561 research outputs found

    A Distributed Software Architecture for Collaborative Teleoperation based on a VR Platform and Web Application Interoperability

    Full text link
    Augmented Reality and Virtual Reality can provide to a Human Operator (HO) a real help to complete complex tasks, such as robot teleoperation and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robot simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on different Mobile platforms to control one or many robots

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Grid-enabling Non-computer Resources

    Get PDF

    Java access to numerical libraries

    Get PDF

    Providing Collaborative Support to Virtual and Remote Laboratories

    Get PDF
    Virtual and remote laboratories (VRLs) are e-learning resources that enhance the accessibility of experimental setups providing a distance teaching framework which meets the student's hands-on learning needs. In addition, online collaborative communication represents a practical and a constructivist method to transmit the knowledge and experience from the teacher to students, overcoming physical distance and isolation. This paper describes the extension of two open source tools: (1) the learning management system Moodle, and (2) the tool to create VRLs Easy Java Simulations (EJS). Our extension provides: (1) synchronous collaborative support to any VRL developed with EJS (i.e., any existing VRL written in EJS can be automatically converted into a collaborative lab with no cost), and (2) support to deploy synchronous collaborative VRLs into Moodle. Using our approach students and/or teachers can invite other users enrolled in a Moodle course to a real-time collaborative experimental session, sharing and/or supervising experiences at the same time they practice and explore experiments using VRLs.This work was supported by the Spanish Government under the CICYT Project DPI2007-61068 and the GITE grant of the Technology and Educational Innovation Vice-President Office of the University of Alicante

    Cohere: Towards Web 2.0 Argumentation

    Get PDF
    Students, researchers and professional analysts lack effective tools to make personal and collective sense of problems while working in distributed teams. Central to this work is the process of sharing–and contesting–interpretations via different forms of argument. How does the 'Web 2.0' paradigm challenge us to deliver useful, usable tools for online argumentation? This paper reviews the current state of the art in Web Argumentation, describes key features of the Web 2.0 orientation, and identifies some of the tensions that must be negotiated in bringing these worlds together. It then describes how these design principles are interpreted in Cohere, a web tool for social bookmarking, idea-linking, and argument visualization

    Software for Visualization and Coordination of the Distributed Simulation Modeling Process

    Get PDF
    Simulation modeling projects commonly involve distributed team collaboration. It is currently difficult to perform collaboration in distributed modeling process for two reasons: 1) Simulation modeling in general requires modelers to manage complexities (such as tracking model revisions, recording scenario assumptions and organizing external artifacts) related to the model. 2) Distributed collaboration requires collaborators to maintain change awareness. While proper information technology support is known to lessen the difficulties of collaborations, there is limited software support for complexity management in generic modeling process and change awareness in distributed collaboration, therefore require tremendous amount of effort in management and communication. This thesis describes a new system that supports distributed modeling process. The system provides modeling repositories to help manage modeling complexities and a visual workspace to provide change awareness information. The system has been shown to substantially reduce modeling effort in distributed modeling, is extensible and easy to use

    Frameworks for enhancing temporal interface behaviour through software architectural design

    Get PDF
    The work reported in this thesis is concerned with understanding aspects of temporal behaviour. A large part of the thesis is based on analytical studies of temporal properties and interface and architectural concerns. The main areas covered include: i. analysing long-term human processes and the impact of interruptions and delays ii. investigating how infrastructures can be designed to support synchronous fast pace activity iii.design of the Getting-to-Know (GtK) experimental notification server The work is motivated by the failure of many collaborative systems to effectively manage the temporal behaviour at the interface level, as they often assume that the interaction is taking place over fast, reliable local area networks. However, the Web has challenged this assumption and users are faced with frequent network-related delays. The nature of cooperative work increases the importance of timing issues. Collaborative users require both rapid feedback of their own actions and timely feedthrough of other actions. Although it may appear that software architectures are about the internals of system design and not a necessary concern for the user interface, internal details do show up at the surface in non-functional aspects, such as timing. The focus of this work is on understanding the behavioural aspects and how they are influenced by the infrastructure. The thesis has contributed to several areas of research: (a)the study of long-term work processes generated a trigger analysis technique for task decomposition in HCI (b)the analysis of architectures was later applied to investigate architectural options for mobile interfaces (c)the framework for notification servers commenced a design vocabulary in CSCW for the implementation of notification services, with the aim of improving design (d)the impedance matching framework facilitate both goal-directed feedthrough and awareness In particular, (c) and (d) have been exercised in the development of the GtK separable notification server
    • 

    corecore