69 research outputs found

    A Hypergraph Model for Railway Vehicle Rotation Planning

    Get PDF
    We propose a model for the integrated optimization of vehicle rotations and vehicle compositions in long distance railway passenger transport. The main contribution of the paper is a hypergraph model that is able to handle the challenging technical requirements as well as very general stipulations with respect to the "regularity" of a schedule. The hypergraph model directly generalizes network flow models, replacing arcs with hyperarcs. Although NP-hard in general, the model is computationally well-behaved in practice. High quality solutions can be produced in reasonable time using high performance Integer Programming techniques, in particular, column generation and rapid branching. We show that, in this way, large-scale real world instances of our cooperation partner DB Fernverkehr can be solved

    Deutsche Bahn Schedules Train Rotations Using Hypergraph Optimization

    Get PDF
    Deutsche Bahn (DB) operates a large fleet of rolling stock (locomotives, wagons, and train sets) that must be combined into trains to perform rolling stock rotations. This train composition is a special characteristic of railway operations that distinguishes rolling stock rotation planning from the vehicle scheduling problems prevalent in other industries. DB models train compositions using hyperarcs. The resulting hypergraph models are addressed using a novel coarse-to-fine method that implements a hierarchical column generation over three levels of detail. This algorithm is the mathematical core of DB's fleet employment optimization (FEO) system for rolling stock rotation planning. FEO's impact within DB's planning departments has been revolutionary. DB has used it to support the company's procurements of its newest high-speed passenger train fleet and its intermodal cargo locomotive fleet for crossborder operations. FEO is the key to successful tendering in regional transport and to construction site management in daily operations. DB's planning departments appreciate FEO's high-quality results, ability to reoptimize (quickly), and ease of use. Both employees and customers benefit from the increased regularity of operations. DB attributes annual savings of 74 million euro, an annual reduction of 34,000 tons of CO2 emissions, and the elimination of 600 coupling operations in crossborder operations to the implementation of FEO

    Assignment Based Resource Constrained Path Generation for Railway Rolling Stock Optimization

    Get PDF

    A Coarse-To-Fine Approach to the Railway Rolling Stock Rotation Problem

    Get PDF
    We propose a new coarse-to-fine approach to solve certain linear programs by column generation. The problems that we address contain layers corresponding to different levels of detail, i.e., coarse layers as well as fine layers. These layers are utilized to design efficient pricing rules. In a nutshell, the method shifts the pricing of a fine linear program to a coarse counterpart. In this way, major decisions are taken in the coarse layer, while minor details are tackled within the fine layer. We elucidate our methodology by an application to a complex railway rolling stock rotation problem. We provide comprehensive computational results that demonstrate the benefit of this new technique for the solution of large scale problems

    A Hypergraph Model for the Rolling Stock Rotation Planning and Train Selection

    Get PDF
    This paper is about an integrated optimization approach for timetabling and rolling stock rotation planning in the context of passenger railway traffic. Given a set of possible passenger trips, service requirement constraints, and a fleet of multiple heterogeneous self-powered railcars, our method aims at producing a timetable and solving the rolling stock problem in such a way that the use of railcars and the operational costs are minimized. To solve this hard optimization problem, we design a mixed-integer linear programming model based on network-flow in an hypergraph. We use this models to handle effectively constraints related to coupling and decoupling railcars. To reduce the size of the model, we use an aggregation and disaggregation technique combined with reduced-cost filtering. We present computational experiments based on several French regional railway traffic case studies to show that our method scales successfully to real-life problems

    Zuordnungsproblem auf Hypergraphen

    Get PDF
    Diese Arbeit beschäftigt sich mit dem Hypergraph Assignment Problem (Abkürzung "HAP", dt.: Zuordnungsproblem auf Hypergraphen), einem Mengenzerlegungsproblem auf einem speziellen Typ von Hypergraphen. Das HAP verallgemeinert das Zuordnungsproblem von bipartiten Graphen auf eine Struktur, die wir bipartite Hypergraphen nennen, und ist durch eine Anwendung in der Umlaufplanung im Schienenverkehr motiviert. Die Hauptresultate betreffen die Komplexität, polyedrische Ergebnisse, die Analyse von Zufallsinstanzen sowie primale Methoden für das HAP. Wir beweisen, dass das HAP NP-schwer und APX-schwer ist, sogar wenn wir uns auf kleine Hyperkantengrößen und Hypergraphen mit einer speziellen, partitionierten Struktur beschränken. Darüber hinaus untersuchen wir die Komplexität der Mengenpackungs- sowie Mengenüberdeckungsrelaxierung und geben für bestimmte Fälle Approximations- und exakte Algorithmen mit einer polynomiellen Laufzeit an. Für das Polytop des Zuordnungsproblems ist eine vollständige lineare Beschreibung bekannt. Wir untersuchen daher auch das HAP-Polytop. Dafür ist die Anzahl der Facettenungleichungen schon für sehr kleine Problemgrößen sehr groß. Wir beschreiben eine Methode zur Aufteilung der Ungleichungen in Äquivalenzklassen, die ohne die Verwendung von Normalformen auskommt. Die Facetten in jeder Klasse können durch Symmetrien ineinander überführt werden. Es genügt, einen Repräsentanten aus jeder Klasse anzugeben, um ein vollständiges Bild der Polytopstruktur zu erhalten. Wir beschreiben den Algorithmus "HUHFA", der diese Klassifikation nicht nur für das HAP, sondern für beliebige kombinatorische Optimierungsprobleme, die Symmetrien enthalten, durchführt. Die größtmögliche HAP-Instanz, für die wir die vollständige lineare Beschreibung berechnen konnten, hat 14049 Facetten, die in 30 Symmetrieklassen aufgeteilt werden können. Wir können 16 dieser Klassen kombinatorisch interpretieren. Dafür verallgemeinern wir Odd-Set-Ungleichungen für das Matchingproblem unter Verwendung von Cliquen. Die Ungleichungen, die wir erhalten, sind gültig für Mengenpackungsprobleme in beliebigen Hypergraphen und haben eine klare kombinatorische Bedeutung. Die Analyse von Zufallsinstanzen erlaubt einen besseren Einblick in die Struktur von Hyperzuordnungen. Eine solche ausführliche Analyse wurde in der Literatur theoretisch und praktisch bereits für das Zuordnungsproblem durchgeführt. Als eine Verallgemeinerung dieser Ergebnisse für das HAP beweisen wir Schranken für den Erwartungswert einer Hyperzuordnung mit minimalen Kosten, die genau die Hälfte der maximal möglichen Anzahl an Hyperkanten, die keine Kanten sind, benutzt. In einem sog. vollständigen partitionierten Hypergraphen G2,2n mit Hyperkantenkosten, die durch unabhängig identisch exponentiell verteilte Zufallsvariablen mit Erwartungswert 1 bestimmt sind, liegt dieser Wert zwischen 0.3718 und 1.8310, wenn die Knotenanzahl gegen unendlich strebt. Schließlich entwickeln wir eine exakte kombinatorische Lösungsmethode für das HAP, die drei Ansätze kombiniert: Eine Nachbarschaftssuche mit Nachbarschaften exponentieller Größe, die Composite-Columns-Methode für das Mengenzerlegungsproblem sowie den Netzwerksimplexalgorithmus.This thesis deals with the hypergraph assignment problem (HAP), a set partitioning problem in a special type of hypergraph. The HAP generalizes the assignment problem from bipartite graphs to what we call bipartite hypergraphs, and is motivated by applications in railway vehicle rotation planning. The main contributions of this thesis concern complexity, polyhedral results, analyses of random instances, and primal methods for the HAP. We prove that the HAP is NP-hard and APX-hard even for small hyperedge sizes and hypergraphs with a special partitioned structure. We also study the complexity of the set packing and covering relaxations of the HAP, and present for certain cases polynomial exact or approximation algorithms. A complete linear description is known for the assignment problem. We therefore also study the HAP polytope. There, we have a huge number of facet-defining inequalities already for a very small problem size. We describe a method for dividing the inequalities into equivalence classes without resorting to a normal form. Within each class, facets are related by certain symmetries and it is sufficient to list one representative of each class to give a complete picture of the structural properties of the polytope. We propose the algorithm "HUHFA" for the classification that is applicable not only to the HAP but combinatorial optimization problems involving symmetries in general. In the largest possible HAP instance for which we could calculate the complete linear description, we have 14049 facets, which can be divided into 30 symmetry classes. We can combinatorially interpret 16 of these classes. This is possible by employing cliques to generalize the odd set inequalities for the matching problem. The resulting inequalities are valid for the polytope associated with the set packing problem in arbitrary hypergraphs and have a clear combinatorial meaning. An analysis of random instances provides a better insight into the structure of hyperassignments. Previous work has extensively analyzed random instances for the assignment problem theoretically and practically. As a generalization of these results for the HAP, we prove bounds on the expected value of a minimum cost hyperassignment that uses half of the maximum possible number of hyperedges that are not edges. In a certain complete partitioned hypergraph G2,2n with i. i. d. exponential random variables with mean 1 as hyperedge costs it lies between 0.3718 and 1.8310 if the vertex number tends to infinity. Finally, we develop an exact combinatorial solution algorithm for the HAP that combines three methods: A very large-scale neighborhood search, the composite columns method for the set partitioning problem, and the network simplex algorithm

    A Comparison of Two Exact Methods for Passenger Railway Rolling Stock (Re)Scheduling

    Get PDF
    The assignment of rolling stock units to timetable services in passenger railways is an important optimization problem that has been addressed by many papers in different forms. Solution approaches have been proposed for different planning phases: strategic, tactical, and also operational planning. In this paper we compare two approaches within two operational planning phases (i.e. the daily and the real time planning). The first exact approach is based on a Mixed Integer Linear Program (MILP) which is solved using CPLEX. The second approach is an extension of a recently introduced column generation approach. In this paper, we benchmark the performance of the methods on networks of two countries (Denmark and The Netherlands). We use the approaches to make daily schedules and we test their real time applicability by performing tests with different disruption scenarios. The computational experiments demonstrate that both models can be used on both networks and are able to find optimal rolling stock circulations in the different planning phase

    Maintenance in Railway Rolling Stock Rescheduling for Passenger Railways

    Get PDF
    This paper addresses the Rolling Stock Rescheduling Problem (RSRP), while taking maintenance appointments into account. After a disruption, the rolling stock of passenger trains has to be rescheduled in order to maintain a feasible rolling stock circulation. A limited number of rolling stock units have a scheduled maintenance appointment during the day: these appointments need to be taken into account while rescheduling. In this paper we propose three different models for this. The Extra Unit Type model extends the known Composition model by adding additional rolling stock types for every rolling stock unit that requires maintenance. The Shadow-Account model keeps track of a shadow account for all units that require maintenance. The Job-Composition model is a combination of the Job model and the Composition model, both known in the literature. Paths are created such that maintenance units are on time for their maintenance appointment. All models are tested on instances of Netherlands Railways. The results show that the models are able to efficiently take maintenance appointments into account
    corecore