353 research outputs found

    Exploiting Parallel Corpus for Handling Out-of-vocabulary Words

    Get PDF

    A hybrid approach for transliterated word-level language identification: CRF with post processing heuristics

    Full text link
    © {Owner/Author | ACM} {Year}. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in FIRE '14 Proceedings of the Forum for Information Retrieval Evaluation, http://dx.doi.org/10.1145/2824864.2824876[EN] In this paper, we describe a hybrid approach for word-level language (WLL) identification of Bangla words written in Roman script and mixed with English words as part of our participation in the shared task on transliterated search at Forum for Information Retrieval Evaluation (FIRE) in 2014. A CRF based machine learning model and post-processing heuristics are employed for the WLL identification task. In addition to language identification, two transliteration systems were built to transliterate detected Bangla words written in Roman script into native Bangla script. The system demonstrated an overall token level language identification accuracy of 0.905. The token level Bangla and English language identification F-scores are 0.899, 0.920 respectively. The two transliteration systems achieved accuracies of 0.062 and 0.037. The word-level language identification system presented in this paper resulted in the best scores across almost all metrics among all the participating systems for the Bangla-English language pair.We acknowledge the support of the Department of Electronics and Information Technology (DeitY), Government of India, through the project “CLIA System Phase II”. The research work of the last author was carried out in the framework of WIQ-EI IRSES (Grant No. 269180) within the FP 7 Marie Curie, DIANA-APPLICATIONS (TIN2012-38603-C02-01) projects and the VLC/CAMPUS Microcluster on Multimodal Interaction in Intelligent Systems.Banerjee, S.; Kuila, A.; Roy, A.; Naskar, SK.; Rosso, P.; Bandyopadhyay, S. (2014). A hybrid approach for transliterated word-level language identification: CRF with post processing heuristics. En FIRE '14 Proceedings of the Forum for Information Retrieval Evaluation. ACM. 170-173. https://doi.org/10.1145/2824864.2824876S170173Y. Al-Onaizan and K. Knight. Named entity translation: Extended abstract. In HLT, pages 122--124. Singapore, 2002.P. J. Antony, V. P. Ajith, and K. P. Suman. Feature extraction based english to kannada transliteration. In In hird International conference on Semantic E-business and Enterprise Computing. SEEC 2010, 2010.P. J. Antony, V. P. Ajith, and K. P. Suman. Kernel method for english to kannada transliteration. In International conference on-Recent trends in Information, Telecommunication and computing. ITC2010, 2010.M. Arbabi, S. M. Fischthal, V. C. Cheng, and E. Bart. Algorithms for arabic name transliteration. In IBM Journal of Research and Development, page 183. TeX Users Group, 1994.S. Banerjee, S. Naskar, and S. Bandyopadhyay. Bengali named entity recognition using margin infused relaxed algorithm. In TSD, pages 125--132. Springer International Publishing, 2014.U. Barman, J. Wagner, G. Chrupala, and J. Foster. Identification of languages and encodings in a multilingual document. page 127. EMNLP, 2014.K. R. Beesley. Language identifier: A computer program for automatic natural-language identification of on-line text. pages 47--54. ATA, 1988.P. F. Brown, S. A. D. Pietra, V. J. D. Pietra, and R. L. Mercer. Mercer: The mathematics of statistical machine translation: parameter estimation. pages 263--311. Computational Linguistics, 1993.M. Carpuat. Mixed-language and code-switching in the canadian hansard. page 107. EMNLP, 2014.G. Chittaranjan, Y. Vyas, K. Bali, and M. Choudhury. Word-level language identification using crf: Code-switching shared task report of msr india system. pages 73--79. EMNLP, 2014.A. Das, A. Ekbal, T. Mandal, and S. Bandyopadhyay. English to hindi machine transliteration system at news. pages 80--83. Proceeding of the Named Entities Workshop ACL-IJCNLP, Singapore, 2009.A. Ekbal, S. Naskar, and S. Bandyopadhyay. A modified joint source channel model for transliteration. pages 191--198. COLING-ACL Australia, 2006.I. Goto, N. Kato, N. Uratani, and T. Ehara. Transliteration considering context information based on the maximum entropy method. pages 125--132. MT-Summit IX, New Orleans, USA, 2003.R. Haque, S. Dandapat, A. K. Srivastava, S. K. Naskar, and A. Way. English to hindi transliteration using context-informed pb-smt:the dcu system for news 2009. NEWS 2009, 2009.S. Y. Jung, S. Hong, and E. Paek. An english to korean transliteration model of extended markov window.S. Y. Jung, S. L. Hong, and E. Paek. An english to korean transliteration model of extended markov window. pages 383--389. COLING, 2000.B. J. Kang and K. S. Choi. Automatic transliteration and back-transliteration by decision tree learning. LERC, May 2000.B. King and S. Abney. Labeling the languages of words in mixed-language documents using weakly supervised methods. pages 1110--1119. NAACL-HLT, 2013.R. Kneser and H. Ney. Improved backing-off for m-gram language modeling. In ICASSP, pages 181--184. Detroit, MI, 1995.R. Kneser and H. Ney. SRILM-an extensible language modeling toolkit. In Intl. Conf. on Spoken Language Processing, pages 901--904, 2002.K. Knight and J. Graehl. Machine transliteration. in computational linguistics. pages 599--612, 1998.P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. Moses: open source toolkit for statistical machine translation. In ACL, pages 177--180, 2007.P. Koehn, F. J. Och, and D. Marcu. Statistical phrase-based translation. In HLT-NAACL, 2003.A. Kumaran and T. Kellner. A generic framework for machine transliteration. In 30th annual international ACM SIGIR conference on Research and development in information retrieval, pages 721--722. ACM, 2007.H. Li, Z. Min, and J. Su. A joint source-channel model for machine transliteration. In ACL, page 159, 2004.C. Lignos and M. Marcus. Toward web-scale analysis of codeswitching. In Annual Meeting of the Linguistic Society of America, 2013.J. H. Oh and K. S. Choi. An english-korean transliteration model using pronunciation and contextual rules. In 19th international conference on Computational linguistics. ACL, 2002.T. Rama and K. Gali. Modeling machine transliteration as a phrase based statistical machine translation problem. In Language Technologies Research Centre. IIIT, Hyderabad, India, 2009.A. K. Singh and J. Gorla. Identification of languages and encodings in a multilingual document. In ACL-SIGWAC's Web As Corpus3, page 95. Presses univ. de Louvain, 2007.V. Sowmya, M. Choudhury, K. Bali, T. Dasgupta, and A. Basu. Resource creation for training and testing of transliteration systems for indian languages. In LREC, pages 2902--2907, 2010.V. Sowmya and V. Varma. Transliteration based text input methods for telugu. In ICCPOL-2009, 2009.B. G. Stalls and J. Graehl. Translating names and technical terms in arabic text. In Workshop on Computational Approaches to Semitic Languages, pages 34--41. ACL, 1998.S. Sumaja, R. Loganathan, and K. P. Suman. English to malayalam transliteration using sequence labeling approach. International Journal of Recent Trends in Engineering, 1(2), 2009.M. S. Vijaya, V. P. Ajith, G. Shivapratap, and K. P. Soman. English to tamil transliteration using weka. International Journal of Recent Trends in Engineering, 2009

    Satellite Workshop On Language, Artificial Intelligence and Computer Science for Natural Language Processing Applications (LAICS-NLP): Discovery of Meaning from Text

    Get PDF
    This paper proposes a novel method to disambiguate important words from a collection of documents. The hypothesis that underlies this approach is that there is a minimal set of senses that are significant in characterizing a context. We extend Yarowsky’s one sense per discourse [13] further to a collection of related documents rather than a single document. We perform distributed clustering on a set of features representing each of the top ten categories of documents in the Reuters-21578 dataset. Groups of terms that have a similar term distributional pattern across documents were identified. WordNet-based similarity measurement was then computed for terms within each cluster. An aggregation of the associations in WordNet that was employed to ascertain term similarity within clusters has provided a means of identifying clusters’ root senses

    Exploiting Cross-Lingual Representations For Natural Language Processing

    Get PDF
    Traditional approaches to supervised learning require a generous amount of labeled data for good generalization. While such annotation-heavy approaches have proven useful for some Natural Language Processing (NLP) tasks in high-resource languages (like English), they are unlikely to scale to languages where collecting labeled data is di cult and time-consuming. Translating supervision available in English is also not a viable solution, because developing a good machine translation system requires expensive to annotate resources which are not available for most languages. In this thesis, I argue that cross-lingual representations are an effective means of extending NLP tools to languages beyond English without resorting to generous amounts of annotated data or expensive machine translation. These representations can be learned in an inexpensive manner, often from signals completely unrelated to the task of interest. I begin with a review of different ways of inducing such representations using a variety of cross-lingual signals and study algorithmic approaches of using them in a diverse set of downstream tasks. Examples of such tasks covered in this thesis include learning representations to transfer a trained model across languages for document classification, assist in monolingual lexical semantics like word sense induction, identify asymmetric lexical relationships like hypernymy between words in different languages, or combining supervision across languages through a shared feature space for cross-lingual entity linking. In all these applications, the representations make information expressed in other languages available in English, while requiring minimal additional supervision in the language of interest

    Applying dynamic Bayesian networks in transliteration detection and generation

    Get PDF
    Peter Nabende promoveert op methoden die programma’s voor automatisch vertalen kunnen verbeteren. Hij onderzocht twee systemen voor het genereren en vergelijken van transcripties: een DBN-model (Dynamische Bayesiaanse Netwerken) waarin Pair Hidden Markovmodellen zijn geïmplementeerd en een DBN-model dat op transductie is gebaseerd. Nabende onderzocht het effect van verschillende DBN-parameters op de kwaliteit van de geproduceerde transcripties. Voor de evaluatie van de DBN-modellen gebruikte hij standaard dataverzamelingen van elf taalparen: Engels-Arabisch, Engels-Bengaals, Engels-Chinees, Engels-Duits, Engels-Frans, Engels-Hindi, Engels-Kannada, Engels-Nederlands, Engels-Russisch, Engels-Tamil en Engels-Thai. Tijdens het onderzoek probeerde hij om verschillende modellen te combineren. Dat bleek een goed resultaat op te leveren
    • …
    corecore