent numbers 
of functions in each sub-group. The detailed procedure, all performed 
entirely computationally except for the use of the thesaurus and 
WordNet in steps 1 and 4 below, for developing the hierarchical 
structure of the expanded functional basis is given as follows: 
1. Sort all terms into primary basis functions using thesaurus and 

WordNet according to synonymy and hypernym relationships 
[13, 14]. 

2. Rank verbs within each primary group by document frequency.  

3. Review verbs and extract five highest frequency terms. These 
terms become initial secondary functions. 

4. Group remaining correspondent functions within each secondary 
group using thesaurus and WordNet hierarchical relationships 
[13, 14]. 

5. Rank verbs within each secondary group by document frequency. 
6. Separate groups that contain more than 50 verbs into multiple 

secondary function groups.  
7. Iterate on grouping process to produce secondary function groups 

with similar number of correspondent functions. 
The resulting structure of the expanded functional basis 

vocabulary is 1,700 unique functions organized into 74 groups of 
secondary functions. The secondary functions and associated 
correspondents are mapped into the eight (8) primary functions. Table 
1 illustrates the hierarchical structure for two of the secondary 
functions: divide and import.  
 This result is readily scalable to add new patents.  Utilizing the 
structure of the function vocabulary, a patent search sample database 
was constructed by indexing additional patents against the completed 
function vocabulary. For the purposes of this research, a representative 

FIGURE 5: FUNCTION VOCABULARY DOCUMENT-
FREQUENCY VERSUS RANK ORDER COMPARISON 

WITH ZIPF’S POWER LAW DISTRIBUTION 

FIGURE 3: CUMULATIVE FUNCTIONS VERSUS NUMBER OF 
PATENTS INDEXED WITH HORIZONTAL ASYMPTOTE AT 

~1,700 FUNCTIONS AND 61,000 PATENTS VERIFYING 
CONVERGENCE OF FUNCTION VOCABULARY 

FIGURE 4: TERM DOCUMENT FREQUENCY VERSUS 
ORDER, SHOWING THE FREQUENCY FALLS BELOW A 1% 

THRESHOLD (OCCUR IN < ~45000 PATENTS) 
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sample database of patents was constructed from a subset of the 
USPTO patent database. Three continuous selections of 100,000 
patents each were chosen to be indexed. The patent groups were 
selected chronologically, with the first selection from patents 
3,560,000 to 3,660,000, the second selection from patents 5,000,000 to 
5,100,000, and the final selection from patents 7,500,000 to 7,600,000, 
spanning the years from 1971 to 2009. The reasoning behind this is 
that the creation of patents is exponentially increasing with time; so, it 
follows that if a random set was chosen from the entire database, many 
more would be from recent years than from further in the past.  
Choosing three sets within three ranges of patent numbers coming 
from three distinct bands of time was an attempt to get a more even set 
of patents temporally. After omitting repealed or missing patents, the 
sample database consists of approximately 275,000 patents mapped 
into document vectors, resulting in an approximately 275,000 x 1,700 
patent vector matrix. The whole of the patent database was not 
indexed, as this was an example implementation of the methodology, 
in addition to the limitations of the current hardware and software 
prototype implementation; however, it is not unreasonable to achieve 
this goal in the near future. 
2.3 Query Formulation and Evaluation 
The next step (step 3 in Figure 2), of the research was to formulate the 
means to query the database of patents and functions. The binary 
document vector matrix contains both the functional content 
information for each patent as well as the term-document frequencies 
across all patents indexed. The term document frequency and the 
patent functional content are used to derive the similarity metric for 
ranking the search results. As discussed previously, the document 
frequency (df) is a common term weighting scheme and in particular 
the inverse document frequency (idf) is used to weight rare terms 
higher than common terms [9, 10]. The inverse document frequency is 
given as:   

   

 (1) 

where N is the total number of documents and dft is the document 
frequency of term t. Previous research has shown more specific 
function verbs can yield more novel solutions [91], and the idf 
weighting yields a higher cosine similarity score for patents that 
contain process-specific functions. The idf is calculated for each term, 
and each element of the document vector matrix is scaled according to 
the calculated weight for that term. Furthermore, each document 
vector is normalized to generate a patent document unit vector matrix. 
The normalization is completed to simplify the cosine similarity 
calculation. The patent functional content (fcm) metric is a normalized 
measure of the total functional content with a specific patent. The 
equation for the fcm metric is given as: 

 

      fcm! =   
!"!#$  !"#$%&  !"  !"#$%  !"  !"#$%#!
!"!#$  !"#$%&  !"  !"#$%  !"  !"#"$"%&

 (2) 

 
The fcm metric increases the weighting of patents with high 

functional content. The reasoning for including this metric is a 
hypothesis that functionally rich patents, or those which contain a 
large number of functional terms and thus explicitly address more 
functionalities, contain more information that can be mapped as 
analogies. The total relevancy score is then defined as a linear 
combination of the two components: the idf-weighted cosine similarity 
and the patent functional content metrics, summarized in Table 2.  
 The linear combination within the total relevancy score is 
weighted with two coefficients, alpha, α, and beta, β. These 
coefficients are tuning parameters used to bias the relevancy ranking 

towards a higher weighting on either the cosine similarity or the 
functional content metric. The tuning parameter weights were explored 
empirically through a parametric evaluation process by running 
multiple patent searches and finding values that produced patents 
sufficiently near- and far-field.  
 To do this, a Query Generator Tool was created to automate the 
process of constructing the patent query vector. The GUI builds the 
query using the expanded functional basis vocabulary hierarchical 
structure. First, as shown in Figure 6, the user selects the primary high 
level function corresponding to the high level functionality derived 
from the functional model of the design problem. Next, the user selects 
one of many secondary functions, which are more detailed versions of 
the primary function, corresponding to the specific functionality that 
will be retrieved. Once the secondary function is selected, the interface 
populates the query vector with all correspondent terms associated 
within the secondary function. Additional secondary functions can 
then be selected to further populate the query vector for a particular 
primary function. The new query vector is then saved once all 
secondary functions are chosen. The process can then be repeated for 
additional primary functions. An example of functional modeling of a 
design problem and the subsequent primary and secondary functional 
term selections are detailed in Section 3.  

t
t df

Nidf log=

TABLE 1: EXAMPLES FROM THE EXPANDED 
FUNCTIONAL BASIS VOCABULARY FOR THE 

SECONDARY FUNCTIONS OF DIVIDE AND IMPORT 

TABLE 2: METRICS FOR CALCULATING SIMILARITY 
BETWEEN THE DOCUMENT AND QUERY VECTORS  

- Query-Patent Cosine Similarity cos  θ =
Query   ∙ Patent

∥ Query ∥  ∗  ∥ 𝑃𝑎𝑡𝑒𝑛𝑡 ∥ 

- Patent Functional Content 𝐹𝐶𝑀 =   
Σ𝑃𝑎𝑡𝑒𝑛𝑡!"#$(!)

𝑁𝑢𝑚𝑇𝑒𝑟𝑚𝑠  

- Total Relevancy Criteria    𝑆𝑐𝑜𝑟𝑒 =   𝛼 ∙ cos θ +   β.FCM 
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2.4 Information Retrieval and Data Clustering 
Once the query construction is complete, the information retrieval and 
clustering task is next needed, shown as step 4 in Figure 2. This is 
implemented in a Search Result Viewer, shown in Figure 7. The 
viewer performs multiple functions including calculating the cosine 
similarity, fcm, and total relevancy score, extracting the top results and 
clustering the results by patent class. The cosine similarity is 
calculated for all documents simultaneously by first normalizing the 
query vector to form the query unit vector, and then calculating the dot 
product of the unit query vector with the document vector unit matrix 
using the equation: 

cos!"#"$%&"'( =     q!  . d    (3) 

where cos!"#"$%&"'( is a vector containing all cosine similarity 
scores for the dot product of the query vector, q, and the document 
vector matrix, d. The total relevancy vector is calculated by the linear 
sum of the cos!"#$%& and the functional content metric vector, 
weighted by the user-defined α and β coefficients respectively. The top 
n results as specified by the user are retrieved, sorted by total 
relevancy score and clustered by primary patent classification. As 
shown in Figure 7, the similarity scores for the individual patents are 
clearly indicated in the first column of the results list. The average 
relevancy score for the patent class is given before the title to help the 
user quickly identify patent classes with high potential for identifying 
functionally relevant patents. 
 Selecting one of the search results automatically opens a web 
browser window with a PDF version of the selected patent, by making 
calls to online patent databases and using their patent viewer. The PDF 
version is displayed due to the fact the patent illustrations are included, 
as opposed to the text-only version of the patent. 
 To determine the optimal weighting for the total relevancy score 
coefficients, several searches were conducted over various function 
combinations. The Search Result Viewer interface enables the 
coefficients to be varied in real-time for the same search query, 
allowing for multiple iterations for the same function query. Following 
a trial-and-error process where β is varied from 1 to -1 keeping α = 1, 
the search results provided more functionally relevant results for 
negative values of the fcm coefficient β. This result contradicts the 
thought that functionally rich patents are more readily mappable to 
functional analogies. We found the fcm metric not as useful as it 
intuitively appears.  Patents with high fcm were thought to contain a 
high percentage of function terms.  In practice, however, instead, 
positive values of β skew the results towards long patents since, 

statistically, patents that contain more text will contain more function 
verbs. Elucidating useful analogies from these broad patents is 
cognitively more difficult than functionally focused patents. Therefore, 
empirically, the default values for α and β are set to 1 and -0.2, 
respectively, which focused the total relevancy score toward 
functionally focused patents.  
2.5 Integration into Design Process 
The last step of the method (step 5 in Figure 2) is to make use of the 
resulting patents presented. The steps described in Sections 2.1-2.4 are 
combined into a structured methodology for identifying analogous 
patents. With the concept generation process, the analogy search 
methodology is used as a supplemental technique to more traditional 
concept generation methods, such as brainstorming, brainsketching, 
and the CSketch/6-3-5 method [8, 92-94]. Device functionality 
developed early in a functional modeling phase can be used directly to 
create functional semantic representations of the design problem by 
simply stripping the verbs from the functional description. These 
function verbs can then be mapped to the primary and secondary 
functions through the expanded functional basis vocabulary. The 
Query Generation Tool can then be utilized to create the query 
function vector for the device. The Search Result Viewer algorithms 
identify the functionally similar patents in which analogies to the 
design problem likely exist. Then the user can review these sorted 
patents and consider them for analogical solutions back to the original 
problem domain. To consider the efficacy of this approach and others, 
the function analogy search methodology above is applied to a case 
study problem, and compared against the more traditional approach of 
simply using keyword patent searches.  
 
3 EXPERIMENTAL VALIDATION OF CONCEPTUAL 

DESIGN PHASE EFFICACY 
The case study utilized to evaluate the methodology presented in this 
paper is the design of an automated window washing device. The 
problem is to design a self-contained window cleaning device. Once 
initialized, the device will begin an automated routine for removing 
dirt, film, and debris from the window surface without user interaction. 
The general problem statement allows for multiple process choices 

FIGURE 7: SEARCH RESULT VIEWER SHOWING 
AVERAGE TOTAL RELEVANCY SCORE FOR PATENT 
CLASS AND INDIVIDUAL TOTAL RELEVANCY SCORE 

FOR IDENTIFIED PATENTS 
 

FIGURE 6: QUERY GENERATOR USER INTERFACE 
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such as the power source and cleaning method. The black box 
functional model and the more simplified functional model showing 
core functionality for a battery-powered device that utilizes a liquid 
media for cleaning are shown in Figure 8. Other alternative process 
choices for a power source are solar-power and fuel cells, among 
others. Alternative cleaning method process choices omit the cleaning 
fluid and rely on mechanical or other energy-domain removal of 
debris.  

The functional semantic representation of the simplified model 
becomes: 
Import: Transform: Transmit: Regulate: Couple: Support: Remove 
Further generalizing the model into the primary functions results in the 
functional semantic representation given as: 

Channel : Branch : Convert : Control : Connect : Support 
A separate analogy search is performed by the first author for 

each primary function using the secondary functions most relevant to 
the original design problem. The multiple search approach is used to 
maximize the relevancy score resolution for each query. The 
secondary functions utilized for each search query are: 

• Channel → Import, Transmit and Translate 
• Branch → Remove, Clean and Disperse 
• Convert → Transform and Treat 
• Control → Control and Adjust 
• Connect → Connect, Mount, and Couple 
• Support → Secure and Align 

All searches are performed using the default values for the total 
relevancy score metric of α = 1 and β = -0.2. The top 500 results are 
retrieved for each search.  

The 4th patent identified for the window cleaning device (Patent 
5,086,533) is a very near-field analogy to the proposed design 
problem. The device shown in Figure 9a utilizes a squeegee 
mechanism with a fluid application system to automatically clean 
windows. A second cleaning device, shown in Figure 9b, is used for 
automatically cleaning floors.  

The second patent identified is a floor cleaning robot (Patent 
6,883,201) solution, better known as the iRobot RoombaTM, performs 
the same desired functionality as the automated window washer, but 
the application is in a different domain (floors versus windows). 
Therefore, this solution is a far-field analogy that is readily adaptable 
to the window cleaning domain. The missing functionality of coupling 
the device to a window can be derived from other far-field analogies 
such as the 8th patent identified, a wafer polishing patent (Patent 
7,559,825), which utilizes vacuum to couple the device to the wafer 
surface.  A purely mechanical means of traversing vertical surfaces is 
described in Patent 5,033,586 for a transportable construction elevator, 
shown in Figure 9c, using a pulley mechanism.  

Finally, entirely novel methods of cleaning surfaces are identified 
using the patent based functional analogy search methodology. The 6th 
patent identified, Patent 5,025,632, describes an innovative process for 
cleaning surfaces utilizing a combination of cryogenically cooled 
fluids and mechanical abrasion. Although the cryogenic solution may 
not be feasible in applications of cleaning glass surfaces, the purpose 
of the tool is to stimulate novel problem solving by identifying both 
near- and far-field analogies. The case study applied the search 
methodology to the design problem of the automated window washer. 

# Patent Title What is it? 
1 WO2013005937A3 Double-sided glass window cleaner Two pads on a scissor linkage squirting water to hydroplane 

2 CN202526075U Convenient window cleaner Gripper of a sponge 
3 CN 203029128 U PVC window cleaner with a suction Plunger squirter 

4 CN 203000787 U Cleaner for plastic-steel window Shovel shape below wiper 
5 WO 2000068354 A1 Window cleaner tablet Water-soluble effervescent cleaner pill to drop in water 

6 DE 102012204028 A1 Window cleaning system Automotive window wiper 
7 US 8311440 B2 Laser scanner window cleaner Print head wiper of the laser head 
8 WO 1984003459 A1 Window cleaner Porous dry sponge with impregnated particles 

9 WO 2013069986 A1 
Window cleaning apparatus capable of 
manipulation via magnetic attraction and 
control method thereof 

Electromagnets on both sides of window to mount tooling 

10 EP 0673992 A2 Concentrated liquid glass and window 
cleaning composition and method of use Soap 

11 US 3342740 A Window cleaner Soap 

12 CN 101703382 B Hydraulic lifting mechanism of window 
cleaning equipment Elevator machine as a post and cable 

FIGURE 8: BLACK BOX  FUNCTIONAL MODEL (TOP) AND 
SIMPLIFIED FUNCTIONAL MODEL (BOTTOM) OF CORE 

FUNCTIONALITY FOR AN AUTOMATED WINDOW WASHER 

Clean
Window

Hand Force, EE

Hand, Battery,
Window, Cleaning Fluid

On/off,
Sense Window Frame

KE, Noise, Heat
Reaction Forces

Hand, Battery,
Cleaning Fluid, Debris, 
Window

On/off, Finished Cleaning
Fluid Low

Flow Legend
No formatting - Process Choices
Bold - User Interactions
Italics - Problem Statement Dictated Flows
  Energy Flow
  Material Flow
  Information Flow

TABLE 3: GOOGLE PATENT SEARCH RESULTS FOR “WINDOW CLEANER” 
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Six individual searches are performed and the compiled results include 
both near- and far-field analogies. Among the far-field analogies are 
novel solutions for coupling the device to vertical surfaces using 
vacuum or transportable pulley systems and for removing debris using 
cryogenic fluids. The case study performed utilizing the analogy-based 
search engine shows that both near- and far-field analogies can be 
quickly interpreted and derived from the patents obtained.  

A separate publication presents results of an experiment designed 
to elucidate the effects of presenting functionally analogous patents, 
identified using the method developed in this paper, during concept 
generation on the quantity and novelty of design solutions. For details 
of the study, the reader is referred to [95, 96].   

A point of comparison for our original hypothesis is to compare 
these results with a simple patent search of key terms.  Using the 
Google Patent search engine, the keywords “window cleaner” were 
searched.  The top 12 patents are shown in Table 3, from a list of the 
top 500.  One can see that within the 12 patents shown, 25% are 
unrelated soap compounds, and 17% are unrelated lift mechanisms.  
Only two patents are wipers, one near-field and one far-field.  The two 
remaining patents are sponge concepts.  Overall, 8 of the top 12 
returned patents are unrelated.  We find the functional vector approach 
to analogical patent search more effective. 
4 CONCLUSIONS 
The patent-based functional analogy search methodology provides an 
organized method for identifying functionally similar patents 
independent of the patent solution domain. The domain-independent 
search capability is achieved through the systematic derivation of a 
complete functional vocabulary extracted from the target knowledge 
base of the USPTO patent database. Several natural language 
processing algorithms are developed and implemented to identify a 
finite set of function verbs, and the functions are organized into an 
expanded functional basis vocabulary with a hierarchical structure.  
The 1,700 function terms are utilized to generate a searchable 
document vector matrix consisting of approximately 275,000 patents. 
Search interfaces were created to enable effortless access to the vast 
design information contained in the limited sample of the patent 
database. Additional insight gained in the model development is the 
knowledge that patents that are longer are more difficult to map 
analogically due to the longer list of functional verbs. Further research 
is needed to verify the optimal values for the total relevancy score 
metric to perhaps include patent document length. Another proposed 
extension to the search methodology implementation is applying the 
method ultimately to analogical search across large-scale and less 
structured data, such as the world wide web. 
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