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Chapter 1

Introduction

1.1 Background

With the advent of the Web, various Natural Language Processing (NLP) systems in-
cluding Machine Translation (MT) and Cross Language Information Retrieval (CLIR)
are increasingly being accessed and used for cross language information processing.
The automated NLP systems are useful as they help to overcome various limitations
that are initially associated with manual information processing. Currently, a major
benefit of using NLP systems is the instant generation of output given input data,
and hence the possibility of processing and handling large amounts of data even with
low cost computational resources. However, gains in processing capability of NLP
systems are offset by poor output quality. There are many factors that can affect
system output quality including the use of inadequate and error prone models in a
particular application. This thesis is concerned with the case where NLP systems en-
counter words or phrases in data that are unknown to them which complicate system
processing and consquently result in poor output quality.

In bi-lingual or multi-lingual applications, the problem caused by unknown words
is mainly complicated by lack of a corresponding representation in some target lan-
guage. Table 1.1 illustrates this problem where a state-of-the-art Web-based machine
translation system (Google Translate!) fails to get corresponding representations in
the Chinese language for the two underlined words (Falade and Fansidar) written
using the Latin alphabet and in an English sentence. As Table 1.1 shows, the strategy
used by the MT system and which is commonly used by similar systems in dealing
with unknown words is to simply copy them to the resulting output. Table 1.1 also
shows that all the words that the system failed to represent in the Chinese translation
are names (Falade is a person name whereas Fansidar is a drug name). This strategy

Thttp:/ /translate.google.com
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English input Chinese translation
While the battle against malaria is gradually being @& Ff &% 0y ¥ 1F HF E S
won according to Dr. Falade, the use of Fansidar gt Falade, {# ] fFansidar
as a combination drug is highly discouraged. % — (I e 2T R wEL.

Table 1.1: A Web-based MT system’s English-to-Chinese translation

of simply copying unknown words may be useful in cases where the source and target
language use the same writing system since there is a likelihood to retain spellings
for named entities across the languages. When the source and target language use
different writing systems, the strategy of copying unknown words is not useful.

Transliteration, a process used to convert new words from a source language to
a phonetically equivalent, understandable, and representable form using the writing
system of the target language is currently the most natural approach to dealing with
unknown words for the case where different writing systems are used. For example, a
suggestion of a phonetically equivalent representation for the word Fansidar in Table
1.1 could be like this in Chinese: &K /fan-si-da/. Here, the main NLP system
would require an additional transliteration sub-system that helps generate hypothet-
ical target language representations for any identified unknown word. A different
approach to employing transliteration in a cross-language processing system is to
complement the system’s bi-lingual lexicon with a separately acquired transliteration-
pair lexicon. Either way, transliteration is currently important both as a topic and as
a sub-task in NLP since system effectiveness is expected to increase when it is used.

In both of the transliteration-based approaches in the last paragraph, various
methods have been proposed and used to help improve the quality of the system
generated transliterations or transliteration-pair lexicons. However, recent work, for
example the shared tasks on transliteration mining (Kumaran et al. 2010b) and
transliteration generation (Li et al. 2010), shows that there is need to identify more
approaches that can help improve system performance in the two tasks. Research on
using a given method in each of the two transliteration-related tasks is usually based
on an interest of attaining improvements in system performance.

In this thesis, the interest is to see whether models derived from two edit distance-
based Dynamic Bayesian Network (DBN)-modeling approaches can lead to improve-
ments in transliteration detection and generation. The two edit distance-based ap-
proaches implement Pair Hidden Markov Models (Pair HMMs) and transduction-
based DBN models. The Pair HMM approach originates from work in biological
sequence analysis (Durbin et al. 1998) and was later adapted to compute word sim-
ilarity and successfully applied in cognate identification(Mackay and Kondrak 2005,
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Kondrak and Sherif 2006) and in dialect comparison (Wieling et al. 2007). The
transduction-based DBN approach originates from work in automatic speech recog-
nition with successful applications in the tasks of pronunciation classification (Filali
and Bilmes 2005) and cognate identification (Kondrak and Sherif 2006). The mo-
tivation to investigate the two approaches is based on our knowledge about their
successful application in tasks with requirements similar to those for transliteration
detection. While automated transliteration detection and generation still demand
new approaches, there was not yet any investigation about the use of the two edit
distance-based DBN modeling approaches in transliteration detection and generation.

We investigate the application of several edit distance-based DBN models associ-
ated with the two approaches. Preliminary work involves an empirical investigation
on the application of different Pair HMMs in detecting transliteration pairs using
‘simple’ datasets where the source and target language texts are based on the Latin
alphabet. We use text based on the Latin alphabet not only because it is simple to
process computationally, but because we wanted to first determine the feasibility of
having Pair HMMs model different character representations of written words using
the easy to process data. We have assumed bi-lingual text based on the same al-
phabet to be used as transliteration data because of different written representations
for similar pronunciations between source and target languages and the use of dif-
ferent diacritical characters to convey additional pronunciations for some languages.
In this case, our ‘simple’ datasets comprise of geographic name pairs extracted from
the Geonames? database for three language pairs: English-French, English-German,
and English-Dutch. We also extracted English-Russian geographic name pairs to
form our first experimental dataset where the languages use different writing sys-
tems. This English-Russian dataset is part of the preliminary setup. We then use
more datasets obtained from the 2009 (Li et al. 2009) and 2010 (Li et al. 2010) shared
tasks on transliteration generation for a further evaluation of the Pair HMMs and
transduction-based DBN models in another experimental Transliteration Detection
(TD) setup. The data from the shared tasks for this set of experiments includes
the following seven language pairs: English-Bengali, English-Chinese, English-Hindi,
English-Kannada, English-Russian, English-Tamil, and English-Thai. For this set of
experiments, we also evaluate the DBN models against a standard baseline approach
of using cross-language Pair n-gram information for transliteration detection and de-
termine best performing DBN models for later evaluation on real-world data. In order
to establish the value of applying the proposed DBN-related approaches in translit-
eration detection and generation on real-world data, we evaluate the application of
some of the Pair HMMs and transduction-based DBN models against state-of-the-art
methods that were used in the 2009 and 2010 shared tasks on transliteration gener-

2http://www.geonames.org
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ation (Li et al. 2009, Li et al. 2010) and in the 2010 shared task on transliteration
mining (Kumaran et al. 2010b). Here, the comparison against state-of-the-art meth-
ods is simplified by using the same datasets and same evaluation setup as used during
the shared tasks. The shared task data used in the transliteration mining experiments
comprises of standard Wikipedia topic pairs for five language pairs: English-Arabic,
English-Chinese, English-Hindi, English-Russian, and English-Tamil.

1.2 Research goal

The overall research goal in this thesis is to apply Pair Hidden Markov models (Pair
HMMs) and transduction-based Dynamic Bayesian Network models in transliteration
detection and generation while aiming for improvements over existing techniques.
Based on this goal, the thesis aims to address the following questions:

1. Does the current state of research necessitate an investigation into the use of
new methods (such as the Dynamic Bayesian Network (DBN) models proposed
in this thesis) for transliteration detection and generation?

For this question, we would like to know whether existing methods for translit-
eration detection and generation suffice.

2. Can DBN models that have been used in tasks (such as cognate identification
and pronunciation classification) with requirements similar to transliteration
detection be valuable when used in the context of computing transliteration
similarity? Related to that, can modifications to these DBN models that meet
the requirements for computing transliteration similarity be valuable in the de-
tection of transliteration pairs?

Here, we would like to know whether the assumptions associated with the suc-
cessful application of DBN models in previous tasks could also lead to successful
application of the DBN models in transliteration detection and generation.

3. What features are critical to the use of DBNs for modeling transliteration sim-
ilarity?
In the thesis, we investigate various DBN model structures and parameter set-
tings. We would like to know which types of Pair HMMSs and transduction-
based DBN models adequately address factors that are important in modeling
transliteration similarity.

4. Can the application of DBN models improve transliteration detection and gen-
eration quality as compared to current state-of-the-art methods?
Results obtained from representative experimental setups may not portray the
true effect of applying DBN models on real-world data. Here, we are interested
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in knowing whether there can be any benefits of using DBN models when eval-
uated on real-world data for transliteration detection and generation. This,
as the question has been put, requires an evaluation against state-of-the-art
methods that would be applied in a similar manner.

1.3 Research approach

The research approach used in this thesis is mostly focused on addressing the ques-
tions in the previous section. To address the first and second questions, I undertook
an exhaustive literature review on approaches that have been proposed and used
in previous work for transliteration detection and generation. In order to avoid
repetitions, I also considered recent comprehensive literature reviews on machine
transliteration, for example in Karimi et al (2011). The literature review is mostly
exploratory, but a critical analysis is given where suitable.

To address the remaining questions, we follow an empirical approach in which
experiments are conducted to evaluate the performance of several DBN models in
transliteration detection and generation. For the third and fourth question, we define
an experimental transliteration detection setup to evaluate the use of proposed DBN
models for computing transliteration similarity. Here, we first experiment with our
own prepared transliteration data from a Web-based geographic names database
(Geonames) and later we experiment with standard transliteration corpora from the
2009 and 2010 shared tasks on transliteration generation (Li et al. 2009, Li et al.
2010). Each dataset has been manually verified and we assume that each source
language word has exactly one target language word match. We use the experimental
transliteration detection setup at this stage to identify DBN models that could be
useful for transliteration generation and in detecting transliteration pairs from ‘noisy’
real-world data.

For the fourth research question, our participation in both the 2009 and 2010
NEWS shared tasks on transliteration generation and transliteration mining respec-
tively ensured an evaluation of the application of the proposed DBN models against
state-of-the-art methods that were also applied on the same standard transliteration
corpora. In the thesis, I have followed the same evaluation setups as specified for
the NEWS 2009 shared task on transliteration generation (Li et al. 2009) and for
the NEWS 2010 shared task on transliteration mining (Kumaran et al. 2010b) for
evaluating the DBN models. For the transliteration generation task, participating
teams were supplied with training and development data for a dozen language pairs
to be used for training and tuning the participating systems. After training and
development, each participating team was required to submit ten system generated
candidate transliterations per source language word in the the test set for a given lan-
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guage pair. For the transliteration mining task, each participating team was availed
with a seed set of matching name pairs for five language pairs to be used as ini-
tial training data. In these experiments we use models that performed well in the
experimental transliteration detection setup mentioned in the previous paragraph.

1.4 Overview of the rest of the thesis

In Chapter 2, we present a literature review on transliteration detection and gener-
ation aimed at determining the current state of research on the two tasks and the
need for new solutions to some identified gaps. We give a general view for each of
the two tasks and a description of the main phases. We then review several mod-
eling approaches that have been used in each task ranging from the earliest to the
current state-of-the-art. This also involves an analysis of performances achieved by
the approaches in the two tasks.

In Chapter 3, we introduce the main concepts underlying the framework of Dy-
namic Bayesian Networks (DBNs). First, we introduce Bayesian Networks from which
DBNs are an extension. We discuss BNs and subsequently DBNs according to three
aspects: their representation, inference, and learning methods. For DBN learning
in particular, we review a theoretical explanation of the Expectation Maximization
(EM) algorithm. The EM algorithm and its generalized form are applied in different
ways to train all DBN models that we have proposed for transliteration detection and
generation. At the end of the chapter, we specify the general framework for applying
the DBN models in transliteration detection and generation.

In Chapter 4, we introduce the Pair HMM approach as the first of the DBN meth-
ods proposed for use in transliteration detection and generation. First, we provide
some background regarding the origins of the Pair HMM method from its inception
in the field of biological sequence analysis (Durbin et al. 1998) to its adaptation for
estimating word similarity(Mackay and Kondrak 2005). A discussion then follows
of the requirements that need to be met in order to adapt the Pair HMM approach
for estimating transliteration similarity. Different plausible Pair HMM parameteriza-
tion settings are proposed and evaluated in an experimental transliteration detection
(TD) setup. We first investigate two settings for the Pair HMMs in the experimental
TD task: in the first setting, we assume that only one character vocabulary is used
to generate the source and target words, and in the second setting, we assume that
the Pair HMMs use separate character vocabularies corresponding to the source and
target language writing systems. It is obvious that the second setting relates more
with transliteration, and its related experiments are aimed at determining the neces-
sity to model the differences in the source and target language vocabularies in Pair
HMM emission parameters which are used for computing transliteration similarity.



1.4 Overview of the rest of the thesis 7

Here, we use four data sets obtained from the Geonames database as described in the
Background section (1.1). We then investigate the use of different Pair HMM string
similarity scoring algorithms and the use of different definitions for Pair HMM tran-
sition parameters. For this investigation, we used standard corpora from the NEWS
2009 and NEWS 2010 shared tasks on transliteration generation. The translitera-
tion detection performance of the Pair HMM approach is evaluated against that of a
standard baseline approach of using ‘pair n-gram’ models.

In Chapter 5, we introduce the transduction-based Dynamic Bayesian Network
approach as the second DBN-related approach we have proposed to apply for com-
puting transliteration similarity. First, we review the approach as initially proposed
by Filali and Bilmes (2005) in their pronunciation classification task. A discus-
sion then follows regarding the adaptation of the transduction-based DBN modeling
approach in the context of transliteration similarity estimation. In proposing differ-
ent transduction-based DBN model generalizations, we start with a presentation of
an approximate transduction-based DBN model representation for the Pair HMMs.
We have successfully adapted three DBN model generalizations associated with the
transduction-based DBN modeling approach for computing transliteration similarity.
These are described in addition to the baseline DBN model template from which they
are derived. Each of the DBN model generalizations is used to account for specific
types of temporal dependencies, including: dependencies that capture memory from
previous edit states of a DBN model; contextual dependencies of edit states of a DBN
model on either source or target string elements or on elements from both source and
target strings; and dependencies that account for the lengths of edit steps needed
for string similarity estimation. We then investigate the use of several models from
the DBN model generalizations in the experimental transliteration identification task
introduced in Chapter 4 using standard transliteration corpora from the shared tasks
as mentioned in Chapter 4. The performance from the use of the transduction-based
DBN models is evaluated against that of the baseline pair n-gram approach and the
best performing Pair HMMs in Chapter 4. Our analysis of the results leads us to fur-
ther propose and test several ensembles of DBN models for computing transliteration
similarity.

In Chapter 6, we present an evaluation of the use of the DBN models in mining
transliterations from real-word data (specifically, from the Web-based Wikipedia en-
cyclopedic resource). Two transliteration mining sub-tasks for evaluating the DBN
models are first introduced. In the first sub-task, we use the same evaluation set-up
as that used in the NEWS 2010 shared task on transliteration mining where partic-
ipating systems are evaluated on mining transliterations from paired cross-language
Wikipedia topics. For this task, we evaluate the Pair HMM and transduction-based
DBN methods against state-of-the-art methods that were used by the other partici-
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pating teams in the shared task. In the second sub-task we propose and evaluate the
application of the DBN models on paired cross-language Wikipedia article content
in addition to using the respective paired Wikipedia topics.

In Chapter 7, we present an evaluation of the use of Pair HMMs in transliteration
generation. Although Pair HMMs were initially proposed just for the purpose of
computing string similarity — where they have been successfully used — this chapter
is aimed at determining whether the Pair HMMs could as well be valuable in translit-
eration generation. Two transliteration generation sub-tasks are first introduced. In
the first sub-task, we use the same evaluation setup as that used in the NEWS 2009
(Li et al. 2009) and NEWS 2010 (Li et al. 2010) shared tasks on transliteration
generation. In the second sub-task we propose using the transliteration generation
framework for translating named entities between languages that use the same writ-
ing system. We then describe a scheme for representing Pair HMM parameters as
parameters in weighted finite state automata to allow for their use in transliteration
generation. We also describe various types of other weighted finite state automata for
evaluation in addition to the Pair HMM-based models. For the first task, we report
on results associated with the use of weighted finite state automate including the Pair
HMM-based models and compare them to results associated with the use of a state-
of-the-art phrase-based statistical machine translation approach. For the second task,
we evaluate the weighted finite state automata models and the phrase-based statisti-
cal machine translation approach against the standard baseline of copying unknown
words.

Chapter 8 concludes the thesis with a discussion of results on the application of
the two proposed DBN-related approaches in the two tasks of transliteration mining
and generation. We also point out the contributions of the thesis. Finally, we present
our suggestions for future work including work that we have not managed to cover
in the thesis.



Chapter 2

A review on machine transliteration

2.1 Introduction

The origins of the use of transliteration as a process for dealing with unknown words
in a foreign language or in a dialect of a particular language seem to be non-existent
in transliteration literature. However, the systematic attempts to create systems for
representing characters in a writing system of origin (for example in Japanese or
Chinese) to characters in a different language using its writing system (for example
to English using the Latin alphabet) are well documented and these systems are
commonly referred to as ‘transliteration systems’. The term Romanization is often
associated with transliteration systems where the Roman alphabet is used to repre-
sent characters from a different writing system. For example, the American Library
Association-Library of Congress (ALA-LC) romanization tables! constitute one of
the largest collection of romanization systems for representing text in more than 150
languages written in various non-Roman scripts using the Latin alphabet. Contem-
porary literature suggests that transliteration is likely to have started as a process
for converting a given word in a language of origin to a phonetically equivalent, un-
derstandable, and orthographically representable form in some target language (Li
et al. 2009). Specifically, if the conversion is from a language of origin, the process
is called forward transliteration. Backward transliteration or reverse transliteration
is defined as the reverse process, where the aim is to find the original word repre-
sentation in a language of origin given an existing word in a foreign language (for
example finding the original Russian name (amurpuit) given an English name variant
‘Dmitriy’.

The use of automated Natural Language Processing (NLP) applications such as
Machine Translation (MT) and the non-diminishing importance of unknown words

Thttp:/ /www.loc.gov/catdir/cpso/roman.html
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that these applications encounter necessitated the use of automated methods as well
to help deal with them. The most popular reference to one of the earliest attempts
at fully automating the process of transliteration in the sense of processing named
entities (which constitute the largest percentage of unknown words) dates back to
almost two decades ago (Arbabi et al. 1994) where a combination of a rule-based
expert system and an artificial neural network were used for including vowels in
Arabic names. Also, around just the same time, studies on the automated search for
named entities within a language and across languages had already started. Currently
the general term used for cross-language named entity search for the case where the
languages use different writing systems is transliteration mining. From the later half
of the 1990s on, various approaches have been proposed to handle named entities
(NEs) in cross language applications with regard to both the converting of NEs from
one writing system to another, and to the search of corresponding NEs in different
writing systems. In this chapter, we introduce the current view of the two tasks:
transliteration generation, and transliteration detection, and with respect to each
task, we review some of the major approaches that have been used from the earliest
to current state-of-the-art. The organization of our review will follow the same order
of presentation for the two tasks throughout the thesis.

Notation

To simplify our review of the various transliteration detection and generation ap-
proaches, we establish some notation that is common to most of the methods. The
transliteration process in both detection and generation involves an analysis of the
source and target language words which we denote here as: S for a source language
word and T for a target language word. However, we shall extend the notation
whenever there is need to reflect the point of discussion. For example, it may be
necessary to specify a source word constituting m characters as S7* = s;53...8,, and
a target word with n characters as 17" = tyts...t,,. When discussing a phonetic-based
approach we use SP to denote the phonetic representation of a source word, while TP
is used to denote the phonetic representation of the target word. For the constituent
phonetic units, we use SP} = sp;spa...sp; for the source word and TP = tpytps...tpy,
for the target word. For other specific representations, additional notation will be
defined as per the need.

2.2 Transliteration Detection

The process of detecting transliterations generally involves the search for correspond-
ing NEs from a collection of candidate NEs between two or more languages in different
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writing systems. The main differences in the transliteration detection approaches are
associated with: the data source for obtaining candidate NEs in each of the languages;
the methods that are used to identify candidate NEs; and the methods that are used
to relate and extract transliteration pairs. We shall review transliteration detection
approaches based on the type of data resource used. For each type of data resource,
we present some examples from transliteration literature and the subsequent methods
that are used for candidate NE identification, transliteration similarity estimation,
and transliteration pair extraction.

2.2.1 Data resources and transliteration detection methods

Transliteration detection necessitates the use of a bi(multi)-lingual® corpus from
which we expect to match bi-lingual NEs. That is, the resource when considered
as a whole, should have a reasonable amount of text in at least two or more lan-
guages to enable the identification and extraction of similar words across different
languages. The most common types of bi-lingual data resources for transliteration
detection can be classified into: bi-lingual single document texts, which consist of
texts in two or more languages in the same document; parallel corpora, which con-
sists of texts in two or more languages and where the texts are translations of one
another (Karimi et al. 2011) and in different documents where corresponding sen-
tences that are related through a given identifier are exact translations of each other;
and comparable corpora, which is text in two or more languages and in different
documents where the corresponding text are not exact translations of each other (as
is the case in parallel corpora). The main differences in the transliteration mining
process for the different approaches are associated with the kind of data resource that
is used and the identification of candidate NEs from a given data resource. After the
identification of candidate NEs, the setup for comparing and extracting NEs across
different languages is often similar. In the following we review a selection of some
examples and transliteration detection methods associated with each of the different
types of bi-lingual data resources.

a) Bi/Multi-lingual single document text

The use of single document text for detecting transliteration pairs usually requires the
application of prior knowledge about the presentation of different entities in a given
document. Based on how bi-lingual text is represented, the transliteration detection

2 Although the term multi-lingual is a generalization of bi-lingual, most of the approaches utilize
bilingual resources. We therefore prefer to use the term bi-lingual in a general discussion to represent
both cases. However, when describing a given approach that uses multi-lingual resources (that is,
in more than two languages), we will correctly specify it as a multi-lingual resource.
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process may be simplified or may require some additional pre-processing steps before
applying a transliteration similarity estimation method. In the examples below, we
see two different representations. In one example, source words are hypothesized to
exist in parentheses next to target words in a sentence (Lin et al. 2004). In the other
example (Kuo et al. 2007), source words are hypothesized to collocate with target
words in a sentence but there is rarely an existence of delimiters that enclose source
words.

Kuo et al. (2007) use predominantly Chinese Web pages, where transliterated
words are collocated closely with their original source(English) words and the source
words are often appositives of neighboring target(Chinese) words in a close context.
They assume that the scope of a close context is within a sentence boundary which
is delimited by punctuation such as full stops, commas, question and exclamation
marks; and that it is a range of proximity where a source word and its target translit-
eration collocate. Kuo et al. also suggest that in cases where there are different types
of words in a close context, we need to consider only word pairs that are most likely
to be associated with phonetic transliteration. To describe how candidate named
entities are identified, we use one of their examples, which illustrates collocations of
source and target language words:

“LAVEKuro [FIEP2P SUCREREE N AT, 3 H #23kP2P BRI iR /7 5
C2C (Content to Community)...”

In the example above, “J# & /KU-LUO/” is a transliteration for “Kuro”, the two
can also be qualified as a candidate transliteration pair. However, although C2C is
collocated with “Content to Community”, the latter is just an acronym expansion and
not a transliteration; such a pair can not be used as a candidate transliteration pair.
Based on this observation, Kuo et al. propose a procedure for identifying candidate
pairs which is as follows: 1) the predominantly Chinese Web page is segmented into
sentences using punctuation marks as delimiters; 2) a search is made for any source
language word S in each sentence; 3) if an English word S is recognized, then a k-
neighborhood is defined to serve as the close context of the recognized English word; 4)
T € Q) is defined as a target transliteration candidate in the k-neighborhood, where )
is the set of all transliteration candidates in the k-neighborhood. In the example above,
“Kuro” is recognized as an English word, “#%& /JIN-YIN/” and “J#& /KU-LUO/”
are suggested in a close context, the left and right k-neighborhoods. Two candidate
pairs, “Kuro-f&%&" and “Kuro-J#ii%” are then selected for further examination. For
transliteration similarity estimation, Kuo et al. (2007) use a phonetic similarity (PS)
modeling approach. The candidate words are first transformed into syllabic sequences
Ssy for the English word and T'sy for the Chinese word. The PS model is then used
to identify the most probable T'sy’ that matches S. In the PS model, they formulate
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their transliteration process using the noisy channel model (Brown et al. 1993) and
by applying Bayes’ rule, P(T|S) is expressed as:

PBIT)P(T)

P(TS) = =5

(2.1)

where P(S|T) represents the noisy channel probability (also called transliteration
probability) and P(T) is the language model probability. P(S|T) is approximated
using a phonetic confusion probability P(Ssy|Tsy) which is obtained from a phonetic
confusion probability matrix. They propose three ways of estimating the syllable-
based confusion matrix: 1) Pagr(Ssy,,|Tsy,,) for which an automatic speech recog-
nition (ASR) system is used and where a labeled English speech database is run
through a Chinese ASR system; 2) Psyr,(Ssy,,|Tsy,,) for which a Syllable PSM is
used and where the syllable confusion probability is estimated by extracting translit-
eration pairs which are converted to syllables and to phonemes; 3) Pss(Ssy,,|Tsy,,)
for which a Sub-syllable PSM is used and where the syllable confusion matrix is esti-
mated using sub-syllable confusion probability. Kuo et al. exploit the three confusion
matrices in different stages for transliteration similarity estimation. After obtaining
a similarity score and ranking the candidate list of T, they identify the most probable
Tsy’ by using a hypothesis test to decide whether T’ is a transliteration of S.3

Lin et al. (2004) use both single document bi-lingual text and parallel text for
extracting English Chinese transliterations. We present their approach for the single
document text here and that for the parallel text in the next subsection on Parallel
corpora. For the single document bi-lingual text, they exploit the fact that some data
resources print source language terms in parentheses following their transliterations
as shown in their example below:

[ P4 SRk 7 (19954 A [1§9247,000), v AR (Cologne) PE-AL /5 ...

In the example above F}f% is a transliteration of Cologne. During transliteration
similarity estimation, Lin et al. use a statistical transliteration model. The source
language word (.9) is first split into & transliteration units (TUs) S = suq, sus, ..., Sug
which are then converted independently into k target characters tcy,tco, ..., tcy using
the statistical transliteration model. The tc¢;’s are subsequently combined to produce
a target word T. Their transliteration model for P(tc;|su;) is estimated using an
Expectation Maximization (EM) algorithm with Viterbi decoding.

3Kuo et al. (2007) provide a much more detailed description of their approach with many
mathematical formulations, but because of space constraints, we have decided to omit most of the
details.
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b) Parallel corpora

The use of parallel corpora necessitates the alignment of sentences between two lan-
guages. As will be seen below, some approaches apply a sentence alignment procedure
as part of the transliteration mining process whereas other approaches use data re-
sources in which the sentences are already aligned. Each aligned sentence pair is
then hypothesized to contain similar NEs across the different languages. Most of the
approaches go a step further in filtering out unnecessary entities in at least one of
the languages before applying a transliteration similarity estimation method.

Sherif and Kondrak (2007a) use two sets of sentence aligned bi-text from an
Arabic tree bank part 1-10k word English translation corpus, and an Arabic English
parallel news Part 1 corpus. They report that the two corpora contain Arabic news
articles and their English translations aligned at the sentence level. They use the tree
bank data as development data to optimize the acceptance threshold used by one of
their methods for transliteration similarity estimation and extraction. They use the
following pre-processing procedure to identify candidate NEs. First, they tokenize
the English corpus using a tokenization tool (Word splitter). After tokenization, they
remove all uncapitalized words; stop words are also removed from both sides of the
bi-text. Lastly, English words of length less than 4 and Arabic words of length less
than 3 are removed. Sherif and Kondrak (2007a) then apply a number of models for
word similarity estimation including the bootstrapped stochastic transducer which
is their main proposed method in the paper. Below, we summarize the similarity
estimation methods that Sherif and Kondrak use:

1) Levenshtein edit distance (LED). Is used as the baseline method. To enable
the computation of LED, a common representation between the source and target
languages is needed. Specifically, Arabic candidate NEs are romanized to get to the
common representation.

2) ALINE, is a phonetic-based word similarity estimation algorithm where individual
phonemes input to the algorithm are decomposed into a dozen phonetic features,
such as Place, Manner, and Voice. Then, a substitution score between a pair of
phonemes is based on the similarity as assessed by a comparison of the individual
features. After an optimal alignment of the two words is computed with a dynamic
programming algorithm, the overall similarity score is set to the sum of the scores of
all links in the alignment normalized by the length of the longer of the two words.
The source and target words are first converted into phonetic transcriptions using a
deterministic rule-based transformation.

3) Fuzzy string-matching algorithm. This was initially proposed by Freeman et al.
(2006). The Fuzzy matching algorithm is based on the Levenshtein Edit Distance
but encodes more knowledge about the relationships between the source and target
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language. In this case, the LED is computed using letter equivalences as matches
instead of identities. The source and target language letters within a class are treated
as identities. The resulting Levenshtein distance is then normalized by the sum of
the lengths of both words.
4) The main model proposed in Sherif and Kondrak (2007a) is a stochastic transducer
from Ristad and Yianilos (1997) which is trained iteratively, and then applied to score
a pair of candidate NEs.

In a rather different NE identification approach, Lee and Chang (2003) first apply
a sentence alignment procedure to align parallel texts at the sentence level. An NE
tagger is used to identify proper nouns in the source text (English) which serve as
candidate source NEs for identifying transliterations in the target language (Chinese).
Lee and Chang (2003) also formulate the transliteration problem as a noisy channel
model while exploiting phonetic similarities between source words (S) and target
words (T). The computation for P(T|S) is first formulated as a marginalization over
an alignment sequence (0):

P(T[S) =Y _P(T,8]8) = Y _ P(T|5,S)P(5]S). (2.2)
é é

where § represents an alignment candidate with § = §1, s, ..., o match types. To
reduce computational complexity, the summation criterion in Equation 2.2 is changed
into a maximization and P(T|S) is approximated as:

P(T|S) ~ mgixP(T|5, S)P(4]S) ~ mgLXP(TM, S)P(0) (2.3)

Using transliteration units su} for the source word and tu}¥ for the target word, Lee
and Chang re-approximate P(T|d,S)P(d) in Equation 2.3 as follows:

N
P(T[6,8)P(8) = P(tu|su} )P (61,02, ..., ox) = [ [ P(tus|su:) P(6;). (2.4)

i=1

Finally log P(T|S) is computed as:

N
log P(T|S) ~ max Z(log P(tu;|su;) + log P(4;))

i=1
The maximum accumulated log probability among all possible alignment paths is
computed using a dynamic programming procedure. Lee and Chang (2003) estimate
the model probabilities using an Expectation Maximization (EM) procedure. They
also incorporate some linguistic processing in their method, first to accelerate the
convergence of EM training and then during transliteration similarity estimation to
improve transliteration identification quality.
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Lin et al. (2004) use a named entity identification approach similar to Lee and
Chang’s (2003) approach above. We already saw in the previous section (on Bi/Multi-
lingual single document text) that Lin et al. (2004) use both the single document
bilingual text and parallel text to mine transliteration pairs. For parallel text, Lin et
al. first identify proper names in the source (English) sentence and then subsequently
identify transliterations for each proper name. They suggest the use of a part of
speech tagger and named entity recognizer for identifying English proper nouns. All
words in the target language (Chinese) sentence are considered as transliteration
candidates. They then use Viterbi decoding to identify the transliterations in the
target language sentence using the same procedure as described at the end of the
previous subsection.

c) Comparable corpora

Comparable corpora is mainly obtained from Web-based cross-language text, usually
with the aid of cross-language links. Common sources include: time-aligned news
articles over a given period of time, and encyclopedic resources such as Wikipedia.
Most of the recent work in transliteration mining use comparable corpora as they
are easy to acquire, and they can be used without the need of applying a sentence
alignment procedure as is the case for parallel corpora. In this case, we simply use
similar text with the assumption that they are likely to contain a reasonable number
of corresponding NEs between the source and target languages. In the following, we
review some of the recent approaches that use comparable corpora.

Udupa et al. (2009) use comparable news corpora for mining NE transliteration
equivalents. They investigate the effectiveness of using different sets of paired docu-
ments for mining transliteration equivalents. In one stage, they investigate the use
of documents comprising the comparable corpora (Cs,C;), and in another stage, they
investigate the use of paired documents (A; ;) obtained from (Cs,C;) as highly similar
documents. In the latter stage, they use a cross-language document similarity model
(KL-divergence) to estimate content similarity between documents (Ds, D). Using
Vs to denote the source language vocabulary and V; the target language vocabulary,
Udupa et al. compute KL-divergence as follows:

P(T[Dy)

—KL(D|Dy) = Z P(T\Ds)logm (2.5)
TeV, s

and since the interest is in target documents which are similar to a given source
document, the denominator in Equation 2.5 (which is independent of the target
document) can be ignored. By expanding P(T|D;), the following Equation is used
for computing cross-language similarity:
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> > P(SD,)P(T|S)log P(TD,).

TeV: SeV,

Udupa et al. then use two transliteration similarity models on each document pair
(Ds,Dy) in As, to produce a set Pairs,, of NE transliteration equivalents. The
first model, which they call the discriminative transliteration model uses a logistic
function to compute transliteration similarity between every candidate pair of words
(S,T) in each (D4, Dy):

1

Transliteration similarity (S,T,0) = (=)
e—we,

(2.6)
where ¢(S, T) is the feature vector for the pair of words ¢ (S, T) and w is the weights
vector which is learnt discriminatively using a bi-lingual list of matching translitera-
tions. The second model, which they call the generative transliteration model extends
a word alignment hidden Markov model (W-HMM) (He 2007). In a W-HMM, the
emission probability depends on the current character and the previous target char-
acter. By marginalizing over all possible alignments, they compute the probability
of a target word given a source word as follows:

m

P(TIS) =) [ Plajlaj—1, 50, ) P(tjlsa;,tj1) (2.7)
A

Jj=1

where t; (and respectively s;) denote the j* (and respectively i'") character in T
(and respectively S) and A = a7* is the hidden alignment between T and S, and
in which t; is aligned to s,,, for j = 1,...,m. The parameters of the W-HMM are
estimated using the EM algorithm and they use log P(T|S) for the transliteration
similarity score.

Klementiev and Roth (2006) exploit two observations in mining transliteration
pairs from multi-lingual news streams. The first observation is that NEs in one lan-
guage associated with multi-lingual news streams tend to co-occur with their coun-
terparts in another language for a given period of time. The second observation
is that “NEs often contain or are entirely made up of words that are phonetically
transliterated or have a common etymological origin across languages”. Klementiev
and Roth (2006) introduce an algorithm called co-ranking which exploits the two ob-
servations simultaneously during the transliteration detection process. For the first
observation, they use a Discrete Fourier Transform (Arfken 1985) based metric to
compute the similarity of time distributions. For the second observation, they score
NE similarity using a discriminative linear transliteration model. The translitera-
tion model is iteratively trained using single word NE pairs. During training, for a
given source NE (S) in one language, the current model chooses a list of top-ranked
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transliteration candidates T in another language. The words in the candidate pair
are partitioned into a set of substrings su and tu up to a particular length (including
the empty string which they denote by ). Couplings of the substrings (su,tu) from
the source and target language sets of words produce feature vectors which are used
for training. Klementiev and Roth employ the perceptron (Rosenblatt 1958) algo-
rithm which takes a variable number of features in its examples; and as the iterative
algorithm observes more data, it discovers and makes use of more features. Time
sequence scoring is then used to rank the list and subsequently choose the target
candidate NE T that is best temporally aligned with S. A method called F-index
(Hetland 2004) is used to implement the temporal similarity score function. The
pairs of transliteration NEs and the best temporally aligned (thresholded) candidate
NEs are utilized in a similar manner to iteratively train the transliteration model.
The resulting pairs of source and target NEs are then evaluated for accuracy.

A recent shared task on transliteration mining (Kumaran et al. 2010b), used
comparable Wikipedia article topics for five language pairs as source data for mining
transliteration pairs. The comparable Wikipedia article topics are obtained with the
aid of ‘inter-language links’ which are located on the same page as the source language
text. A report about participating systems in the shared task shows the application
of discriminative and generation-based methods for transliteration similarity estima-
tion. Some approaches like those in Udupa et al. (2009) have been described above.
Generation-based methods mostly included various forms of Hidden Markov Mod-
els (HMMs) and finite state automata (Darwish 2010, Noeman and Madkour 2010).
Discriminative methods included some of the well known methods such as: sup-
port vector machines (SVMs) and a standard string kernel method (Jiampojamarn
et al. 2010). The shared task report shows that some methods achieved good F-score
values but on only one or a few datasets, and not for all datasets.

2.2.2 Discussion

The identification of candidate named entities can be a complex procedure depending
on the requirements of the named entity recognition task and the language in use. As
is suggested from some of the approaches reviewed above, some Asian language text
presents more challenges for named entity recognition mainly because of the extra
work required to identify words in a sentence as compared to text written using
a Latin or Cyrillic alphabet. In Chinese text for example, the segmentation of a
sentence is complicated by the lack of blanks and marks to indicate word boundaries.
Consequently, the identification of candidate words is difficult with a major problem
of segmentation ambiguities (Chen and Bai 1998).

The review above also shows that some methods specify the transliteration sim-



2.3 Transliteration generation 19

ilarity estimation problem in a similar manner but differ in the probabilistic mod-
els that contribute to a transliteration similarity estimate. For example, we see
that a number of methods use the noisy channel model (NCM) approach but dif-
fer in the kinds of probability distributions that are specified to approximate the
probability specifications in Equation 2.1 for the NCM. Other approaches apply an
edit distance-based measure for example the Levenshtein Edit Distance based on a
common representation for the source and target words. We also see variations in
the computation of edit distance in different methods. Many generation-based ap-
proaches use a dynamic programming algorithm for evaluating alignments between
the source and target words and use an Expectation Maximization algorithm for
training the associated transliteration models. Up to this point, we see that although
the HMM framework has been used in transliteration detection, there is not yet any
application of the edit distance-based Pair HMM approach that we propose to use
for the same task in the thesis. It is also clear from the review that there is not
yet any application of generic Dynamic Bayesian Network (DBN) models such as
the transduction-based DBN models proposed in the thesis for the same task. The
review above also identifies the use of different discriminative-based approaches in
transliteration detection.

The transliteration detection task has led to the organization of a shared task in
which various transliteration detection methods are evaluated using the same stan-
dard corpora. Again as literature on transliteration detection generally revealed, both
generative-based and discriminative-based methods were evaluated in the shared task
and the report showed that there was still room for improvement. Such a shared task
already simplifies some of our aims in the thesis. Specifically, by using the same
datasets used in the shared task, we need not re-run the experiments associated with
state-of-the-art approaches; we only have to run the experiments for the DBN models
proposed in the thesis and compare the results with those that were reported for the
state-of-the-art methods on the same standard transliteration corpora.

2.3 Transliteration generation

Unlike the transliteration detection task which can vary depending on the data source,
the transliteration generation task (both forward and backward) is similar across dif-
ferent transliteration generation approaches. In forward transliteration, we want the
transliteration system to automatically convert a source word into a target translit-
eration or a set of target transliterations when variations are expected. In the back-
ward (reverse) direction, the aim is to find the original source word for a given target
transliteration or transliterations. In both cases of transliteration generation, the
core of the system is a trained model or set of models for character conversion. A
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Figure 2.1: Transliteration generation overview. Adapted from Karimi et al. (2011).

general framework for transliteration generation is provided in (Karimi et al. 2011)
specifying two main phases: training of the transliteration model(s) and generating
transliterations using the trained model(s).

Karimi et al. (2011) identify different subtasks in each of the two main phases
(Figure 2.1) in the transliteration generation process. Two common subtasks in the
training phase include: segmentation of source and target character strings in the
training pairs, and determining associations between the source and target translit-
eration units after performing a training procedure or a manual specification of the
transformation rules. In the transliteration generation phase, two common subtasks
include: source word segmentation into transliteration units, and using the trained
model(s) or transformation rules to map source transliteration units to target translit-
eration units by resolving different combinations of alignments and unit mappings.
As illustrated in Figure 2.1, at the end of the transliteration generation phase the
transliteration system is usually expected to suggest more than one target transliter-
ation. Since there is always a dependence on the previous sub-task from the training
phase to the transliteration generation phase, we will review some of the main translit-
eration generation approaches in their entirety. Automated transliteration generation
approaches are usually categorized according to the type of transliteration units used;
that is, whether they are phonetic or orthographic or a combination of both (Karimi
et al. 2011, Oh et al. 2006). In our review, we follow a similar categorization.

2.3.1 Phonetic-based transliteration generation

The earliest reported attempts at automated transliteration generation involved the
use of phonemes between the source and target languages. In Arbabi et al. (1994),
the generation of romanized transliterations for Arabic names is as follows: The
Arabic names are first vowelized automatically using a combination of an artificial
neural network (ANN) and a knowledge-based system (KBS). The ANN is used to



2.3 Transliteration generation 21

filter out words that would otherwise be vowelized inappropriately by the knowledge-
based system; while the KBS uses linguistic vowelization rules. In the transliteration
stage, the vowelized Arabic NEs can be converted into a standard, phonetic Latin
representation using a parser or table. Generally, the Latin representation is broken
down into a group of phonetic syllables which can be used to produce various spellings
in languages that use the Latin alphabet.

A few years after Arbabi et al.’s (1994) work, Knight and Graehl (1997) used
weighted finite-state automata for Japanese Katakana to English back transliteration.
The transliteration process in Knight and Graehl (1997) follows a number of steps
which are implemented as follows:

e English word (taken here as the source word S) sequences are generated using
a distribution P(S); then

e English pronunciations (SP) are produced from English words using P(SP|S);
e the English pronunciations are converted into Japanese sounds TP using P(TP|SP);
e Japanese sounds are converted into into Japanese Katakana (T}) using P(T|TP);

e and misspellings caused by Optical Character Recognition (OCR) (Tocr) are
modeled through P(Tocr|Tk).

P(S) is implemented as a weighted finite state acceptor (WFSA), while the other
conditional distributions are implemented as weighted finite state transducers (WF-
STs). The aim is to find an English word S’ that maximizes the joint probability
given a Katakana string (Tocr) observed by OCR:

§' = argmax P(S) - P(SP|S) - P(TP|SP) - P(T4|TP) - P(Tocr|Tx) (2.8)

Knight and Graehl (1997) use a general composition algorithm to integrate the dif-
ferent models and hence the computation in Equation 2.8. They then use Dijkstra’s
shortest-path algorithm (Dijkstra 1959) for extracting S’. A unigram scoring method
is used in constructing the WFSA for P(S); the WFST for P(SP|S) is based on the
CMU pronunciation dictionary; the WFST for P(TP|SP) is learned automatically
using an Estimation Maximization (EM) algorithm (Baum 1972) from a collection
of English/Japanese sound sequences; the WFST for P(T|TP) is composed from
two manually constructed WFSTs (the first WFST for merging long Japanese vowel
sounds into new symbols while the second for mapping Japanese sounds to Katakana
symbols); finally the WFST for P(Tocr|Tk) is obtained using the EM algorithm
applied on a collection of OCR’d text with the corresponding Japanese Katakana
text.
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Work related to Knight and Graehl (1997) then adapted and extended the phonetic-
based approach while applying it to other language pairs. In Stalls and Knight (1998),
weighted finite state automata are used in Arabic to English back-transliteration.
Stalls and Knight (1998) use probability distributions similar to those in Knight
and Graehl (1997) implementing the WFSA for P(S) and the WFST for P(SP|S)
in exactly the same way. The modification in Stalls and Knight (1998) is that, in-
stead of using conversions from English phonemes (SP) to Arabic phonemes (TP)
and conversions from Arabic phonemes to Arabic orthography T, they use only one
additional model for converting English phoneme sequences directly to Arabic orthog-
raphy (P(T|SP). The WFST for P(T|SP) is obtained using the EM algorithm on
a manually built English-phoneme-to-Arabic-writing dictionary. In Al-Onaizan and
Knight (2002), the phonetic-based approach in Stalls and Knight (1998) is adapted
by using a finite state machine to filter out ill-formed English phonetic sequences
instead of using position markers in the phoneme set during the Arabic to English
back-transliteration process. Al-Onaizan and Knight (2002) also extended Stall and
Knight’s (1998) phonetic-based approach with the use of a spelling based model to
deal with words that are not of English origin.

Apart from the back-transliteration work based on Knight and Graehl’s (1997)
phonetic-based approach, there were other parallel phonetic-based approaches that
employed different techniques for transliteration generation in different language
pairs:

Kawtrakul et al. (1998) performed Thai-to-English back-transliteration. In Kaw-
trakul et al. (1998), Thai loan words (T') were first segmented into syllables and
mapped to phonemes using some transcription rules. The phoneme sequences of the
loan words were then compared to the phonetic sequence of a set of English words
(S) in a phonetic dictionary. The English word (S’) with the most similar phonetic
sequence was selected as the transliteration.

Jung et al. (2000) applied an extended Markov window method to build the
model for English to Korean transliteration. In their transliteration process, Jung
et al. (2000) first generate mappings between English and Korean phonemes. They
use the pronunciation symbols for English words as defined in the Oxford computer-
usable dictionary (Roger 1992) and construct English to Korean phonetic mapping
tables that meet syllabification and alignment requirements for training the translit-
eration model. Their alignment process proceeds in two stages: consonant alignment
obtained from a scan of English phonetic units and Korean notation; and vowel
alignment which leads to a separation of corresponding vowel pairs based on the con-
sonant alignment stage. In the transliteration generation stage, a probabilistic tagger
is used to find the most likely Korean transliteration candidates given an English in-
put NE that has been syllabified. Given that S represents an English NE (where
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Ss = $81583...88,, is its syllabification), and T = ¢p;1tps...tp,, a Korean word (where
tp; is the i*" phonetic unit of T), Jung et al. (2000) aim at finding a Korean word
T’ such that the joint probability p(S,T) = p(Ss,T) is maximized.

T’ = argmax P(Ss,T) = argmax P(T|S)P(S) (2.9)
T T

where the translation model in Equation 2.9 is approximated based on the extended
Markov window as follows:

P(T|S) = H P(tpi|tpi—17 §8;—-1, 884, 551‘4_1) (210)

K2

Equation 2.10 is further expanded into more fragmented probability terms to deal
with data sparseness when training. For the language model probability (P(Ss)) in
Equation 2.9, a bi-gram language model is used:

P(Ss) & HP(ssi|ssi_1) (2.11)

the transliteration model is then finally formulated as:

H P(tpilssi—1,tpi—1)P(ssi|tpi, ssi—1)P(s8i11|tps, 55i)

T’ = argmax P(Ss,T) & argmax
gT ( ) g P(88i+1|881‘)

T
i

(2.12)
Lee and Choi (1998) model English to Korean transliteration by using both
phoneme transformations (pivot method corresponding to phonetic-based transliter-
ation), and only grapheme transformations (direct method). In their phoneme-based
transliteration method, English graphemes are first converted to English phonemes;
the English phonemes are then converted to Korean graphemes. Using S to denote
an English word and T a Korean word, the aim is to find a Korean word T’ that
maximizes the conditional probability P(T|S). By applying Bayes’ rule, Lee and
Choi specify their transliteration problem as:

P(T)P(S|T)

T’ = argmax P(T|S) = argmax
gn (T[S) e P

= argmax P(T)P(S|T) (2.13)
T

The language model probability P(T) in Equation 2.13 is obtained by using a bi-gram
conditional probability distribution on Korean pronunciation units (PUs):

N t
P(T) ~ Y [ P(tpiltpi-r)
i=1

where N is the total number of segmentation of T, tp; is the i** PU in a segmen-
tation of T, and t is the total number of PUs in a segmentation. The translation
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model probability P(S|T) is also obtained using a bi-gram conditional probability
distribution between English and Korean PUs:

5t
P(S|T) = Z H P(sp;|tp;) where § is the total number of alignments for T and S.

i=1

Wan and Verspoor (1998) use five stages in English to Chinese transliteration. in
the first stage they parse a complete English phrase through a dictionary in search of
a standard translation, and if there is no standard translation, the phrase is broken
into words, and each word is parsed through a dictionary. Words with no standard
translations are selected for transliteration. In the second stage, each word that
is selected for transliteration is divided into syllables, and in the third stage the
transliteration process proceeds to find patterns within each syllable that are handled
in appropriate ways for mapping to a particular Romanization standard (Pinyin in
this case) in the fourth stage. In the last stage, the Pinyin representation of a word
is mapped to Chinese Han characters using a Pinyin - Han character correspondence
table.

Meng et al. (2001) use a number of modules based on the steps required to trans-
form an English out of vocabulary word to Chinese. Meng et al. (2001) first detect
Romanized Chinese names using a maximum-matching segmentation algorithm and
then automatically acquire pronunciations for names other than Romanized Chinese
names using either the PRONLEX pronunciation lexicon from LDC or an auto-
matic letter-to-phoneme generation process (which is obtained through training on
the PRONLEX lexicon by aligning words with the corresponding pronunciations in
Viterbi-style for a one-to-one letter-to-phoneme mapping). Meng et al. then apply
cross-lingual phonological rules to deal with some problems in English pronuncia-
tions. For phoneme alignments between English and Chinese, Meng et al. iteratively
train a finite state transducer using a bi-lingual proper name list containing English
names and their Chinese transliterations. Given an English phoneme sequence, they
implement confusion matrices to produce alternative Chinese phoneme sequences
prior to syllabification in a Chinese Romanization system (Pinyin in this case). The
result is called a Chinese phoneme lattice. In the final stage, they search through the
phoneme lattice to identify Chinese phonemes that constitute legitimate syllables.
The resulting syllable graph is searched using the A* search algorithm to find the
N most probable syllable sequence using probabilities derived from the confusion
matrix and a syllable bi-gram language model.

Karimi et al. (2011) review a number of additional phonetic-based transliteration
generation approaches. To avoid a complete repetition of the review in Karimi et
al. (2011), we provide a summary of some of these other phonetic-based approaches
while focusing on the transliteration models used.
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Jeong et al. (1999) use a Hidden Markov Model (HMM) framework in Korean
to English back-transliteration. The aim is to determine the most likely original
English (S’) word that maximizes the conditional probability of an English word
given a “foreign” word (P(S|T)). Using S = s152...8y, to denote the English word,
and T = tytg...t, to denote the foreign word, Jeong et al. (1999) formulate the
transliteration problem as follows:

S’ = argmax P(S|T) = argmax P(s152...8m |t1t2...t)
S S
= argmax P(s182...8m) X P(t1ta...t5]5152...8m) (2.14)
S

Using a phonetic representation (sp1sps...spp) for the English string S = s152...5m,
Equation 2.14 leads to:

S’ = argmax P(sp18ps2...spp) X P(t1ta...t,|Sp15p2...spp)
S

o~ argrsnaxH P(sp;|spj_1) x P(t;]sp;) (2.15)
J

The first term in Equation 2.15 P(sp;|spj—1) corresponds to the transition probabil-
ity between two states of an HMM while the second term P(t;|sp;) to the output
probability in a given state. The computation in Equation 2.15 is effected using the
Viterbi algorithm.

Oh and Choi (2002) use pronunciation and contextual rules for English to Korean
transliteration. In Oh and Choi’s system, English pronunciation units are first aligned
to corresponding phonemes, then the transliteration of English words to Korean
words is achieved through a number of steps including: identification and processing
of “complex word forms”; detection and processing of English words of Greek origin;
chunking of aligned English pronunciation and phoneme data into two classes of pure
English words and FEnglish words of Greek origin); and finally English phoneme to
Korean conversion based on the use of English to Korean Standard Conversion Rule
(EKSCR). Contextual rules are captured by observing errors from the use of EKSCR
to a given number of randomly selected words which are not part of the test set.

Virga and Khudanpur (2003) apply the IBM source-channel model (Brown et al.
1993) in English to Chinese transliteration. The steps followed in their transliteration
process include: 1) conversion of an English name into a phonemic representation
using the Festival speech synthesis system; 2) translation of the English phoneme
sequence into a sequence of generalized initials and finals (GIFs) which are the com-
monly used sub-syllabic units for expressing pronunciations of Chinese characters; 3)
transformation of GIF sequences into Pinyin symbols without specifying tone; and
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4) translation of the Pinyin sequence to Chinese character sequence. Steps 2 and 4
are accomplished using Brown et al’s (1993) statistical translation model. For exam-
ple, for step 2, the aim is to find the sequence of GIF symbols ¢’ = ¢{g5...g) that
maximize the probability of a GIF sequence g = g1g2...g; given an English phoneme
sequence SP = spspa...sp;:

g’ = argmax P(g|sp) = argmax P(sp|g)P(g). (2.16)
g g

Virga and Khudanpur (2003) estimate a trigram model for P(g) in Equation 2.16
using a CMU toolkit on a training portion of Chinese names. In the case of step 4, a
trigram model with Good-Turing discounting and Katz back-off is estimated as the
language model for the transformation of Pinyin sequences to Chinese characters.

Gao et al. (2005) used a direct model in English to Chinese transliteration as
opposed to the indirect approach in the source channel model described above (Virga
and Khudanpur 2003). Using TC = tc;tes...te; to represent Chinese Pinyin sequences
and SP = sp;sps...sp; for the English phoneme sequence as above, Gao et al. (2005)
reformulate the transliteration problem by rewriting Equation 2.16:

TC’ = argmax P(TC|SP)P(TC) (2.17)
TC

Gao et al. (2005) use an EM algorithm to find the Viterbi alignment per training
pair for generating English phoneme to Chinese Pinyin mapping probabilities, which
are subsequently encoded in a WFST. For the language model for P(TC), they train
a syllable-based bi-gram model using the same instances of Chinese names that were
used for building the WFST.

Most of the reviews in literature about phonetic-based machine transliteration
hardly discuss any work of the kind in the last five years. Below we briefly review
only two recent references where phonetic-based transliteration is used. In both ref-
erences, an Indian language is involved in the phonetic-based transliteration process.
While phonetic-based transliteration is used in both references, orthographic-based
transliteration is also reported and seems to be used more than the phonetic-based
approach.

Surana and Singh (2008) use pronunciations for foreign words in English to Indian
language transliteration. They use the the CMU speech dictionary for lookup and
for training a pronunciation estimation model. English words that are not of Indian
origin are first converted to phonemic representation and the English phonemes are
then mapped to Indian language letters. For English words that are of Indian origin,
they simply segment the English word and convert the Latin segments into Indian
language segments for generating a corresponding Indian transliteration.
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Das et al. (2010) use a phonetic-based transliteration approach to handle valid
English dictionary words. They use a standard machine learning sequence labeler
conditional random field to map English phonemes to Indian language transliteration
units.

2.3.2 Orthographic-based transliteration generation

Going by the common definition for transliteration generation, the transliteration pro-
cess is expected to involve a phonetic mapping from one language to another. How-
ever, transliteration work as reported in recent literature suggests that, orthographic-
only based methods result in transliteration generation quality which is comparable
to that for phoneme-based methods, and sometimes even significantly better (Li
et al. 2004). An orthographic-based approach eliminates a number of intermedi-
ate phonetic representation and transformation steps that require extra work and
time. The elimination of the intermediate phonetic steps implies that any flaws that
may be associated with the intermediate steps will be avoided. Recent work has
mostly favored the use of orthographic-based transliteration generation, mainly ap-
plying techniques associated with the machine learning paradigm. Most of the earlier
orthographic-based methods have been reviewed well in recent reviews on machine
transliteration (Oh et al. 2006, Chinnakotla et al. 2010, Karimi et al. 2011). The
orthographic-based approach constitutes various types of approaches with the two
notable categorizations of generative-based and discriminative-based models as is the
case for transliteration detection above. Although we discuss some of the translit-
eration generation methods under the two common categorizations of generative-
based and discriminative-based approaches, we also separately discuss recent ap-
proaches that are adapted from a related domain (especially machine translation
(Matthews 2007, Finch and Sumita 2008)), and those that use additional informa-
tion in the transliteration generation process such as semantic transliteration by Li
et al. (2007).

a) Generative and Rule-based approaches

The earliest cited work on orthographic-based transliteration generation suggests a
common usage of a machine translation inspired framework of the source channel
model (Lee and Choi 1998, Jeong et al. 1999, Kim et al. 1999) and related meth-
ods such as the joint source channel model (Li et al. 2004, Zhang et al. 2004) and
modified joint source channel model (Ekbal et al. 2006). Other earlier transliter-
ation generation modeling methods include: decision trees (Kang and Choi 2000),
transliteration networks (Kang and Kim 2000, Goto et al. 2003), and n-gram mod-
els (Abduljaleel and Larkey 2003). All of these are generation-based approaches.
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Relatively recent approaches include: Weighted Finite State Transducers (WFSTs)
(Lindén 2006), hand crafted transliteration rules (Malik 2006), consonant-vowel-
based methods (Karimi et al. 2006, Karimi et al. 2007), and substring-based transduc-
tion (Sherif and Kondrak 2007b). In the following we point out the main techniques
that are employed starting with earlier approaches to recent approaches.

Kang and Choi (2000) used decision trees to generate Korean strings given English
words. They use an extended version of Covington’s (1996) alignment algorithm to
determine alignments for training the decision trees. In the extended version of Cov-
ington’s alignment algorithm, they introduce a binding operation to deal with ‘null
mappings’. A depth-first search algorithm is used to prune away fruitless branches
when estimating the alignments. To learn decision trees using the alignments, ID3
like algorithms (Quinlan 1986) are used. During transliteration, each English letter
in a given English word is mapped to Korean characters using the corresponding de-
cision trees; the Korean characters are then concatenated to produce the final Korean
transliteration.

Goto et al. (2003) use several models based on a lattice of conversion units be-
tween English and Japanese Katakana characters. During transliteration, Goto et
al.’s method follows three approaches: the computation of the likelihood of a par-
ticular choice of generating English conversion units through letter chunking for a
given English word; the use of English and Japanese contextual information simulta-
neously to compute the plausibility of conversion from each English conversion unit
to various Japanese conversion candidate units using a single appropriate probability
model; the use of several probability models based on the mazimum entropy method
while modeling different kinds of information.

Abduljaleel and Larkey (2003) use an n-gram transliteration model for English to
Arabic transliteration. The model is a set of conditional probability distributions over
Arabic characters, conditioned on English unigrams and selected n-grams. They use
proper name lists to train the n-gram model using GIZA++ (a statistical alignment
tool). During transliteration, an English word S is first segmented according to the
n-gram inventory, and for each segment, all possible Arabic transliterations T are
generated. The equation for scoring each word is given as follows:

P(T[S, T € Ar) = P(T|S) x P(T € Ar) (2.18)

where P(T € Ar) is the probability that the Arabic word T conforms to the spelling
patterns of Arabic names, and is computed using a letter bigram model of general
Arabic as the product of the probabilities of each letter bigram in T.

Li et al. (2004) and Zhang et al. (2004) use a joint source channel model to
capture the simultaneous generation of source and target words. A joint probability
model is estimated and is marginalized to yield conditional probability models for



2.3 Transliteration generation 29

both forward transliteration and back-transliteration. Given an alignment J with
transliteration unit correspondences (s,t); for an English string S and a Chinese
string T, Li et al. formulate their transliteration problem as follows:

T’ = argmax P(S, T, §) for English to Chinese transliteration, and
T,

S’ = argmax P(S, T, d) for Chinese to English transliteration.
8,8

Li et al. (2004) then use an n-gram transliteration model to capture the condi-
tional probability or transliteration probability of a transliteration unit correspon-
dence (s, ) depending on its immediate n predecessors. The following Equation is
used to compute the joint probability of a pair of English (S) and Chinese (T) words:

K
P(S,T) = P(S, T,8) = [[ P((s,thl(s, )} 111 (2.19)
k=1

Lindén (2006) aligns source and target words using the minimum simple edit dis-
tance. From the alignments, Lindén determines the frequency of each edit operation
in context for at most four letters in the source word including the letter s; which is
aligned with ¢; in the target word T. Given that the context s;_1, s;, Si+1, Si+2 in the
source word is represented by s;4, Lindén formulates the transliteration problem as
follows:

P(T[S) = 11 P(ti]sia) (2:20)

i=1.. max(|T|,|S))

P(t;]8:4) is estimated with counts of the transformations ¢;|s;4 divided by the count of
the context s;4. When the context rarely occurs, an offline back-off model is used for
smoothing P(t;|s;4). Lindén then uses a cascade of weighted finite state transducers
to implement the transliteration process.

Malik (Malik 2006) employs a completely rule-based approach for translitera-
tion from Shahmukhi to Gurmukhi. During transliteration, each Shahmukhi token
is parsed into its constituent characters. Characters that bear a dependency are
transliterated using ‘dependency rules’ while characters that do not bear a depen-
dency are transliterated by character mapping. Malik (Malik 2006) specifies a number
of tables that encode the different types of rules.

Karimi et al. (2007) use an alignment approach comprised of two steps: the
first step uses consonant and vowel properties of a word’s characters, and the second
uses a frequency-based search for valid alignments. In the first step, consonant-
vowel sequences (gs and gr) for a pair of words (S and T) in a training corpus is
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generated and if the sequences match, consonant clusters and vowel sequences are
added to an alignment set. if g5 and gr do not match, the second step is used
where a search for alignments proceeds from left to right while examining one of four
possible options for transliteration: single character to single character (s;,t;,7),
digraph to single character (s;, s;1+1,%;,7), single character to digraph (s;,%;,¢;11,7),
and single character to empty string (s;, €,r). For transliteration generation, Karimi
et al. (2007) propose the use of a collapsed consonant and vowel method called (CV-
MODELS3) as an extension of two previous models (CV-MODEL1 and CVMODEL?2).
The source word is segmented and a probability is computed for each generated word
(T) as follows:

|K]
P(TIs) = [T P(TxISw).
k=1

where |K| is the number of distinct source segments and P(T|S) is the probability
of the S — Ty transformation rule. Karimi et al then apply a tree structure fol-
lowing Dijkstra’s a-shortest path, to generate the « highest scoring (most probable)
transliterations, ranked based on their probabilities.

b) Semantic transliteration

Li et al. (2007) introduce into the transliteration model semantic information with
regard to language of origin and the gender associated with a name. The aim is
still to determine the optimum target name 7’ which yields the highest posterior
probability given the source name S:

T’ = argmax P(T|S) (2.21)
Ters
where 7g is the set of all possible transliterations for the source name S. To incorporate
language of origin (L) and gender information (G) in the transliteration, Equation
2.21 is re-written as:

P(T|S)= Y  P(TLGIS)= Y  P(T|SLG)P(L,G|S) (2.22)
Lel,Geg Lel,Geg

where P(T|S,L,G) is the transliteration probability from source S to target T, given
the language of origin L and gender G. £ and G denote the sets of languages and
gender respectively. Given an alignment between S and T, P(T|S,L,G) is estimated
using a bigram language model. The mappings between source and target char-
acters for computing P(T|S,L,G) are obtained from alignments resulting from the
application of the EM algorithm on training data. Information concerning gender
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and language of origin is incorporated in Equation 2.22 by rewriting P(L,G|S) as
P(L,G|S) = P(G|L,S)P(L|S). Using Lg to denote the language of S, P(L|S) can be
obtained as:

L=L
P(L|S):{ (1) L¢Lz

and using Gg to denote the gender for S, p(G|L, S) is obtained as:

1 G=Gg

P(G|L,S) :{ 0 Gz

In the case where semantic information is not available, Li et al. (2007) learn the
semantic information from the names themselves.

c) Transliteration using statistical machine translation methods

While a number of approaches aim to develop transliteration-specific methods, the
adaptation of Statistical Machine Translation (SMT) methods to transliteration gen-
eration has become popular as a valuable alternative. The SMT methods that have
been used for transliteration generation range from the earlier popular IBM mod-
els (Brown et al. 1993) to a currently more popular state-of-the-art phrase-based
SMT approach (Koehn et al. 2003). The application of the SMT methods is sim-
ply modified to reflect the properties of a transliteration process. That is, the task
is first viewed as a character translation problem rather than a word (or phrase-
based translation) problem. In section 2.3.1 on phonetic-based methods for translit-
eration generation, we have already seen the application of the IBM models (Virga
and Khudanpur 2003). Orthographic-based methods that use the IBM models, uti-
lize them in a manner similar to that presented for the phonetic-based approaches.
A detailed description about the adaptation of the phrase-based SMT approach to
transliteration can be found in Matthews (2007) and Finch and Sumita (2008).

d) Discriminative machine transliteration

Zelenko and Aone (2006) propose two discriminative methods for transliteration.
Using an existing transliteration dictionary D (a set of name pairs (S,T)), Zelenko
and Aone learn a function that directly maps a name S from one language into a
name T in another language. The main difference in their work is the omission of
the alignment step and any probabilistic computations such as P(T|S), P(S,T) that
depend on alignments. Their discriminative methods correspond to local and global
modeling paradigms: in the local paradigm, Zelenko and Aone learn linear classifiers
that predict a letter ¢; from the previously predicted letters s;...s;_1 and the original
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name S. In the global paradigm, Zelenko and Aone learn a function W for mapping
a pair (S,T) into a score W(S,T) € R.

Klementiev and Roth (2006) train a linear model to decide whether a target word
(T) from a set of candidate words is a transliteration of a source word (S). T and S are
partitioned into a set of substrings Ss and Ts up to a particular length (including the
empty string). Klementiev and Roth use the same transliteration model described in
the previous section on Transliteration Detection to convert input strings to target
strings.

e) NEWS 2009 and NEWS 2010 shared tasks on transliteration generation

Just like the case for transliteration detection, the transliteration generation task
had also led to the organization of two transliteration generation shared tasks (Li
et al. 2009, Li et al. 2010) to evaluate state-of-the-art transliteration generation meth-
ods using the same standard corpora by the time of writing this thesis. The reports
from the two shared tasks (Li et al. 2009, Li et al. 2010) also show the use of both
generation-based and discriminative-based methods for modeling transliteration gen-
eration.

The 2009 NEWS shared task report (Li et al. 2009) identified two translitera-
tion generation modeling approaches that were applied by many of the participating
teams: phrase-based statistical machine transliteration (which originates from statis-
tical machine translation work as described above) and Conditional Random Fields
(CRFs) (Lafferty et al. 2001). The most successful approaches in the first shared
task, however, are reported to have combined several models (CRFs, Maximum En-
tropy Models, Margin Infused Relaxed algorithm) by re-ranking the transliteration
generation outputs from each model (Oh et al. 2009). A discriminative sequence
prediction model (Jiampojamarn et al. 2009) referred to as DirectL. was reported to
have a good transliteration generation performance.

The 2010 NEWS shared task report (Li et al. 2010) shows reduced participation,
but for the teams that participated, approaches that are similar to those applied in
the 2009 shared task are used including phrase-based machine transliteration and
CRFs. The phrase-based approach is used for transliteration on various language
pairs (Finch and Sumita 2010, Song et al. 2010) while CRFs are used by one of the
seven participating teams (Das et al. 2010). Jiampojamarn et al. (2010) extend
their DirectL. approach above resulting in relatively better transliteration generation
quality for this shared task. Most of the participating approaches also combine
different models via re-ranking of the outputs (Das et al. 2010, Finch and Sumita
2010, Song et al. 2010) to improve transliteration generation quality. All methods are
said to be orthographic-based except for some cases where a Romanization system
is used before applying a transliteration generation system. However, in almost all
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results associated with the twelve language pairs for the 2010 shared task, only one
participating system achieves just over 50 % transliteration generation word accuracy
on the English-Korean language pair.

2.3.3 Discussion

Approaches for automated transliteration generation can be divided into two main
classes: those that use phonetic information in the transliteration process and those
that use only the orthographic representation. Transliteration generation literature
shows that phonetic-based approaches were mainly used during the early years of re-
search in automating the transliteration generation process. Later and more recently,
orthographic-based approaches seem to be more preferred. However, there are also
techniques that combine the use of both phonetic and orthographic-only information.

As the review shows, most of the approaches aim at determining a target word
(in the case of forward transliteration) that maximizes a posterior probability asso-
ciated with the target word given the source. Again, we see that the noisy channel
framework is used for transliteration generation as well and the channel (translit-
eration) model is specified and implemented differently in the reviewed approaches.
Although there are some approaches that use an alignment-based representation to
model the transliteration generation process, explicit references to the use of an edit
distance-based metric to score hypothetical transliterations are rare. The review also
shows that the HMM framework has been used mainly for learning alignments for
transliteration generation. This includes being part of the alignment models in the
GIZA++ alignment toolkit which is used when applying state-of-the-art statistical
machine translation approaches to transliteration generation. Here, we envisage that
the DBN models proposed in the thesis can be applied in a manner similar to how the
HMMs have been used in learning alignments for transliteration generation . How-
ever, there has not yet been an application of the DBN models that we propose for
that purpose.

We also see that, some approaches incorporate linguistic information to help im-
prove transliteration generation quality. Recently, there are attempts to incorporate
different types of information such as semantic information in addition to using the
orthographic-only information (Li et al. 2007). The review also shows that improved
transliteration generation quality can be achieved by combining the application of
transliteration generation methods compared to applying each method separately
as the reports from the recent shared tasks on transliteration generation show (Li
et al. 2009, Li et al. 2010). However, results associated with the 2010 shared task
suggest that there is still considerable room for improving transliteration generation
quality since almost none of the state-of-the-art systems achieved over 50% transliter-
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ation generation accuracy using standard transliteration corpora for twelve language
pairs. Evaluation of the state-of-the-art systems in the 2011 shared task on translit-
eration generation was still onging at the time of writing this thesis.

2.4 Conclusion

Literature on automated transliteration detection and generation suggests generic
constituent phases for which various methods have been proposed to model translit-
eration related tasks. For transliteration generation, many approaches follow an
overall two step procedure of first specifying or training transliteration models given
correct transliteration pairs, and then later applying the models to propose target
candidate words given a source language word. The transliteration generation process
also usually involves first specifying or training a transliteration model to be used for
computing transliteration similarity in the identification of transliteration pairs from
a pre-processed set of candidate transliterations. It is often the case that the size of
training data affects the representational quality and consequently the performance
of the transliteration models.

Recent shared tasks on transliteration mining (Kumaran et al. 2010b) and gener-
ation (Li et al. 2009, Li et al. 2010) provide us with some baseline for making general
conclusions about the current state of research. In both shared tasks most of the ap-
proaches are reported to as using similar techniques with very few modifications. For
example, the reports for all the previous shared tasks on transliteration generation
show that a large percentage of the systems used either a phrase-based statistical
machine translation approach or CRFs. Although some some of these approaches
achieved good performances on some language pairs, the shared task results show
that they are still far from achieving high transliteration detection and generation
quality for many other language pairs.

It is clear from our literature review that most of the work on machine translit-
eration has been concentrated on cases where the source and target languages use
different writing systems. In this thesis, we propose the application of the traditional
transliteration detection and generation setups for cases where source and target use
the same writing system. We have based our proposition on the fact that certain
differences between languages that use the same writing system result in different
written representations for the same entity. And that this is similar to how differ-
ent representations are used for the same entity across writing systems. Therefore
traditional transliteration setups should be a plausible alternative to dealing with
unknown words across languages that use the same writing system.

Finally, although literature shows that the HMM framework has been applied
in both transliteration detection and generation, there are many other HMM and



2.4 Conclusion 35

DBN model generalizations that have not yet been evaluated in the two tasks. This
includes the Pair HMM and transduction-based DBN models that we propose to
apply in the two tasks. In the following chapter, we provide an overview on the
concepts underlying the framework of Dynamic Bayesian Networks before exploring
in later chapters our application of the proposed edit distance-based DBN modeling
approaches in transliteration detection and generation.






Chapter 3

Dynamic Bayesian Networks

3.1 Introduction

Dynamic Bayesian networks (DBNs) are a class of temporal probabilistic graphical
models (PGMs) that have found successful application in many domains. This is
attributed to the more general representations that DBNs allow, leading to very
large model spaces and the use of generic algorithms for inference and learning.
The DBN framework already generalizes a variety of methods including some of
the most common and successful methods in Natural Language Processing (NLP)
such as Hidden Markov Models (HMMs). The inference and learning algorithms
used in these methods can also be viewed as instantiations of some of the standard
DBN algorithms; for example, the forward-backward algorithm used for inference and
learning in HMMSs can be considered a special type of the message-passing algorithm
used for inference in Bayesian Networks.

As temporal probabilistic graphical models, DBNs are used to model not only
sequential data (linguistic or biological) where we are doubtful about the generat-
ing mechanism but also to model time series data that is generated by some causal
process (Murphy 2002). Various DBN modeling methods have been proposed for
many tasks in the literature, and most of the methods are easily adaptable to various
other tasks. Although, it should be important to review the various DBN modeling
approaches when proposing to apply DBN models in a given task, we do not present
such a review in this thesis. The reader is referred to Murphy (Murphy 2002) for
some examples of DBN modeling approaches. In this chapter, we present abstractly
the concepts underlying the framework of Dynamic Bayesian Networks in three as-
pects: the specification and representation of DBN models, DBN inference, and DBN

IWe use the term Dynamic Bayesian Networks to generalize HMMs regardless of how the HMMs
are implemented.
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learning. We as well propose some examples to illustrate the application of some of
the concepts in the context of transliteration. In the following section, we start with
an introduction to Bayesian networks from which DBNs are an extension.

3.2 Bayesian networks

3.2.1 Representation

Bayesian networks provide a means of expressing a joint probability distribution over
a set of inter-related random variables. They are specified by way of a graphical
modeling language where nodes are used to represent random variables and edges
are used to represent dependencies between the random variables for some system
domain. The use of a graphical language to communicate representative models car-
ries with it a number of advantages. Some advantages given by Koller and Friedmann
(2009) are as follows: 1) A graphical representation provides an accurate reflection
of our understanding of the domain we are modeling and facilitates the effective
construction of the models. 2) A graphical representation allows the distributions
defined by a given model to be used effectively for inference where there is need to
answer different types of queries with respect to the problem domain.

In specific terms, Bayesian Networks are described as directed acyclic graphs in
which edges specify conditional dependencies or independencies. The graphical repre-
sentation of a network also specifies the requirements for the quantitative part of the
model which comprises of a set of probability distribution functions for each random
variable. A formal definition of a Bayesian network specifies the following (Jensen
and Nielsen 2007, Koller and Friedman 2009):

e A set of random variables X7, ..., X,, represented by nodes and a set of directed
edges between the random variables.

e Each variable has a finite set of mutually exclusive states.

e The variables together with the directed edges form a directed acyclic graph
(DAG).

e Each variable X; is conditionally dependent on only its parents (Pax,) and its
children.

e To each variable X; with parents Pay,, a conditional probability table (CPT)
for P(X;|Pay,) is attached.

As suggested by the definition above, a number of stages are involved in constructing
a Bayesian network model to represent a given domain. Koller and Friedman (2009)
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introduce three important stages to Bayesian network model construction which we
review based on their presentation in the following section.

a) Specifying variables

In a Bayesian network, variables are used to represent entities that are relevant
to the domain we are modeling. The entities and their related attributes may be
described in various ways, but it is important that the variables that we use do
precisely represent the domain. If the variables do not precisely represent the domain,
conclusions resulting from the use of the Bayesian network model will be inaccurate
for a given set of observations in the domain. In addition to using variables that
precisely represent a problem domain, we also have to ensure that each variable’s
range of values adequately represent the true conditional independence assumptions
as defined in a Bayesian network model of the domain.

Based on how the problem has been specified, different types of variables can
be defined including observable and / or hidden variables. Observable variables are
variables that we can directly measure whereas hidden variables are variables that
we can only infer from the observable variables in the model. Also, based on the
problem, the variables may be discrete or continuous. In modeling transliteration,
we expect to use only discrete random variables, that is variables that take on a finite
set of values.

b) Specifying the Bayesian network structure

Although a Bayesian network is used to compactly represent the joint probability
distributions for a particular domain, the specification of a Bayesian network struc-
ture is not straightforward. This is because there can be many network structures
that reflect the same set of independencies in the domain we are modeling. Koller
and Friedman (2009) suggest an approach that should be successful for specifying
a Bayesian network to represent the domain of interest. This approach according
to Koller and Friedman is to specify a structure that in the most part reflects the
causal order and dependencies of the variables in the domain, so that between two
variables, we use the notion ‘child variable’ to represent the effect and the notion
parent variable to represent the cause. Koller and Friedman (2009) also point out a
commonly used approach of using a backward construction process in the specifica-
tion of a Bayesian network structure. The process is called backward because when
constructing the Bayesian network, we start with a child variable which represents an
effect and move on to determine factors (causes) that are associated with the effect
which we add to the network as parent variables having edges to the child variable.
Koller and Friedman (2009) also emphasize the inevitability of approximations where
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it is possible to represent many weak dependencies which can easily result in a very
complex model that is infeasible to use.

c) Specifying probabilities

This is a very important task in completing the specification of a Bayesian network
model since the queries that we would like to answer about the domain rely on prob-
ability distributions encoded by the Bayesian network. Koller and Friedman (2009)
point out a number of errors that can have a significant effect on the conclusions that
result from using a Bayesian network. Examples of errors from Koller and Friedmann
(2009) that we need to handle when assigning probability distributions for different
variables in the network include: zero probabilities which need to be avoided in ap-
propriate ways; the presence of small differences in probabilities that could imply
large differences in conclusions; and the insensitivity of the model to differences in
relative probabilities, for example we would require that the Bayesian network model
encode correctly that the probability of the relationship between an English [ and a
Russian 71 is greater than the relationship between an English [ and the Russian x.

Practically, the probabilities can be assigned through an expert or can be esti-
mated from training examples of the domain. In the context of transliteration, some
of the variables used may be associated with large probability distributions that we
can not manually assign but can only use a computational technique for automatic
estimation. A common probability estimation approach that we review later in this
chapter is the Expectation Maximization procedure.

3.2.2 A transliteration example

We would like to represent the character relationships between writing systems used
by some source and target languages (for example English and Russian respectively).
We can use a random variable s; to represent a character in the source language
writing system, and a random variable t; to represent a character in the target
language writing system. i and j are used to map to the " (respectively j*")
character in the source (respectively target) set of characters.

We can represent the relationship between the source and target language char-
acters by making ¢; ‘depend’ on s; as shown in Figure 3.1. To complete the definition
of the Bayesian network for this example, we need local probability models to rep-
resent the nature of the dependence of ¢; on s;. According to Figure 3.1, we need
a probability model P(s;) to represent the distribution of the different characters
in the source writing system. The distribution over the target random variable ¢;
is a conditional distribution which we denote here as P(t;|s;). P(t;|s;) means that
for each assignment of values for the source random variable s;, there is a different
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Figure 3.1: A Bayesian network graph for relating characters between writing systems.
s; and t; are random variables representing unique characters in the source (resp. target)
writing system. Vs and V; equal the total number of characters in the source (resp. target)

writing system.

distribution for ¢;. For example, given that the variable s; is assigned the English
character ‘a’, there is a probability distribution for each Russian character ¢; that
appears as a corresponding character in a transliteration where ‘a’ appears.

3.2.3 Bayesian networks — inference

The main importance of a Bayesian network model is its use for answering queries
related to the problem domain that it models. The reasoning process that is followed
in using a Bayesian network model for answering a given query is refered to as
inference. Generally, the inference task is to compute the posterior distribution over
a subset of variables (query variables) given the values of some evidence variables.
The computation can involve hidden variables which are neither query nor evidence
variables. In the example of Figure 3.1 where the network models the similarity
between characters in different writing systems, a query we may want to answer is
what probability should be associated with assigning the variable ¢;, some target
character, given that s; is assigned to some source character, for example P(t; =
m|s; = a) (in the case of a comparison of Latin ‘a’ and Cyrillic ‘ur’ characters). The
value for this probability based on the network of Figure 3.1 is easy to obtain as we
only need to look it up from the conditional probability distribution for the variable
t;. If the question is inverted, that is P(s; = alt; = m1), we can still easily arrive to
an answer by doing inference by enumeration using Bayes’ rule:
P(Sz‘ :a,ti ZLH) o P(Sl :a) X P(ti :H_I|Si :a)
P(t = m) Z P(t; =, s;)
Si

P(s; = a|t; =m) = (3.1)
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Bayesian network inference done in this way leads to an exact answer and is therefore
called exact inference. FExact inference requires a summation over a joint distribution
in which we marginalize out irrelevant variables. The direct computation of probabil-
ities as illustrated in Equation 3.1 is only possible for a small network. Several exact
inference algorithms have been proposed to help increase efficiency over the direct
approach while still being applicable for some complex representations. The following
are some of the exact inference algorithms for Bayesian networks (Darwiche 2008):
inference by variable elimination; inference by tree clustering; inference by condition-
ing; inference by reduction to logic.

As the size of the network increases with respect to the number of random vari-
ables and connections between them, we may experience an exponential blow up of
the joint probability distribution represented by the model. All the exact inference
methods mentioned above are sensitive to this complexity. Approximate inference
algorithms are insensitive to this complexity and can be quite efficient regardless of
the network topology.

3.2.4 Bayesian Networks - Limitation

The Bayesian network in Figure 3.1 can only be used from a static point of view.
That is, the joint probability distribution over the variables s; and t; of the network
is fixed although there are different values for P(¢;|s;). In a temporal setting such as
the transliteration similarity task where we want to represent a distribution over a
sequence of characters, the Bayesian network of Figure 3.1 cannot be used. In order
to deal with problems where there is need to define distributions over more complex
inter-relationships such as those in a temporal setting, template-based approaches
have been proposed (Koller and Friedman 2009). In this thesis we use Dynamic
Bayesian Networks as a template-based approach for modeling transliteration simi-
larity.

3.3 Dynamic Bayesian Networks

Dynamic Bayesian networks have been developed to extend Bayesian networks to en-
able the representation and analysis of systems that change over time. The approach
builds upon the framework of Bayesian networks but where random variables in the
Bayesian network relate to time. DBNs are also usually discussed under three main
aspects in the literature (Koller and Friedman 2009, Murphy 2002): representation,
inference, and learning. We follow the same outline while using most of the notation
as in Murphy (2002).
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3.3.1 DBNs — representation

The possibility to have random variables relate to time in a Bayesian network enables
DBNs to represent probability distributions over a sequence of random variables
comprising of observations that are related to an underlying sequence of hidden states.
A DBN model is formally defined as a pair (By, B_,) where By is a Bayesian network
over an initial distribution over states P(ZF:N)), and B_, is a two-slice Temporal
Bayes net (2-TBN) (Murphy 2002). Just as in Bayesian networks, the structure of a
DBN is a directed acyclic graph (DAG) where each node represents a domain variable
of interest at some time instant, and each directed arc represents the dependency
between the two nodes it connects. A hidden state is represented in terms of a set
of Nj, random variables, S; and the observation is also represented in terms of a
set of N, random variables, O;. The transition and observation models of a DBN
are defined as a product of the conditional probability distributions (CPDs) in the
2-TBN (Murphy 2002):

P(Z|Zi1) = ﬂ P(z{"|Pa(2z{")) (3.2)

i=1

where Zt(i) is the 7' node at time ¢ (which may be hidden or observed; and N =
Np+N,), and Pa(Zt(i)) are the parents of Zt(i)7 which may be in the same or previous
time-slice (assuming a first-order Markov model). A given time ¢ is associated with
a number of states each of which is associated in turn with a number of parents
Pa(Zt(i)) which may influence Zt(i). The product of these characterizes the state at
time t, Z;.

For a given DBN, the general assumption is that parameters associated with
nodes and dependencies among nodes are time invariant; and in particular, that the
dependency parameters between two nodes across two time slices remain unchanged
with time. Hence, as Murphy (2002) puts it, we can define a DBN over an observation
sequence of length T by “unrolling” the 2-TBN until we have T time-slices. The joint
distribution for the sequence of length T can then be obtained by multiplying together
all of the CPDs (Murphy 2002):

N T N
P(z0) =] Poo (2 Pa(2)) < T] ] Po_ (287 1Pa(2”))  (3.3)

i=1 t=21=1

Before we can make the computation in equation 3.3, we need to have a DBN
model and the stages required to construct one are similar to those described for
Bayesian networks in section 3.2.1 on Bayesian network representation. That is, we
need to specify suitable variables (Z) for the problem domain, the DBN structure
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Figure 3.2: (a) A 2-TBN for a Hidden Markov Model and (b) An unrolled network of
four time-slices for the HMM. We follow the common convention of representing observed

variables as shaded nodes and hidden variables as clear nodes.

that encodes the relationship between the variables (Z;|Pa(Z;)), and the DBN model
probabilities. A template is used to define a DBN structure and from the definition
of a DBN and equation 3.3, the template may define at least two Bayesian networks:
for By and for the 2-TBN B_,. Figure 3.2 is a graphical representation of a 2-TBN
for a classic Hidden Markov Model (HMM) (a) and when unrolled for four time slices
(b).

HMDMs are categorized as the simplest of DBN models because they represent
the hidden state using only one random variable. Many variants that extend the
classic HMMs have also been proposed and used in various tasks. Murphy (2002)
describes several examples as this long list shows: HMMs with mixture-of-Gaussians
output, HMMs with semi-tied mixtures, auto-regressive HMMs, buried Markov mod-
els, mixed-memory Markov models, input-output HMMs, factorial HMMs, coupled
HMMs, hierarchical HMMs, asynchronous IO-HMMs, variable-duration (semi-Markov)
HMMs, mixtures of HMMs, segment models, and abstract HMMs. To this list, we
add Pair HMMSs which we propose to use for computing transliteration similarity. Al-
though Pair HMMs are one of the two DBN approaches that we evaluate for translit-
eration detection and generation, some of the HMM variants in Murphy’s (2002)
list above actually warrant an empirical investigation to determine whether they can
improve transliteration detection and generation quality over existing methods.

3.3.2 Transliteration example

Consider the name mkeitn written in Russian for which we would like to find a
corresponding English name. Assuming that we use a Hidden Markov model to
represent our transliteration problem. In Figure 3.2, we can think of each hidden state
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as an English character that we would like to find given the model and the observed
name in Russian. We can therefore think of an underlying event of English characters
that should explain the observation of characters in a name written using the Cyrillic
alphabet. We can further assume that in the process of finding a corresponding
English representation, each English character maps to only one Russian character.
The event of English characters may then proceed as follows. At the start, we can
choose an English character according to an initial probability distribution given
the Russian character n. Next, we choose a transition according to the distribution
defined by the 2-TBN. Here, we would like to choose an English character that is the
most likely explanation for the second Russian character given the English character
in the previous step. We then proceed with the 2-TBN until all the Russian characters
are explained. For this example, we need the starting probability distribution of
English characters for each Russian character. We also need the distribution of
moving from one English character in a previous step to an English character given
a Russian character in the current step.

3.3.3 DBNs — Inference

In DBNSs, the problem of inference is generally represented as the problem of finding
the probability of hidden variables in a time-slice given a set of consecutive observa-
tions. The most important literature on DBN inference (Murphy 2002, Koller and
Friedman 2009, Mihajlovic and Petkovic 2001) identifies four common DBN inference
tasks: filtering, prediction, smoothing, and decoding. Let S; and O; respectively de-
note the state and observation at time t:

In filtering, at time ¢, inference is done to keep track of P(S¢|O(y.y)), that is, we
estimate the ‘belief’ state given all of the observations (evidence) obtained so far.
Filtering is usually applied in estimating the state of a real time system given a
set of values over an interval of time from some measurement function. The class
of DBN models that have commonly been used for this purpose are Kalman Filter
models. Filtering can also be useful in the context of transliteration as a sequence
analysis problem. Given source and target language words as observation sequences
and the parameters of a DBN model, filtering can be used to compute the probability
distribution over the hidden states at the end of the sequence.

In prediction, given observations O(;.), inference is done to predict the distri-
bution over some subset of variables at time ¢’ > ¢. Prediction can also be useful
in the context of transliteration. For example, we can compute character sequence
predictions by using DBNs to represent n-gram models.

Smoothing involves estimating a state of the past, given all the evidence up to the
current time in some longer trajectory: P(S;—;|O1.¢), where [ : 0 <1 <t can vary
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with different time ranges. Smoothing in this case is aimed at incorporating future
evidence to help reduce temporary fluctuations in the belief state which can lead to
temporary “misconceptions” in the belief state (Koller and Friedman 2009).

In decoding, the aim is to find the most likely sequence of hidden states given
the observations: S7., = argmaxP(S1.t|O1.t). This inference task is important for

1:t

both transliteration detection and generation. In transliteration detection, we can
use the probability score associated with the most likely alignment sequence between
a source word and a candidate transliteration for comparison with other candidate
transliterations. In transliteration generation, we can assume target words to be
associated with observations and decoding can then be used to infer the sequence of
source language characters that explain the observed target word characters.

One additional task that is important for transliteration detection is the computa-
tion of the probability for an observed pair of source and target language words which
can be used for evaluation with other candidate words. In the previous paragraph we
have mentioned one way of achieving that - by comparing the scores associated with
the ‘best’ alignments of a source word and candidate target transliterations. The
other way involves a summation over all possible hidden trajectories. For the classic
HMMs, this can be achieved by using a forward algorithm (Rabiner 1989).

3.3.4 DBNs — Learning

There are two types of learning that are associated with DBNs: DBN structure learn-
ing and DBN parameter estimation. In DBN structure learning, the task is to extract
a DBN structure as well as its parameters given training data. In DBN parameter
estimation, we assume that the DBN structure is known and the learning task is to
determine the parameters that define the conditional probability distributions of the
attributes.

a) DBNs — structure learning

Since a DBN can be represented by two networks By and B_,, learning the structure
of a DBN reduces to learning the structure of By and B_,. Boyen et al. (1999) provide
a detailed introduction to DBN structure learning. Here, we briefly point out the
most relevant parts of their discussion.

If we have complete data (that is the training sequence D is fully observable), the
learning task is to find the networks By and B_, that “best match” D (Friedman et
al. 1998). The notion of best match is defined using a scoring function and the term
of interest is the log-likelihood function, defined as L(By, B_, : D) = log P(D|By, B, ).
The log-likelihood function measures how likely the data is given the candidate models
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By, B_,. The log-likelihood function relies on sufficient statistics that summarize the
frequencies of the relevant events in the data. A scoring function that utilizes the
log-likelihood function can be defined and the goal then is to find the networks that
maximize the score.

If we have incomplete data (that is, the training sequence D is partially observ-
able), then we no longer know the exact counts in the data. As one of the earliest
attempts at DBN structure learning, Friedman (1997) extends the traditional Ez-
pectation Mazimization (EM) algorithm to a Structural EM (SEM) algorithm. The
Expectation step (E-step) in the SEM algorithm is similar to that in the traditional
EM algorithm. The E-step uses the current structure and parameters to complete
the data and compute expected counts (expected sufficient statistics). The Maximiza-
tion step (M-step) of the SEM algorithm re-estimates parameters and also evaluates
candidate structures using expected sufficient statistics computed from the current
structure.

Although it is important to undertake an empirical investigation into DBN struc-
ture learning for transliteration detection and generation, it will not be part of the
work reported in this thesis. Instead, we will evaluate known DBN structures that
we have adapted from related work and those that we have modified and specified for
computing transliteration similarity. Therefore, in learning DBN models for comput-
ing transliteration similarity in this thesis, our main concern is with DBN parameter
estimation.

b) DBNs — parameter learning

In DBN parameter estimation, we start with some apriori knowledge about the DBN
model which is represented in the form of a prior probability distribution over model
parameters (Ghahramani 1998). The knowledge is updated using data to obtain a
posterior probability distribution over models and parameters. Assuming that the
prior probability distribution over the parameters for a given DBN model structure
is specified by P(6|B), a data set D is used to compute a posterior distribution over
the parameters as shown in Equation 3.4 below.

P(D|0, B)P(4|B)
P(D|B)

P|B,D) = (3.4)

The approach used in estimating DBN model parameters is also determined by
one of the two cases described in the previous section on DBNs structure learning.
That is whether learning is based on complete data or incomplete data. If the training
sequence is D is fully observable and we assume a DBN structure, the goal of learning
is to estimate DBN model parameters () that ‘best match’ D. Here, we also use a
log-likelihood function to measure the likelihood of the D given the parameters (6)
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and a scoring function that facilitates the estimation of parameters that maximize
the likelihood value.

If the training sequence is partially observable, an Expectation Maximization
algorithm is often used. The DBN models we propose to use for transliteration
detection and generation involve hidden states or variables for which we apply an
EM algorithm to estimate DBN model parameters. Although the EM algorithm is
well covered in the Literature, we provide a detailed review in the following subsection
since it plays the most important role in the training of the DBN models that we
propose to use for computing transliteration similarity in transliteration detection
and generation.

c) DBN Parameter learning using the EM algorithm and its generalization

Maximum Likelihood Estimation (MLE) using an Expectation Maximization (EM)
algorithm is the most common aproach for estimating parameters given that a par-
ticular model has hidden or latent variables. Our review of the EM algorithm is
completely based on an unpublished note by Stuart Russell and on a tutorial by
Borman (2004) which also builds upon Stuart Russell’s note. We also use similar
notation as in Russell’s note and in Borman’s (2004) tutorial.

The EM algorithm iterates between two steps: the Expectation step where we
compute values of the model’s hidden and observed variables given training data
and current model parameters; and a Maximization step (M-step), where new model
parameters are estimated that maximize the likelihood of training data. The overall
goal when using an EM algorithm is to find the model parameters 6 such that P(D|6)
is maximal. The M-step of the EM algorithm can be achieved by introducing a log
likelihood function of the parameters 6 (L£()) given the data D as follows:

L£(0) = In P(D|0) (3.5)

Assuming that 6,, denotes the current estimate for the model’s parameters after n
iterations, we wish to find an estimate of the parameters in the next iteration (6,,41)
such that the difference of the values of the likelihood functions for the current and
next iteration L£(60,41) — £(6,) is maximized. In the presence of a set of hidden
variables in the model, denoted by Z, We can re-write P(D|60,,+1) as follows:

P(D|6n+1) = Y P(D|z,0,41)P(2|0n+1) (3.6)

where z refers to the values of Z. The difference that we wish to maximize can then
be writen as:

L(Ops1) — L(0,) =In (Z P(D|z,c9n+1)P(z|9n+1)> —In P(D|6,,). (3.7)
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As Equation 3.7 involves the logarithm of a sum, we can use Jensen’s inequality
(Jensen 1906). The inequality is stated as follows:

lnz Ny > Z AiIn(z;) where \; > 0 are constants such that Z A= 1.
; ; i=1
If we introduce constants of the form P(z|D, 6,,) to Equation 3.7 such that P(z|D, 0,,) >
0 and ), P(2|D,0,) =1, we can apply Jensen’s inequality as follows:

L) —L(O,) = Tn <Z P(D|z,0ns1) P(=|00s1) - m> — In P(D|6,,)

P(D
= I <Zp(z|2>,9n) (D=, 9(’”'11) 7 (elfri1) > P(D|6,)
> Y P(z|D,6,)ln (P(D|Z 9(“71) ) 2l6n 1) ) P(D}9,,)
P(D|Z,9n+1 P |0n+1
- P(2[D,6,)1
zZ: (2D 6n) “( P(z|D, 6,)P(Dl|6,)

Equation 3.8 can be written as
L(Ony1) > L(0r) + A(0n+110n) (3.9)

Equation 3.9 shows that £(6,,) + A(6,41|6,) is bounded above by L(6,,41). It is easy
to show that any 6,41 which increases £(0,,) + A (0,41]6,,) will also increase £(6,,41).
In order to maximize £(6,+1), the EM algorithm requires the selection of 6,41 such
that £(60,,) + A (0p+1]6y) is maximized. If we denote the maximization value by 0;L+1,
then

0,1 = argmax{L(0n) + A(0n110n)}

On+t1

P Dz,@n P Zen 1
= argmax {cwn) + Z P(2|D, ) In (P(|D|0n)+}17)(2|<9,| 0] | }

On+1

= argmaX{ZP z|D,0,)In P(D|z,0,,41)P (z|9n+1)}

0n+1
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P(szvgnJrl) P(Z’9"+1)
_ P(z]D,6,)1
argmaX{zz: (2|, 0,) In P(z,0n11)  P(0nt1)

Ont1

= argmax {Z P(z|D,0,)In P(D, 29n+1)}

On+1 >

= argmax{Eyzp g, {In P(D, 2|0, 41)}} (3.10)

Ont1

Equation 3.10 defines both the expectation and maximization steps. In the expecta-
tion step, the algorithm determines the conditional expectation

Ez‘p’gn {h’l P(2)7 Z|9n+1)},

and in the maximization step, the algorithm maximizes the expression using 6,,1.

The Generalized EM algorithm relaxes the requirement of maximizing A(6,,+1|0y)
to the one of increasing A(6,41]6,) so that A(0;+1|9n) > A(0,]0,). With this
requirement it is possible to show that the likelihood £(6,41) is guaranteed to be
non-decreasing at each iteration.

3.4 Conclusion

The framework of Dynamic Bayesian Networks (DBNs) offers a large space of mod-
els which can be exploited to represent and reason about various temporal domains.
However, the use of DBNs and Bayesian networks in general is more likely to be
successful if the set of variables and the interactions between variables that are de-
fined in the first stages of model construction do provide an adequate representation
of the domain being modeled. Our proposal to use DBNs in transliteration related
tasks can proceed in different ways ranging from determining DBN model structures
given example transliteration data to using already specified DBN structures. In the
thesis we are concerned with the latter where we investigate DBN structures that
have already been proposed but not yet tested in transliteration-related tasks. Given
a DBN model structure, the parameters associated with the model also need to be
estimated before we can use the model to answer queries associated with a given
domain. In this chapter, we have reviewed the expectation maximization algorithm
which has been and still is the cornerstone of parameter estimation in the framework
of DBNs. The estimation of DBN model parameters forms the first main phase in
our application of DBN models in transliteration-related tasks. Given a fully param-
eterized DBN model, we can use a suitable inference algorithm to answer a specific
type of query in the problem domain. In transliteration mining, we would like to use
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the model to compute the similarity estimate associated with a source and target
word. Specifically, we want to use the model to compute the probability of observing
the pair as candidate and transliteration. In transliteration generation, we would like
to use the DBN model parameters for suggesting hypothetical target representations
given a source word. The use of a particular inference algorithm to answer a spe-
cific query with regard to transliteration mining and generation constitutes the other
main phase in applying the DBN models.






Chapter 4

Pair HMMs for transliteration detection

4.1 Introduction

The detection of transliterations requires an analysis on words written in the source
and target languages with the aim of determining word(s) from the target language
that are the most likely representation(s) of a word in a source language and vice
versa. In this thesis, we assume the transliteration detection process to be composed
of two steps. The first step involves computing the transliteration similarity between
a source language word and a target language candidate transliteration or between
a candidate original source word a known transliteration in a target language. The
second step involves making a decision on whether or not to regard the pair of source
and target language words as a true transliteration pair based on their computed
transliteration similarity.

In this chapter, we introduce the approach of Pair Hidden Markov models (Pair
HMMs) as the first of two Dynamic Bayesian Network (DBN)-related approaches
that we have proposed to use for computing transliteration similarity in the process
of detecting transliterations in bilingual text. Pair HMMs as the name suggests
extend the classic Hidden Markov models (HMMs) by modeling two observation
sequences instead of one sequence. The inference algorithms for the Pair HMMs are
also modifications of the traditional inference algorithms (that is Forward-Backward,
Viterbi) for the classic HMMs. The Pair HMM approach in its own right offers a
huge model space, but we choose to start our investigation with some structures and

This chapter is an extended version of the following publications:
P. Nabende, J. Tiedemann, and John Nerbonne — Pair Hidden Markov Model for Named Entity
Matching, Innovations and advances in Computer Sciences and Engineering, pp. 497-502, 2010,
Springer Netherlands; and
P. Nabende — Comparison of applying Pair HMMs and DBN models in transliteration identification,
Proceedings of the 20" Computational Linguistics in Netherlands meeting, pp. 107-122, Feb 2010,
Utrecht, The Netherlands.
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parameter definitions that have been successfully used for computing word similarity
in tasks having requirements similar to those for computing transliteration similarity
such as cognate identification (Mackay and Kondrak 2005) and dialect comparison
(Wieling et al. 2007). Our aim here is to determine whether assumptions that were
used in Pair HMMs for computing word similarity in previous work are valuable
for computing transliteration similarity. We then propose additional Pair HMM
parameter settings with the aim of determining the effect of parameter changes on
transliteration detection accuracy. For preliminary experiments we used our own-
prepared transliteration data consisting of geographic name pairs extracted from the
Geonames online database for four language pairs: English-Dutch, English-French,
English-German, and English-Russian. In the second set of transliteration detection
experiments, we used standard transliteration data for seven language pairs from the
2009 and 2010 Named Entities Workshop (NEWS) shared tasks on transliteration
generation for evaluating several Pair HMMs and a standard baseline approach that
uses pair n-gram information for computing transliteration similarity. The seven
language pairs include: English-Bengali, English-Chinese, English-Hindi, English-
Kannada, English-Russian, English-Tamil, and English-Thai.

In the following section, we introduce the classic HMMs and briefly review recent
uses of the HMM framework in modeling transliteration. From there, we introduce
Pair HMMs starting with their origins to the requirements for applying them to
compute transliteration similarity. We then describe the Pair HMMs that we use
to investigate the effects of parameter changes on transliteration detection quality.
Based on atleast one of the Pair HMM structures that we have proposed to investi-
gate, we also describe the algorithms for training the Pair HMMs and for computing
transliteration similarity.

4.2 Hidden Markov Models

4.2.1 A brief review on representation

Hidden Markov models find their origins as extensions to Markov models. Rabiner
(1989) describes how the concept of Markov models can be extended to include the
case where the observation is a probabilistic function of a state, resulting in a model
that is a doubly embedded stochastic process in which the underlying stochastic
process is not observable (i.e. it is hidden). Coupled with the defining property that
the underlying stochastic process satisfies the Markov property, we end up with a
Hidden Markov Model. To satisfy the Markov property, the value of the state at
time ¢ (denoted here by S;), is dependent on only the previous state (S;_1), and
independent of all other states prior to ¢t — 1. The outputs from the states also satisfy
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the Markov property. That is, the observation in a state at time ¢ (denoted here by
0;) is independent of all other states and observations. Taken together, these Markov
properties lead to the following factorization of the joint distribution of a sequence
of states (S) and observations (O) (Ghahramani 2001):

T
P(Sla"'aST;Ola"'aOT) = ( 01|Sl H St|St 1 (Ot|St) (41)

This factorization of the joint distribution can be represented graphically as a
Dynamic Bayesian network (see Figure 3.2 in Chapter 3). It is clear from equation
4.1 that to determine the probability distribution over sequences of observations, we
need probability distributions over: the initial state P(S7), the K x K transition
matrix defining P(S|S;—1), and the output (or emission) model defining P(Oy|S;).

4.2.2 Recent use of HMMs in machine transliteration

The transition and output model P(O;|S;) in equation 4.1 can be specified in various
ways. In the following, we review some recent formulations for the HMM transition
and output models in the context of the transliteration modeling process.

a) Bi-Stream HMMs

Zhao et al. (2007) propose a bi-stream HMM for letter-alignhment within named
entity (NE) pairs. When using the bi-stream HMM, the probability of a source NE
(denoted by s!) given a target NE (denoted by t{), is formulated in equation 4.2

below as:
P(st|t]) ZHP Silta; ) Pcs,|c

Izl

ct,, ) Plailai-1) (4.2)

where a; maps s; to the target letter ¢,, at position a; in the target NE. P(a;|a;—1)
is the transition probability distribution; P(s;|ts,) is a letter-to-letter translation
lexicon; ¢y, is a letter cluster of s; and P(cs, |cta7,) is a cluster level translation lexicon.
The bi-stream HMM generates two streams of observations: the letters together with
their classes following the distribution for P(si|t,,) and P(cs,|et, ) at each state
respectively. Zhao et al. (2007) also define a constraint to ensure that the transition
can only jump forward or stay at the same state.

b) Maximum n-gram HMMs

Zhou (2009) views an HMM as a bi-gram model where the transliteration of the
current character is dependent on the transliteration of a previous character. In this
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approach, the underlying hidden process is a sequence of characters in one language
which generates characters in the other language. When using the bi-gram HMM,
the probability of target NE given the source NE is formulated in equation 4.3 below
as:
P(t7|sT) = P(t1]s1)P(ta|s2, t1)...P(tn|Sn, tn-1) (4.3)
where P(ti]s) = # of times' s; translates to t; and
# of times s; occurs

of times s; translates to ¢; given s;_1 — t;_
P(ti|$i7ti71) _ # i i g i—1 i—1

# of times s;_; translates to t;_1

Zhou uses an alignment procedure to build a translation lexicon that is in turn used
for obtaining character translation pair occurrences. This facilitates the computation
of the probabilities in equation 4.3. It is straightforward to formulate the equations
for estimating transliteration probability for the trigram HMM case and other higher
order n-gram HMMs.

c¢) HMMs for searching transliterations

Darwish (2010) uses an approach similar to the bigram HMM approach above. In
Darwish’s case, a character sequence (denoted here by s in the source NE (s!) is
taken to be a potential transliteration for a character sequence t; in the target NE
(t{). Darwish calculates the probability of s} given ¢; from a trained model as follows:

Pitils)y =[] Plsesyltiti) (4.4)

all s5...5,

where s,...s, are non-overlapping segments generated by finding all 27~1 segmenta-
tions of the character sequence s;. According to Darwish (2010), the segmentation
producing the highest probability is chosen, and all target segment sequences t},, ..., t]
that are known to produce s;...s, for each possible segmentation are also produced.
If a set of non overlapping sequences of t;, ..., 1] generates t/, then ¢, is identified as
a transliteration of sj; and if multiple target sequences have P(si[t’) > 0, then the
t’ that maximizes P(s;|t}) is chosen as the proper transliteration.

As the review in chapter 3 on Dynamic Bayesian Networks showed, there are sev-
eral other types of HMMs that have been proposed and used successfully in various
tasks and yet they might also be useful for transliteration detection. In this chapter,
we only investigate the edit distance-based approach of Pair HMMs which is also
different from the HMM approaches reviewed above. Our motivation in investigating
the Pair HMM approach is based on our observation of its success in various tasks
ranging from biological sequence analysis through to the Natural Language Process-
ing (NLP) task of computing word similarity which is similar to that of computing
transliteration simiarity.
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4.3 Pair Hidden Markov Models

4.3.1 Origins

The approach of Pair HMMs originates from modifications to a pairwise alignment
finite state automaton (Durbin et al. 1998). The conversion of the automaton to a
Pair HMM is achieved by defining a model which fulfills the representational require-
ments of HMMSs and whose parameters are defined in such a way so as to approximate
the parametric definitions of the finite state automaton. Durbin et al. (1998) define
three emission states that correspond to the states of the automaton as follows: a
match state (denoted by M) which has emission probability distribution pg; for emit-
ting an aligned pair of symbols a:b; and two gap states (denoted by X and Y) with
distributions ¢, for emitting a symbol @ against a gap. Durbin et al. (1998) also
satisfy the requirement that the probabilities for all the transitions leaving each state
sum to one. Figure 4.1 illustrates Durbin et al.’s (1998) initial probabilistic version
of the pairwise alignment finite state automaton. This probabilistic model is similar
to a Hidden Markov model but instead of emitting a single sequence, it emits a pair
of sequences.

The model in Figure 4.1 allows for symmetry between source and target and there-
fore uses two parameters to represent transition probabilities between emission states.
These parameters are denoted by ¢ (which represents the transition probability from
the match state to a gap state) and e (which represents the transition probability of
staying in a gap state). Durbin et al. also define the start and end states to formal-
ize conditions for initialization and termination. They specifically define transition
probabilities from the start state to be the same as transition probabilities from the
substitution state to any of the emitting states. They also define the probability
of transition to the end state from each emitting state (7) be the same. Durbin et
al. (1998) then define the inference and learning algorithms for the proposed Pair
HMM structure in the context of biological sequence analysis. The reader is referred
to Durbin et al. (1998) for a detailed description of the accompanying Pair HMM
algorithms based on the model structure in Figure 4.1.

4.3.2 Pair HMMs for modeling word similarity

After the introduction of the Pair HMM approach, Mackay and Kondrak (2005)
proposed to adapt it to compute word similarity and use it in a cognate identification
task. Mackay and Kondrak proposed a number of modifications to Durbin et al.’s
(1998) original Pair HMM structure so as to suit the alignment and comparison of
words in natural language. In the first modification, they added a pair of transitions
between the gap states X and Y each having the same transition probability (denoted
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Figure 4.1: Probabilistic version of the pairwise alignment finite state automaton in Durbin
et al. (1998). Three transition parameters are specified including § (for transitions from the
match state (M) to gap states (X or Y)), e (for transitions of staying in a gap state, and T

(for transitions to the end state).

by A). In another modification, they defined two parameters to represent two different
transition probabilities to the end state. They defined 7, to represent the transition
probability from the match state to the end state, and 7xy to represent the transition
probability from the gap states to the end states. Figure 4.2 shows a finite state
representation of the Pair HMM proposed by Mackay and Kondrak (2005). Mackay
and Kondrak then modified the Pair HMM inference algorithms based on the Pair
HMM structure in Figure 4.2. The reader is referred to Mackay’s thesis (2004) for a
further description of the inference and learning algorithms for that particular Pair
HMM structure.

4.3.3 Pair HMMs for modeling transliteration similarity

The task of computing transliteration similarity is similar to that of computing word
similarity where the approach of Pair HMMs has been applied successfully (Mackay
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End

Figure 4.2: Finite state representation of the Pair HMM proposed by Mackay and Kondrak
(2005) for computing word similarity. The Pair HMM uses five transition parameters: three
for the transition probabilities between edit states (5, A, €), and two to the end state (Txvy,

™).

and Kondrak 2005, Wieling et al. 2007). However, we need to know whether or not
the Pair HMMSs approach is useful for computing transliteration in the process of
detecting transliterations from bilingual text. Our starting point is to cast the task
of computing transliteration similarity in exactly the same way as that of computing
word similarity. Before we do that, we need to address requirements for computing
transliteration similarity. Some of the requirements have already been addressed by
Mackay (2004) in their use of Pair HMMSs for computing word similarity.

The first requirement involves representing the source and target language words
in a form that enables inference to be done efficiently using Pair HMMs. In translit-
eration, the source and target language words are transcribed using different writing
systems. If we consider the orthographic representation of the words, the method
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used for computing transliteration similarity should be able to handle the different
alphabets. Alternatively, we might use a phonetic alphabet to transcribe the words
phonetically. If we use a phonetic representation, the transliteration similarity esti-
mation method can assume one alphabet for both source and target languages. How-
ever, the requirement to use a phonetic representation is very likely to be difficult due
to lack phonetically transcribed data. Although transliteration is commonly defined
to involve a phonetic transformation of a source language word to a target language
word using a different writing system, some approaches that use orthographic-only
representations are reported to have resulted in comparable if not better machine
transliteration accuracy than phoneme-based approaches (Li et al. 2004).

The other requirement involves the tokenization of the source and target language
words in their representational form into segments that can be used for alignment.
A starting point for tokenization, is to use the language’s alphabet (orthographic
representation) or a phonetic alphabet (phonetic representation). It is also common
to find a combination of characters in one language corresponding to a single character
in the other language: an example is the English letter pair (ch) as compared to the
Russian representation (a). In that case it should be possible to represent (ch) as a
single token on the English side.

There are some assumptions we can consider to simplify the application of the
Pair HMM method to transliteration similarity estimation. We take a leaf from
the word similarity estimation task in Mackay (2004) which uses a number of these
assumptions for applying Pair HMMs in the cognate identification task. Since the
transliteration detection task involves the analysis of NEs, we can regard an NE as a
particular ‘type of word’. We therefore hardly expect some of the assumptions used
for computing word similarity to affect transliteration detection quality. First, we
assume a monotonic ordering of characters in the source and target language words
when computing transliteration similarity. That is the basic ordering of the tokens
remains the same between the source and target language. Second, we assume no
crossing links in the token alignments between the source and target words. Third,
we assume only one-to-one character alignments. This third assumption critically
limits the application of Pair HMMs in detecting transliterations for some language
pairs whose writing systems are fundamentally different such as between English
and Chinese. English uses a phonemic alphabet whereas the writing system for
Chinese is mostly logographic!. Consider this example where we have the name
“Peter” as written in English and one of its simplified Chinese representations 75
If we tokenize the names by character, and try to get an alignment for them, we
will always end up with atmost two character matching alignments while the rest
of the characters are aligned to an empty string. Consequently, the resulting Pair

n a logographic writing system, each symbol in theory represents an idea.
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HMM will have a poor representation with regard to strings in the source and target
language. For this specific case, we would like to use a method that matches the
Chinese character ‘f¥’ to the English character sequence ‘Pe’, and also matches ‘45’
to ‘ter’ which is close to a true representation of the character correspondences in the
source and target language strings.

Mackay and Kondrak (2005) also maintain some symmetries associated with the
gap states “X” and “Y” of a Pair HMM. The same symmetries are also maintained in
(Wieling et al. 2007) in the Dutch dialect comparison task. For the dialect comparison
task, it is indeed more meaningful to consider the states “X” and “Y” the same since
the source and target words are from the same language. For the transliteration
task, where the source and target languages use different writing systems, the gap
states should be distinct and should reflect the different properties of the source and
target writing systems. In our preliminary experiments, we determine the effect on
transliteration detection quality from using Pair HMMs that distinguish between the
the gap states based on different alphabets for the source and target language in
comparison to using Pair HMMs where the gap states are assumed to be the same.
In the former, we constrain the the Pair HMMs to generate the pair of words based
on the different probability distributions in the gap states X and Y that reflect the
distinct properties between the source and target writing system respectively. In the
latter, the Pair HMMs generate the pair of words based on a probability distribution
for X which is the same for Y for which we assume that the writing system for
the source and target languages is the same and can be obtained by combining any
distinct writing systems.

When using Pair HMMs for a particular task, the main focus is usually on com-
paring the effectiveness of different Pair HMM inference and learning algorithms and
determining the optimal structure of the underlying model. To determine the opti-
mal structure, we can examine the relative contribution of three sets of parameters
(Mackay and Kondrak 2005): substitution parameters, gap parameters (insertion and
deletion), and transition parameters. Because substitution parameters constitute the
core of a Pair HMM, focus is usually put on the gap and transition parameters. In
the second set of transliteration detection experiments, we determine the effect of
Pair HMM transition parameters on transliteration detection quality. In our inves-
tigation, we have defined three Pair HMMs in addition to Mackay and Kondrak’s
(2005) Pair HMM where we train the models to use different probability distribu-
tions for the gap states (X and Y) that reflect differences in the writing systems for
the source and target languages. In the first case, we train a Pair HMM without
transition parameters between each of the edit states; the only transition parameters
in the Pair HMM are from a from a start state to one of the edit states and from one
of the edit states to the end state. In the second case (Figure 4.3), we define the
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End

B

Figure 4.3: A finite state representation of a Pair HMM with three transition parameters
(o, B, 0). The probability of leaving an edit state to another state is the same for all

destination states.

Pair HMM to use three transition parameters associated with leaving one of the edit
states, and where we also specify the probability of starting in one of the edit states
to be the same as the probability of moving from the substitution state (M) to that
edit state including M. In the third case (Figure 4.4), we define the Pair HMM to use
different probabilities for transitions between the edit states and to the end state.

4.3.4 Pair HMMs — Inference

As is the case for the classic HMMs, we are concerned with three important tasks
which are necessary in using Pair HMMs for computing transliteration similarity.
estimation:

The first task, which is also related to our aim for using Pair HMMs, is to com-
pute the probability of a pair of words given a specific Pair HMM. In the context
of transliteration detection, this task is actually that of computing transliteration
similarity. The probabilities that we compute from this task enable the comparison
of candidate transliterations given an original source language word and vice versa
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End
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Figure 4.4: A finite state representation of a Pair HMM with nine distinct transition
parameters: six for transition probabilities between the edit states (0x, dy, Ax, Ay, €x,

ey ), and three to the end state from each edit state (tx, Ty, and T ).

and hence the decision on which pairs to regard as ‘true transliteration pairs’. For
this task, we evaluate the Forward and Viterbi algorithms and their log-odds versions
which combine the base algorithms with a random Pair HMM (see below).

The second task is to determine the most probable alignment given a pair of words
and a Pair HMM. In this task we need to use a version of the Viterbi algorithm for
the given Pair HMM to find the most probable alignment sequence given two words.
Given training data, we can use the alignment sequences to estimate parameters
of a Pair HMM. Given a Pair HMM, we can use the alignment score to represent
transliteration similarity.

The third task is associated with estimating the parameters of a Pair HMM. Given
a Pair HMM structure with unspecified parameters, we need to compute Pair HMM
parameters that maximize the likelihood of data which in our case consists of true
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transliteration pairs. There are a number of algorithms that we can use to estimate
Pair HMM parameters (Arribas-Gil et al. 2006). In our case, we will use a modified
version of the Baum-Welch (Baum et al. 1970) Expectation Maximization algorithm
for estimating Pair HMM parameters. This algorithm also uses a forward-backward
procedure.

It is apparent from the tasks above that the standard algorithms for inference
using Pair HMMs include: the Forward, Backward and Viterbi algorithms. These
algorithms are based on the classic HMM algorithms and the reader is refered to
Mackay (2004) for their derivation for Pair HMMSs. Unfortunately, the implementa-
tion of these algorithms based on the classic HMMs requires that they be modified
to suit a particular Pair HMM structure. In the following subsections, we provide
pseudocode to illustrate the Forward, Backward, and Viterbi algorithms for the Pair
HMM with distinct emission parameters and whose transition parameters are all dis-
tinct 4.4. We denote the source and target words by x and y respectively. We also
use i and j to denote the indexes in the two sequences respectively. x; denotes the
it" character in the source sequence and y; denotes the jth character in the target
sequence. We use py, ,, to denote the probability of emitting the i*" source word
character and j*" target word character when in a Pair HMM’s substitution state.
g, is used to denote the probability of emitting the i'" source word character and an
empty symbol in the deletion state (X) whereas ¢, is used to denote the probability
of emitting the empty symbol and the j** target word character in the insertion state
(Y).

a) Forward algorithm for the Pair HMM with distinct parameters

The Forward algorithm computes for all possible paths, the total probability of a
pair of subsequences (z1,...,x; and yi,...,y;) that have been emitted upto a hidden
state k& (M, X, Y). We use the variable f*(i,7) to denote this total probability, and
f+(i,4) to indicate the Forward probability associated with being in any of the states.
The initialization, induction, and termination equations for the Forward algorithm
specific to the Pair HMM of Figure 4.4 are as shown on the next page.

b) Backward algorithm for the Pair HMM with distinct parameters

In a manner similar to that of the Forward algorithm, the Backward algorithm com-
putes the total probability for all possible paths of the subsequences starting from
Zi+1 and y; 41 up to the end, when the Pair HMM is in a state k. We use the variable
b*(i, §) to denote the total Backward probability and b (4, j) to indicate the Backward
probability associated with any of the states. We also use n and m to index the end
of the source and target sequences respectively. The initialization, induction, and
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The forward algorithm for a Pair HMM that uses distinct transition parameters
1. Initialization
M(0,0) =1—0x — 6y — 7ar, £5(0,0) = 6x, £Y(0,0) = dy
All f+(i, 1) = f.(_luj) =0
2. Induction
for 0 <i<n, 0<j<m, except (0,0) do
fM(Z,j) = pziyj[(l —0x — 0y — TM)fIV[(i -1,5- 1)+
(1—€X —)\X—Tx)fX(i—1,j—1)+(1—€y—)\y—Ty)fY(i—1,j—1)],
fX(Za.]) = qxz[(sfo(Z - 17.7) + eXfX(i - 1a]) + AYfY(Z - laj)]7
FY (i) = ay, By £ 5 = 1) + Ax FX (i — 1) + ey £ (i — 1)]
end for
3. Termination
P(Olp) = mar fM (n,m) + 7 fX (n,m) + 7y f¥ (n,m)

The backward algorithm for a Pair HMM that uses distinct transition parameters

1. Initialization
bM(n,m) = ar, b (n,m) = 7x,b¥ (n,m) = 1y
2. Induction
bM(Zvj) - (1 —0x — 0y — TM)pIi-Hyj-%-lb]W(i +1,7+ 1) + 6XQX1‘+1bX<i + ]-v])
+ 5y(]yj+lby(i,j + 1),
bX(imj) = (1 —€x —Ax — TX>pIi+1yj+1bM(i +1,5+ 1) + GquHle(i + 17j)
+ )\XQyj+1bY(i7j + 1)3
b (i,5) = (1 —ey = Ay = ¥ )Paisryy e M+ 1,5+ 1) + Ay qa,, 0% (i + 1, 5)
+ 5Y‘]y_7+1by(iaj +1).
3. Termination
P(O|u) = (1 — 6x — &y — mar)b™M(0,0) + 5xbX(0,0) + 5y b¥ (0,0)

termination equations of the Backward algorithm specific to the Pair HMM of Figure
4.4 are as shown above.

c) Viterbi algorithm for the Pair HMM with distinct parameters

The Viterbi algorithm is used to find the best alignment sequence(s) given a pair
of observation sequences. We use the variable v*(7,j) to denote the probability of
emitting the aligned subsequences z1,...,x; and ¥, ...,y; by the Pair HMM with the
sub alignment ending with (a) aligned pair x; and y; (v'(3,7) = v™(i,5)), (b) z;
aligned to an empty string e (v*(4,5) = v*(4,5)), and (c) y; aligned to the empty
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The Viterbi algorithm for a Pair HMM that uses distinct transition parameters

1. Initialization
vM(0,0) =1 —6x — 0y — 7, v~5(0,0) =6x, vY(0,0) = dy.
All v (i,-1)=v(-1,5)=0

2. Induction

for 0 <i<n,0<j<mexcept (0,0) do

(1—(5x—(5y—7']y[)’l)M(i—].7j—l)
vM (i, ) = Pay;, max q (1 —ex —Ax — )X —1,7-1) o,
(1 — €y — )\y —Ty)vy(i— 1,j — 1)

v (i, §) = qo, max ¢ exv

oY (i,5) = @y, Max § Axv

end for
3. Termination
P(H) = max(tpo™(n, m), xvX (n,m), 7vv¥ (n,m)).

string e (v*(i,5) = vY(4,5)). Using v*(i,5) to indicate the probability in any of
the states, the initialization, induction, and termination equations for the Viterbi
algorithm specific to the Pair HMM of Figure 4.4 are as shown above.

d) Log-odds algorithms

The Forward, Backward, and Viterbi Pair HMM algorithms may be sufficient for
computing transliteration similarity. Durbin et al. (1998) introduce another ap-
proach of using log-odds ratios to compute string similarity. A log-odds ratio is used
to incorporate the likelihood of the random occurrence of a pair of observations in
the computation of string similarity. Mackay and Kondrak (2005) show that using
of the Viterbi log-odds algorithm results in significantly better cognate identifica-
tion performance compared to using the standard Pair HMM algorithms. Since the
requirements for computing transliteration similarity are similar to those for com-
puting word similarity where the approach of log-odds ratios is reported to be more
successful, we also propose to evaluate it for computing transliteration similarity.
The log-odds algorithms use a random Pair HMM (Figure 4.5) to represent the
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1—n 1—n

Figure 4.5: Finite state representation of the random Pair HMM. This model uses only
one transition probability (n) with deletion probabilities (r,,) and insertion probabilities
(ry;). X and Y nodes respectively refer to deletion and insertion states, and S denotes a
start state. The unlabeled node represents a silent state which does not emit any symbols
but is used to gather inputs from S and X states. Adapted from Durbin et al (1998).

likelihood of the random occurrence of a pair of strings in the source and target
languages. The random Pair HMM does not have a match state since the source and
target sequences are assumed to have no underlying relationship to each other. The
random model in Figure 4.5 uses only one transition parameter? (n) with deletion
probabilities (r,,) and insertion probabilities (r,,). In the following, we briefly review
the Viterbi log-odds algorithm using Mackay and Kondrak’s Pair HMM (Figure 4.2).

According to the random Pair HMM in Figure 4.5, the probability of the random
occurrence of a pair of words can be computed as follows:

P(z,ylR) = n(L—=n)" [[ren@ =)™ [ [ ro, = 0> =)™ [ re. [[ - (45)
=1 =1 i=1 =1

where z (having n characters) and y (having m characters) represent source and
target words respectively. An additive model with resulting log-odds scores for emis-
sions and transitions can be specified by combining emission scores and transition
scores from the standard and random Pair HMMs. The following equations are used
to merge the emission and transition scores for Mackay and Kondrak’s Pair HMM
(Figure 4.2) to get the standard terms necessary for sequence alignment following a
dynamic programming methodology. In the equations below, we use s(.,.) to denote
the substitution score; d(.) the gap open score; and e(.) and f(.) gap extension scores
that correspond to transitions and emissions from the match state to the gap states,
and between the gap states respectively.

2There should be no restriction on the number of transition parameters that can be used in the
random Pair HMM. It should be possible to use two transition parameters, one associated with
deletions, while the other with insertions. However it is the emission states X and Y that contribute
more to the final random model probability.
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1—-26—
Dy +log ;'M
TzTy (1_77)

qx(s(].—é—)\—’rxy)

s(z,y) = log

d(x) =—1lo
@) S el —m) (1 — 26— 7a)
qz€
e(r) = —log
(A
f(zx) =—1log
( ) Tac(l_n)
1—20—
c=log 0 =i + log(7xy)-

1767>\7TXY

The Viterbi log-odds algorithm for Mackay and Kondrak’s Pair HMM is as shown
below.

The Viterbi log-odds algorithm for a Pair HMM that uses five transition parameters
1. Initialization
M(070)=—210g( )7 X( ):vY(OaO):_
Al w(i,—1) = v (—1,§) =
2. Induction
for 0 <i<n,0<j<mexcept (0,0) do

oM@ —1,5—1)
M(i,7) = sS4y, max{ vX(i—1,7-1) »,
vV (i —1,5—1)
X(i,7) =max{ vX(i—1,7) —e(x;) o,

oY (i —1,5) — f(zs)
oM (i, j — 1) —d(y;)
oY (i,§) = max { vX(i,j — 1) — e(y;)
UY(ivj - ]-) - f(yj)

end for
3. Termination
P(H) = max(v™ (n,m) + log(tar), v (n,m) + ¢, v¥ (n,m) + ¢).

The log-odds emission and transition score expressions, and the Viterbi log-odds
algorithm for the other Pair HMMs are also derived based on the respective Pair
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HMM parametric definitions. In a similar manner, we derive the Forward log-odds
algorithms for all the Pair HMMs.

4.3.5 Pair HMMs — parameter estimation

A Pair HMM requires two main sets of parameters to compute transliteration simi-
larity: transition and emission parameters. These parameters need to be estimated
before a Pair HMM can be used for computing transliteration similarity. There ex-
ist different approaches for estimating these parameters; some approaches which are
compared in literature include (Arribas-Gil et al. 2006): numerical maximization
techniques, and Expectation Maximization (EM) algorithms with variants such as
stochastic EM and stochastic approximation EM. For the transliteration detection
task, we will adopt the EM-based Baum-Welch algorithm which has already found
successful application in the cognate identification (Mackay and Kondrak 2005) and
dialect comparison (Wieling et al. 2007) tasks.

Before we describe the Baum-Welch algorithm for the Pair HMMs, we begin by
presenting the case for the classic HMMs. The main difference between estimating
parameters for Pair HMMs and estimating parameters for classic HMMs is that for
the Pair HMMs, we have to consider an extra dimension of observation sequences.
Using common notation for the classic HMMs, we specify the transition probability
from a state s to a state s; at time ¢ by the variable & (k,1) which is formulated as:

P(sk, 51,0 )
LD =P Od7 S Gl Rl 2 L
gt( ) ) (Slﬁsl‘ N’) P(Od|u)
where O? is an observation sequence and p is some HMM. Through expansion and
simplification using forward (f:(k)) and backward (b;(k)) variables, it can be shown
that
fi(k) Prer(Of1)bega (1)

R

We also specify the probability of being in a state k at time ¢ given the observation
sequence by the variable ~;(k):

P(sx,0%p) fi(k)be (k)

(k) = P(s+0% 1) = —55as TSN RO

It can be seen that

N

N
Ye(k) = th(h )= Z ft(k)Pk;iz((gi;;)le(l)
=1 1=1
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N

! k)[z Pklel(0t+1)bt+1(l)]
=1

= P ! 0T

If we sum over the time index for the two variables & (k, 1) and v (k), we get expecta-
tions (or counts) that can be used in re-estimating the parameters of an HMM using

Sy ft (k)b (k)

the following equations:

7, = expected number of times in state k 