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Abstract

This paper addresses the Rolling Stock Rescheduling Problem (RSRP),
while taking maintenance appointments into account. After a disrup-
tion, the rolling stock of passenger trains has to be rescheduled in
order to maintain a feasible rolling stock circulation. A limited num-
ber of rolling stock units have a scheduled maintenance appointment
during the day: these appointments need to be taken into account
while rescheduling. In this paper we propose three different models
for this. The Extra Unit Type model extends the known Composition
model by adding additional rolling stock types for every rolling stock
unit that requires maintenance. The Shadow-Account model keeps
track of a shadow account for all units that require maintenance. The
Job-Composition model is a combination of the Job model and the
Composition model, both known in the literature. Paths are created
such that maintenance units are on time for their maintenance appoint-
ment. All models are tested on instances of Netherlands Railways. The
results show that the models are able to efficiently take maintenance
appointments into account.

1 Introduction

In passenger railway transportation, an extensive planning period is used to
develop a satisfying rolling stock circulation. During this planning period,
maintenance required by the rolling stock can be scheduled by adjusting the
rolling stock schedule such that the maintenance appointments are met by
the correct rolling stock unit arriving at the right station on time, see for in-
stance Maróti and Kroon [9]. Throughout the daily operations, the railway
network inevitably experiences disruptions and therefore fast rescheduling
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is required. The Rolling Stock Rescheduling Problem (RSRP) aims to find
a new rolling stock schedule that upholds as much of the passenger service
as possible and as swiftly as possible. However, during real-time operations
there is not sufficient time available to (re)schedule maintenance appoint-
ments as done during the planning phase. As a consequence, it is desirable
that maintenance appointments can be taken into account directly in the
rescheduling process.

Rolling stock units of different types are available for passenger trans-
portation. There exist large differences between the different types, there
are for instance trains with two floors (called double-deck) and trains with
a single floor. In this paper we only look at rolling stock types with small
differences. The main difference between the different types we consider is
the number of carriages of which they consist (e.g. a VIRM6 consists of
6 carriages and a VIRM4 of 4 carriages). See, for instance, Figure 1 for a
rolling stock unit of type VIRM4.

Figure 1: Rolling stock of type VIRM4

Current rolling stock rescheduling models, see for example Fioole et al.
[6], assume that all rolling stock units of the same type are interchangeable.
That means, for instance, that there is no distinction between units that
require maintenance and units that do not. As a result, after rescheduling,
the rolling stock units scheduled for maintenance will probably not be in
time for their appointment. The main contribution of this paper is the
development of three new models which are able to handle the complicating
factor that units within the same type are no longer fully interchangeable.

In passenger railway transportation, rolling stock units can be coupled to
each other to form a rolling stock composition. In this way more capacity can
be appointed to a trip. The order of the different units in a train composition
is of importance due to (un)coupling restrictions. The (un)coupling actions
of rolling stock units in a composition depend on the positions of other units
within the same composition (e.g. the unit in the middle of a composition
of 3 units cannot be uncoupled). As a result, the usage of, for instance,
a column generation technique is not evident. Therefore, a Mixed Integer
Programming (MIP) formulation for solving additonally constrained Multi-
Commodity Flow Problems is used as solution method for all three models.

The paper begins with a literature overview in Section 2. Then, the
Composition model is presented. This model is used as base model for all
three models that take maintenance into account. Thereafter, in Section 4,
the maintenance problem is explained in detail. Following, three different
approaches for including maintenance in rolling stock rescheduling models
are given. First, the Extra Unit Type model is discussed in Section 5.
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Secondly, the Shadow-Account model is presented in Section 6, and finally
the Job-Composition model is proposed in Section 7. Then, in Section 8, all
models are tested on real life instances of Netherlands Railways (NS) and
compared with respect to their computation time.

2 Literature

Cacchiani et al. [4] give an extensive literature overview on recent research
within passenger railway disruption management. Papers on rescheduling
the timetable on microscopic and macroscopic level, rescheduling the rolling
stock, and rescheduling the crew are discussed. We refer to this paper for
all literature on timetable and crew rescheduling. In the current paper the
focus is on rescheduling the rolling stock, so the remainder of the discussed
literature will be on rolling stock.

Fioole et al. [6] formulate a MIP model to assign rolling stock to the
timetable. The model is called the Composition model and is a Multi-
Commodity Flow Model with additional constraints. It is able to handle
complicated line structures, such as combining and splitting of trains. NS
has been using this model to generate the rolling stock schedules since 2004.
Their model does take the order of train units specifically into account,
however, maintenance routing is out of their scope.

The routing of maintenance units is a well studied problem in the aircraft
industry. For instance, Barnhart et al. [2], Talluri [15], and Clarke et al. [5]
propose models to solve this problem. Their models cannot be directly trans-
lated to railway scheduling models maintenance scheduling due to practical
complications, such as the order of train units within a composition.

For this reason, Maróti and Kroon [9] and Maróti and Kroon [10] pro-
pose two different MIP formulations for maintenance routing of rolling stock
in the passenger railway industry: the “Transition Model” and the “Inter-
change Model”. Both models take the scheduled rolling stock circulation
as input into account, and exchange unit duties such that maintenance re-
quirements are met.

Borndörfer et al. [3] introduce a hypergraph formulation to create a
rolling stock circulation for a generic week. In this circulation several im-
portant practical requirements are taken into account. One of these require-
ments is the scheduling of maintenance for rolling stock units. Their model
is tested on real life instances of Deutsche Bahnh. Circulations are found in
between 10 minutes and 4 days of computation time.

All of the above models are only applicable in the planning phase of
the railway process. During a disruption less time is available, and as a
result fast models have to be used to reschedule the rolling stock. Nielsen
[11] extends the model of Fioole et al. [6] to cope with rescheduling. He
formulates a MIP model with the adjusted timetable and the original rolling
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stock schedule as input, and an adjusted rolling stock schedule as output.
This model will be used as base model in this paper and is referred to as
the Composition model.

Subsequently, Nielsen et al. [12] propose a rolling horizon to solve the
RSRP. The idea behind the rolling horizon is that at the beginning of the
disruption not all information about the duration of the disruption is known:
this information becomes gradually available. The rescheduling is periodi-
cally performed within a limited rolling horizon length, possibly taking new
information into account. At each time instant where an updated timetable
becomes available, or when a certain amount of time has passed without any
update, the MIP model is solved for the rolling horizon time window. This
model is tested on instances of NS. Solutions with small deviations from the
original plan are found in a short time.

Kroon et al. [7] consider real-time rescheduling of rolling stock during
large disruptions while taking dynamic passenger flows into account. They
use a two-stage feedback loop, where in the first stage the rolling stock allo-
cation is optimized by using the model of Nielsen [11] and in the second stage
the effect of the rolling stock allocation on passenger flows is determined by
means of simulation. This simulation provides feedback in terms of passen-
ger delays due to limited capacity of the assigned rolling stock. The feedback
is then used in the optimization model to reallocate the rolling stock again,
in such a way that the total passenger delay is reduced. Given the reallo-
cation of the rolling stock, the passenger simulation is performed again and
feedback is given to the optimization model. This process continues for a
number of iterations.

Sato et al. [14] give a formulation to reallocate resources in a railway
network in case of a disruption. Resources may refer to either rolling stock
or to crew. The resources are reallocated to trips in such a way that they
differ as little as possible from the ones in the original plan. They use
two phases to solve the problem: in the first phase conflicts created by the
disruption are resolved through small changes in the resource duties. The
second phase is a local search heuristic which attempts to iteratively improve
the rescheduled resource duties. The algorithm is tested on one line of the
Japanese railway network.

In a subsequent paper, Sato and Fukumura [13] consider the problem of
reassigning locomotives to tasks in the case of a disruption in the railway
network. A task consists of hauling a number of freight carriages from one
station to another. They first enumerate possible sequences of tasks, to de-
termine the corresponding costs for each sequence. A MIP model based on
set-partitioning is used in order to assign locomotives to sequences of tasks
with minimum cost, and a column generation technique is proposed as a
solution approach. Based on the solutions found for instances of the Japan
Freight Railway Company between Kuroiso and Shimonoseki in Japan, the
authors conclude that locomotive reassignments can be found within a prac-
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tical amount of time.

3 Composition model

We start with introducing the base model, this model is based on the Com-
position model created by Fioole et al. [6] and Nielsen [11].

Let T be the set of trips in the timetable and S the set of stations. A trip
is defined as a train driving from one station where the composition may
be changed until the next station where the composition may be changed
again at a fixed point in time. Denote sdept (sarrt ) as the station where trip

t ∈ T starts (ends) and define τdept (τarrt ) as the departure (arrival) time of
trip t ∈ T .

In most countries trips are part of a predefined route. By this we mean
that a trip either has a predefined successor trip, or that the route ends
after the trip. Take Figure 2 as an example of a predefined route between
stations A, B, and C. There are two trips between stations A and B, two
trips between stations B and C, two trips between stations C and B, and
two trips between stations B and A. Trip t1 is the first trip of the route,
so t1 is not a successor of any other trip. Thereafter, we have that trip t2
succeeds t1, t3 succeeds t2, and so on. Trip t8 does not have a successor,
so the route ends after trip t8. If no coupling or uncoupling takes place, it
means that the successor trip can make use of exactly the same rolling stock
units as its predecessor. If a trip does not have a successor, so the route
ends, it means that all rolling stock units are moved to the shunting yard.

As can be seen in Figure 2, also trips at the end of a line can have a
successor. For instance, trip 3 succeeds trip 2. This is because turning can
take place between two successor trips. In that case, the rolling stock units
that will be used on the successor trip, wait at the track where the trip
arrives until the successor trip departs.

We define σ(t) as the successor trip of trip t, R as the set of routes, and
r := (t1, · · · , tn) is a route consisting of a sequence of trips, such that t1 does
not have a predecessor, that σ(ti) = ti+1 for all i = 1, · · · , n − 1 and that
σ(tn) = ∅. Then, r(t) is the (uniquely defined) route trip t is assigned to.

A

B

C

t1

t2 t3

t4 t5

t6 t7

t8

time

S
ta
ti
on

s

Figure 2: Predefined route

Now, let M be the set of rolling stock types. We denote P as the set
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of possible compositions, where a composition is an ordered combination of
rolling stock units that can be used on a trip. For example, in Figure 3 the
composition ab is appointed to trip t and the composition a is appointed to
trip σ(t). For each trip t ∈ T , P (t) denotes the set of allowed compositions
on the trip. Note that the empty composition is within P (t) for each trip,
meaning that the trip is cancelled.

A B C

t

σ(t)

a b

a

Figure 3: The successor of trip t

At the end of a trip, the composition of a train can possibly be changed,
depending on the shunting rules at the station, before departing on its suc-
cessor trip. A composition change denotes the composition of the incoming
trip, the composition of the outgoing trip, and which units are coupled or
uncoupled during the composition change. To that end, let ρ(t) be the set
of possible composition changes at the end of trip t ∈ T , pq the incoming
composition of a trip when composition change q ∈ ρ(t) is used, and oq
the outgoing composition when composition change q is used. For a given
composition change q ∈ ρ(t), αq,m denotes the number of uncoupled units of
type m ∈M and βq,m denotes the number of coupled units of type m ∈M .
For instance, the composition change ab → a takes place at station B in
Figure 3, so pq = ab and oq = a. Furthermore, αq,a = 0, αq,b = 1 , and
βq,m = 0 for both m = a and m = b.

The time at which coupling takes place just before the start of trip t ∈ T
is denoted by τ+t and the time at which an uncoupled unit is available after
uncoupling after trip t ∈ T is denoted by τ−t . Coupling and uncoupling
takes place at either the front or rear side of the train, this is defined by the
station rules. Note that in the Netherlands it is not allowed to both couple
and uncouple units at the end of the same trip. In the remainder of this
paper that is assumed to be the case as well.

The available number of units of type m ∈ M at station s ∈ S at the
beginning of the planning period is denoted by i0s,m and the desired number
of available units of type m ∈M at station s ∈ S at the end of the planning
period is given by the parameter i∞s,m. This usually is the end of the day.

The following decision variables are used in the model:

• Xt,p ∈ {0, 1} denotes whether composition p ∈ P (t) is used on trip
t ∈ T .
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• Zt,q ∈ {0, 1} denotes whether composition change q ∈ ρ(t) is used at
the end of trip t ∈ T .

• It,m ∈ Z+
0 denotes the number of units of type m ∈M in the inventory

at station sdept immediately after time τ+t .

• Ct,m and Ut,m ∈ Z+
0 denote the number of units m ∈ M that are

coupled and uncoupled at the start and end of trip t ∈ T .

• Ds,m ∈ Z denotes the deviation from the desired end of day balance
at station s ∈ S for rolling stock type m ∈M .
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Model:

min f(X,Z,D) (3.1)

subject to:∑
p∈P (t)

Xt,p = 1 ∀t ∈ T

(3.2)

Xt,p =
∑

q∈ρ(t):pq=p

Zt,q ∀t ∈ T, p ∈ P (t)

(3.3)

Xσ(t),p =
∑

q∈ρ(t):oq=p

Zt,q ∀t ∈ T, p ∈ P (σ(t))

(3.4)

Cσ(t),m =
∑
q∈ρ(t)

βq,mZt,q ∀t ∈ T,m ∈M

(3.5)

Ut,m =
∑
q∈ρ(t)

αq,mZt,q ∀t ∈ T,m ∈M

(3.6)

It,m = i0
sdept ,m

−
∑
t′∈At

Ct′,m +
∑
t′∈Bt

Ut′,m ∀t ∈ T,m ∈M

(3.7)

i∞s,m = i0s,m −
∑

t∈T,sdept =s

Ct,m +
∑

t∈T,sarrt =s

Ut,m +Ds,m ∀s ∈ S,m ∈M

(3.8)

Xt,p ∈ {0, 1} ∀t ∈ T, p ∈ P (t)
(3.9)

Ct,m, Ut,m, It,m ∈ R+ ∀t ∈ T,m ∈M
(3.10)

Ds,m ∈ R+ ∀s ∈ S,m ∈M
(3.11)

Zt,q ∈ R+ ∀t ∈ T, q ∈ ρ(t)
(3.12)

Here the subsets At and Bt are defined as:

1. At = {t′ ∈ T : sdept′ = sdept , τ+t′ ≤ τ
+
t }

2. Bt = {t′ ∈ T : sarrt′ = sdept , τ−t′ ≤ τ
+
t }

Constraint (3.2) specifies that to each trip exactly one composition is
assigned, this composition is in the set of allowed compositions, P (t), of
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that trip. Note that the compositions of the trips before and at the start of
the disruption are fixed, because these trips are already underway. For those
trips the set of allowed compositions consists of only a single composition.
Constraint (3.3) states that if composition p ∈ P is assigned to trip t ∈ T ,
then only a composition that can originate from p can be assigned to the
succeeding trip σ(t). Constraint (3.4) states that if composition p ∈ P is
assigned to the succeeding trip σ(t), then only a composition that fits with
composition p can be assigned to trip t ∈ T .

Constraint (3.5) specifies the number of coupled rolling stock units at the
beginning of a trip and Constraint (3.6) specifies the number of uncoupled
rolling stock units at the end of a trip. Constraint (3.7) denotes the inventory

level of rolling stock type m ∈ M at station sdept immediately after time
τ+t . Note that at the shunting area there are no longer whole compositions
present: all units within a composition are detached from each other at the
shunting area, and as a result only the inventory per rolling stock type is
registered. Constraint (3.8) specifies the end of day balance at a station plus
the total deviation from the scheduled end of day balance.

The other constraints specify the character of the decision variables.
Since Xt,p is binary, all other variables can be defined as continuous vari-
ables. All constraints are defined such that those variables are integer in the
solution, see Maróti [8].

The objective function (3.1) depends on the appointed compositions (X),
this includes the number of cancelled trips, the capacity shortages, and the
number of carriage kilometers. The objective furthermore depends on the
shunting movements (Z): modified shunting movements, with respect to the
original plan, are penalized. Finally, the total deviation from the end of day
balance (D) is penalized.

The output of this model is a list of trips with compositions appointed
to them. Note that these compositions can be decomposed into duties for
rolling stock units, because an integer flow can always be decomposed into
unit valued path flows, see Ahuja et al. [1]. However, the Composition model
assumes all units of the same type m ∈M to be interchangeable. As a result,
the model is unable to create a circulation where the rolling stock units that
require maintenance are on time for their maintenance appointment.

4 Maintenance problem

In this section the maintenance problem is explained in detail. We start
with an example of the problem, thereafter the notation used throughout
the paper for the maintenance problem is discussed.
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4.1 Example of the maintenance problem

See Figure 4 for a time-space diagram of the scheduled rolling stock circula-
tion on the 3000 series between the stations Nijmegen (Nm) and Den Helder
(Hdr). This circulation is infeasible due to a disruption between the stations
Utrecht (Ut) and Amsterdam (Asd) from 09:00-11:00. There are in total 25
rolling stock units available, whereof two rolling stock units require mainte-
nance, one that starts in Alkmaar (Amr) with an appointment at 16:00 at
station Nm (black line) and one that starts in Hdr with an appointment at
22:00 at station Nm (dark gray line). All units have an appointment that
lasts for two hours, thereafter they are available for usage again. The circu-
lation needs to be rescheduled for the remainder of the day, preferably such
that the maintenance appointments are still reached by the corresponding
rolling stock units which require it.

Figure 4: Time space diagram with a disruption

Figure 5 shows the solution after rescheduling. As can be seen, both
units are still on time for their maintenance appointment. The models we
discuss in the coming sections are able to reschedule the rolling stock in this
way.

The problem is thus to guide individual rolling stock units in time to
a maintenance facility. This requires extensions of the Composition model,
since this model does not distinguish individual rolling stock units.

4.2 Notation

The notation for maintenance units we use throughout this paper is the
following. Let M ′ be the set of rolling stock units that require maintenance.
Denote hm as the time unit m ∈M ′ has its maintenance appointment, gm as
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Figure 5: Rescheduled time space diagram

the duration of the appointment, and fm as the location of the appointment.
Furthermore, all maintenance units still belong to their original rolling stock
type (e.g. a unit of type a that requires maintenance is still a unit of type
a). To that end, let bm ∈ M be the corresponding rolling stock type of
unit m ∈ M ′. Finally, note that rolling stock units, with a maintenance
appointment at the same time, at the same location, and with the same
corresponding original type, can have the same maintenance type m ∈ M ′.
Then, am denotes the number of units that require the specific maintenance
check.

5 Extra train unit types for maintenance

The Extra Unit Type (EUT) model is an extension of the Composition
model. By adding additional rolling stock types for every rolling stock unit
that is scheduled to have a maintenance check, maintenance constraints can
specifically be set on those units.

Take the same example as in the previous section. There are 25 rolling
stock units, this time 10 units of type a and 15 units of type b. There are
again 2 units that require maintenance, one of type a starting in Alkmaar
with an appointment at Nijmegen at 16:00 and one of type b starting in Den
Helder with an appointment at Nijmegen at 22:00. That means that the
following rolling stock types are put in the model: a (9 units), b (14 units),
a∗ (1 unit) and b∗ (1 unit). So, two additional rolling stock types have been
added to the model.

Rolling stock units that require maintenance need to be in inventory
at the specified location and time for their appointment. The inventory
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is measured immediately after the coupling time, τ+t , of every trip t ∈ T ,
see Constraint (3.7). Thus to be able to determine the inventory at the
time of a maintenance appointment, there needs to be a trip departing
from the station where the appointment takes place at exactly the time the
appointment takes place. Therefore, trip t′ is added to the set of trips T
for every maintenance appointment m ∈ M ′ with parameters τdept′ = hm =

τarrt′ = τ+t′ and sdept′ = fm = sarrt′ . This trip is only used to measure the
inventory, therefore no composition may be appointed to this trip, so the
set of allowed compositions P (t′) consists of only the empty composition.
To measure the inventory at the end of a maintenance appointment, we
add a second artificial trip t′′ to the set of trips T for every maintenance
appointment m ∈ M . This trip t′′ has the following parameters: τdept′′ =

hm+ gm = τarrt′′ and sdept′′ = fm = sarrt′′ . No composition may be appointed to
this trip as well, so, the set of allowed compositions, P (t′′), consists of only
the empty composition.

The units that require maintenance are added as separate rolling stock
types to the set M , and we introduce the decision variable Appt,m, to denote
the number of rolling stock units of type m ∈ M that are not available at
their maintenance location immediately after time τ+t . Then, Constraint
(5.1) denotes that maintenance units need to be in inventory at the time of
their appointment and during the duration of their appointment. Otherwise
Appt,m is equal to the number of units of type m ∈M that are not at their
appointment immediately after time τ+t . Note that Constraint (5.1) is only
for maintenance units, because the restriction am > 0 is only true for units
requiring maintenance. Furthermore, the inventory is measured immediately
after every departing and arriving trip, thus a rolling stock unit cannot leave
the inventory in between two measurements. As as result, a penalty value
θt can be set upon units being late for their maintenance appointment, or
even missing their maintenance appointment completely.

It,m +Appt,m ≥ am ∀t ∈ T,m ∈M : am > 0, sdept = fm,

hm ≤ τ+t ≤ (hm + gm) (5.1)

A drawback of this approach is that, by taking additional rolling stock
types into account, the number of possible compositions increases rapidly.
The number of possible compositions depends on the number of different
rolling stock types available and on the maximum lengths of the trains.
Usually no more than 5% of the rolling stock units are scheduled for main-
tenance during the day. Therefore, we make a simplification by restricting
a composition to contain at most one maintenance unit. As a result, the
increase in the number of compositions after adding an additional rolling
stock type due to maintenance appointments only depends on the number
of original rolling stock types. Indeed, a composition of length k, measured
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in the number of rolling stock units, consists of at most 1 unit that requires
maintenance and at least k − 1 original units that do not require mainte-
nance. Denote n as the number of original rolling stock types available.
Adding one additional type leads thus to nk−1 · k new compositions of size
k. The maximum length of a composition, measured in number of units, is
denoted by c. Adding one additional rolling stock unit that requires main-
tenance then leads to a total increase in the number of compositions that is
equal to:

c∑
k=1

(nk−1 · k) =
c · nc+1 − (c+ 1) · nc + 1

(n− 1)2

=
(c(n− 1)− 1) · nc + 1

(n− 1)2

This is polynomial in n, since c is fixed, but in most cases it is not
quadratic in n.

6 The shadow account for maintenance

6.1 Introduction

The second approach to include maintenance in the rolling stock reschedul-
ing problem is keeping track of a shadow account (SA). A shadow account is
a second rolling stock circulation with the focus on rolling stock units that
require maintenance. The SA has to match with the original circulation.
To that end a shadow unit is created for every available rolling stock unit.
A shadow unit is not denoted by a rolling stock type (e.g. a or b), but by
a ‘maintenance’ type (e.g. 0, 1, 2) representing maintenance appointments.
A unit with SA type 0 stands for a unit that does not require maintenance
and a unit with SA type 1, ..., x stands for a unit that is scheduled to have
a maintenance check. So, in the shadow account most units are of SA type
0 and just a few units have a different SA type.

For instance, consider the same situation as in the previous section.
There are 10 rolling stock units of type a and 15 units of type b. The
same 2 units require maintenance, one of type a starting in Alkmaar with
an appointment at 16:00 in Nijmegen and one of type b starting in Den
Helder with an appointment at 22:00 in Nijmegen. In the normal part of
the problem there are still 10 units of type a and 15 units of type b, however
in the shadow account there are 23 units of type 0, one unit of type 1, and
one unit of type 2.

See Figure 6 for the rolling stock circulation of all the original units. As
can be seen, the original circulation represents only the original units, it is
not clear which units have a maintenance appointment and which units do
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not. On the other hand, see Figure 7 for the SA circulation. In this circula-
tion there is no distinction between units that do not require maintenance,
they are all represented by light gray lines. However, there is a distinction
between units that require maintenance (dark gray and black lines), so this
circulation is specifically used to create maintenance paths. The two circu-
lations have to match, otherwise the maintenance paths cannot be used.

Figure 6: A solution for the Normal part, gray line = type a, black line =
type b

As in the previous section, we denote M as the set of different rolling
stock types, and the maximum size of a composition is still denoted by
c. Assuming that every composition contains at most one unit that re-
quires maintenance, one can verify that the total number of additionally re-
quired compositions after adding one unit that requires maintenance equals∑c

k=1 k = 1
2c(c+ 1). For example, a composition of length three (000) leads

to three new compositions (100, 010, 001). The increase is quadratic in c and
no longer depends on n.

The constraints in the complete SA model can be decomposed into three
different parts: The Normal part, the SA part, and the Linking part.

The Normal part is exactly the same as the Composition model. So,
the normal part consists of constraints (3.2)-(3.12). The other parts will be
discussed in the coming subsections.

6.2 Shadow Account part

The SA part should create a rolling stock circulation for the shadow units.
To that end, redefine the set M ′ to be the set of SA types (0, ..., x). Let a′m be
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Figure 7: A matching solution for the SA part

the available number of units of typem ∈M ′. Furthermore, bm ∈M denotes
the corresponding name of the original type of m ∈M ′ (e.g. if a SA unit 1
corresponds to a normal unit a, then b1 = a). Let P ′ be the set of possible
SA compositions. For each trip t ∈ T , P ′(t) denotes the set of allowed SA
compositions. Furthermore, let Q′ be the set of allowed SA composition
changes. Denote ρ′(t) as the allowed composition changes at the end of trip
t ∈ T in the SA part. For q ∈ ρ′(t) the incoming composition is denoted by
p′q and the outgoing composition by o′q. Within a given composition change
q ∈ Q′, α′q,m denotes the number of uncoupled units of type m ∈ M ′ and

β′q,m denotes the number of coupled units of type m ∈ M ′. Finally, i′,0s,m
denotes the number of units of type m ∈ M ′ in the inventory at station
s ∈ S at the start of the planning period. By definition, the total number
of SA units in inventory at the start of the day is equal to the number of
normal units in inventory at the start of the day.∑

m∈M ′
i′,0s,m =

∑
m∈M

i0s,m ∀s ∈ S (6.1)

Note that this is not a constraint, but a condition that is to be satisfied by
the data.

The decision variables required for the SA part are:

• X ′t,p ∈ {0, 1} denotes whether composition p ∈ P ′(t) is used on trip
t ∈ T .

• Z ′t,q ∈ {0, 1} denotes whether composition change q ∈ ρ′(t) is used at
the end of trip t ∈ T .
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• I ′t,m ∈ Z+
0 denotes the number of SA units of type m ∈ M ′ in the

inventory at station sdept immediately after time τ+t .

• C ′t,m and U ′t,m ∈ Z+
0 denote the number of SA units m ∈ M ′ that are

coupled and uncoupled at the start and end of trip t ∈ T .

The following constraints are then used in the SA part:∑
p∈P ′(t)

X ′t,p = 1 ∀t ∈ T (6.2)

X ′t,p =
∑

q∈ρ′(t):p′q=p

Z ′t,q ∀t ∈ T, p ∈ P ′(t) (6.3)

X ′σ(t),p =
∑

q∈ρ′(t):o′q=p

Z ′t,q ∀t ∈ T, p ∈ P ′(σ(t)) (6.4)

C ′σ(t),m =
∑
q∈ρ′(t)

β′q,mZ
′
t,q ∀t ∈ T,m ∈M ′ (6.5)

U ′t,m =
∑
q∈ρ′(t)

α′q,mZ
′
t,q ∀t ∈ T,m ∈M ′ (6.6)

I ′t,m = i′,0
sdept ,m

−
∑
t′∈At

C ′t′,m +
∑
t′∈Bt

U ′t′,m ∀t ∈ T,m ∈M ′ (6.7)

X ′t,p ∈ {0, 1} ∀t ∈ T, p ∈ P ′(t) (6.8)

C ′t,m, U
′
t,m, I

′
t,m ∈ R+ ∀t ∈ T,m ∈M ′ (6.9)

Z ′t,q ∈ R+ ∀t ∈ T, q ∈ ρ′(t) (6.10)

All SA constraints operate in the same way as the corresponding con-
straints in the Normal part.

6.3 Linking part

The Normal part creates a rolling stock circulation for the normal unit types
(e.g. a, b). The SA part creates a second rolling stock circulation for the
SA unit types (e.g. 0, 1, 2). The SA part should give a shadow account of
the first part. That means that the SA part should be linked to the Normal
part. First of all, the solutions of both parts need to be equal in terms of
the lengths of the compositions assigned to a trip, the numbers of coupled
and uncoupled rolling stock units at the end of a trip, and the numbers of
normal and SA rolling stock units in inventory at all times. Secondly, the
flow of a rolling stock unit that requires maintenance in the SA part has to
be linked to the flow of its corresponding original unit in the Normal part.

Consequently, for the first link we introduce the parameter Np, denoting
the total number of units in composition p ∈ P , and Υ as the set of allowed
composition lengths in terms of number of units, hence Υ = {0, 1, 2, · · · , c}.
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Theorem 6.1. Constraint (6.11) is sufficient and necessary to connect the
Normal and SA part in terms of lengths of the assigned compositions, the
numbers of coupled/uncoupled units at the end of a trip, and the number of
units in inventory.

∑
p∈P (t):Np=υ

Xt,p =
∑

p∈P ′(t):Np=υ

X ′t,p ∀t ∈ T, υ ∈ Υ (6.11)

Proof : By definition of Constraint (6.11) we have that the lengths of
the compositions of each trip, expressed in the number of units in the com-
positions, in the Normal and SA part are equal. Furthermore, we claim
that by using Equation (6.11) the variables Ut,m & U ′t,m, Ct,m & C ′t,m, and
It,m & I ′t,m are linked. We will prove this in steps.

• Ut,m and U ′t,m. We will show that
∑
m∈M

Ut,m =
∑

m∈M ′
U ′t,m for all t ∈ T

by contradiction. Assume that
∑
m∈M

Ut,m >
∑

m∈M ′
U ′t,m for at least one

trip t ∈ T . This means that at the end of trip t more units are uncou-
pled in the Normal than in the SA part. By definition of Constraint
(6.11) the lengths of the compositions assigned to trip t and its succes-
sor σ(t) are equal. It is assumed that more units are uncoupled at the
end of trip t in the Normal part. This is only possible if also more units
are coupled there, otherwise the lengths of the compositions assigned
to trip σ(t) are not equal. However, it is not allowed to both couple
and uncouple units at the end of a trip. This leads to a contradiction,
and so

∑
m∈M

Ut,m ≤
∑

m∈M ′
U ′t,m.

The same proof holds in the other direction, thus
∑

m∈M ′
U ′t,m ≤

∑
m∈M

Ut,m.

We can conclude that∑
m∈M ′

U ′t,m =
∑
m∈M

Ut,m ∀t ∈ T

.

• Ct,m and C ′t,m, we can use the same proof as for Ut,m and U ′t,m to find
that: ∑

m∈M ′
C ′t,m =

∑
m∈M

Ct,m ∀t ∈ T

• It,m and I ′t,m. Assume that
∑
m∈M

It,m >
∑

m∈M ′
I ′t,m immediately after

time τ+t of at least one trip t ∈ T . The inventories at the start of the
day are by definition equal, see Equation (6.1), so a difference between
It,m and I ′t,m arises during the operations. Note that∑

m∈M
It,m =

∑
m∈M

(i0s,m −
∑
t′∈At

Ct′,m +
∑
t′∈Bt

Ut′,m)
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and ∑
m∈M ′

I ′t,m =
∑
m∈M ′

(i′,0s,m −
∑
t′∈At

C ′t′,m +
∑
t′∈Bt

U ′t′,m)

This means that a difference between It,m and I ′t,m can only be caused
by either the start inventory, Ct,m or Ut,m, but we just showed that∑
m∈M

Ct,m =
∑

m∈M ′
C ′t,m and

∑
m∈M

Ut,m =
∑

m∈M ′
U ′t,m. So, it holds that

∑
m∈M

It,m =
∑
m∈M ′

I ′t,m ∀t ∈ T

The second link needs to achieve that if a SA unit of type m′ ∈M ′, with
m′ 6= 0, is appointed to trip t ∈ T in the SA part, then its corresponding
normal type bm′ ∈M is appointed to trip t in the Normal part. To this end,
denote wi,p as the unit assigned to position i ∈ {1, · · · , k} in composition
p ∈ P (P ′). When a SA unit of type m′ ∈ M ′ : m′ 6= 0 resides in a SA
composition on position i, then a corresponding normal unit m ∈ M : m =
bm′ needs to reside on position i as well, see Constraint (6.12). Finally, as
long as a unit of type m′ ∈ M ′ : m′ 6= 0 is in inventory, a unit of type
m ∈M : bm′ = m must be in inventory as well, see Constraint (6.13).

∑
p∈P ′

wi,p=m
′

X ′t,p ≤
∑
p∈P

wi,p=bm′

Xt,p ∀t ∈ T, i ∈ {1, · · · , k},m′ ∈M ′ : m′ 6= 0

(6.12)

I ′t,m′ ≤ It,bm′ ∀t ∈ T, m′ ∈M ′ : m′ 6= 0

(6.13)

In this way the SA part adheres to the Normal part and as a result
constraints can be set to force a maintenance unit to be on time for its
appointment. We introduce the decision variable Appt,m denoting the num-
ber of rolling stock units of type m ∈ M ′ that are not in inventory at
their corresponding maintenance location at time τ+t . In the same way as
in the EUT model, additional trips need to be added to the set of trips
T to measure the inventory at the time a maintenance appointment takes
place and at the time the maintenance appointment is finished. For all
rolling stock units with a maintenance appointment m ∈ M ′, we add trip
t′ and trip t′′ to the set of trips T . The parameters of these trips are
equal to: τdept′ = hm = τarrt′ = τ+t′ and sdept′ = fm = sarrt′ for trip t′ and

τdept′′ = hm + gm = τarrt′′ and sdept′′ = fm = sarrt′′ for trip t′′. Because these trips
are only used to measure the inventory, no composition may be appointed
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to them, so the set of allowed compositions P (t′), P ′(t′), P (t′′), and P ′(t′′)
consists of only the empty composition.

Then, Constraint (6.14) specifies that either a maintenance unit is present
at the station where its maintenance appointment is scheduled at the time
of the appointment for the duration of the appointment, or the unit is too
late or misses its appointment completely. The objective function is then
extended with the variable Appt,m and a penalty value θt, just as in the EUT
model. Constraint (6.14) is only needed for maintenance units m ∈M ′, with
m 6= 0.

I ′t,m +Appt,m ≥ am ∀t ∈ T,m ∈M ′ : m 6= 0, sdept = fm,

hm ≤ τ+t ≤ hm + gm (6.14)

7 Job-Composition model

In this section the third model to take maintenance into account in the RSRP
is introduced. This model is called the Job-Composition (JC) model. At the
beginning of a day all rolling stock units are in inventory. During the day,
a particular unit is being appointed to a certain departing trip and fulfills
a number of successor trips until the particular unit is being uncoupled and
becomes part of the inventory again. A job is such a sequence of successor
trips between coupling and uncoupling. So, a job starts when a unit is
coupled to a trip, and the job ends when the unit is uncoupled from a trip.

The problem now becomes to assign rolling stock units to both trips
and jobs. In the JC model we appoint only normal units to trips, and we
appoint both normal and maintenance units to jobs, while linking the units
that require maintenance to their original units just as in the SA model. In
this way, no additional compositions have to be taken into account for every
unit that requires a maintenance appointment. A complicating factor is that
certain jobs may block each other. If a job ends, it means that the unit ap-
pointed to it is uncoupled. If a different job is blocking the uncoupling, then
the two jobs are called incompatible. We present constraints that prevent
two incompatible jobs to be chosen. A disadvantage of this formulation is
that the number of jobs can become large when there are many trips or the
maximum turnaround time is long.

7.1 Jobs

We create a list of all possible jobs during the day and denote J as this set
of all possible jobs. Let T (j) be the set of trips covered by job j. Every
job j ∈ J has a start (and final) trip denoted by λj (γj). For all trips
t1, · · · , tn ∈ T (j) we have that λj = t1, σ(ti) = ti+1, and tn = γj . As can
be seen from this notation, every job j ∈ J takes place on a route r ∈ R.
Remember that the length of a predefined route depends on the shunting
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rules at a station and on the maximum turnaround time, as explained in
Section 3.

Along each route r ∈ R runs a train vr, which consists of the actual train
units that are used on the different trips within the route. Each physical
train has two sides, from now on called the A and B-side of the train. For
every first trip of a route r ∈ R, we define the A-side to be in front. We
denote ζt as the side of train vr that is in front at the start of trip t ∈ T in
route r ∈ R and ζ−1t as the side that is in the rear.

Within a route r ∈ R, turnings can possibly take place. In, for instance,
Figure 2 a route (t1, · · · t8) with 3 turnings is shown. After train vr turns,
its front and rear side change. So, in order to keep track of which side is
in front at the start of trip t ∈ T , we need to keep track of the number of
turnings taking place in route r(t) up to trip t. To that end, denote turnt
as the number of turnings taking place in route r(t) up to the start of trip
t ∈ T . Then, ζt can be defined as in Equation (7.1).

ζt =

{
A If turnt is even or 0
B otherwise

(7.1)

Coupling can take place at the start of trip t ∈ T . It is predefined
whether a unit is coupled to the rear or to the front of the incoming train,
depending on the station rules. Let ηt denote whether a unit has to be
coupled to the front (ηt = 1) or to the rear (ηt = 0) of the incoming train.
Both the A and B side can be in front of the incoming train, this depends
on the number of turnings taking place up to trip t. We define the coupling
side ωj ∈ {A,B} as the side where coupling takes place at the start of job
j ∈ J . The coupling side is determined as in Equation (7.2).

ωj =

{
ζλj If ηλj = 1

ζ−1λj otherwise
(7.2)

At the end of trip t, a unit can be uncoupled from the composition. Just
as with coupling, it is predefined, based on station rules, whether a unit is
uncoupled from the rear or the front of the incoming train. To this end, let
η′t denote whether a unit has to be uncoupled from the front (η′t = 1) or the
rear (η′t = 0) of the incoming train. This can still be the A or B-side of the
incoming train, that depends on the number of turnings taking place up to
trip t. We denote πj as the side where uncoupling takes place at the end of
job j ∈ J , called the uncoupling side. The uncoupling side is determined as
in Equation (7.3).

πj =

{
ζγj If η′γj = 1

ζ−1γj otherwise
(7.3)

Definition 1. A set of jobs J ′ ⊂ J on route r ∈ R is said to be compatible,
if every job j ∈ J ′, that is coupled at the start of trip λj ∈ T with coupling
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side ωj, can be uncoupled at its uncoupling side πj after trip γj ∈ T without
being blocked by any other job j′ ∈ J ′.

Lemma 7.1. A set of jobs J ′ ⊂ J is compatible if and only if for each pair
of jobs j and j′ ∈ J ′ the following two conditions hold:

• If τdepλj
< τdepλj′

< τarrγj < τarrγj′
, then ωj′ 6= πj

• If τdep
λ′j

< τdepλj
< τarrγj < τarrγj′

, then ωj = πj

Proof : Assume that the set of jobs J ′ is compatible. Let j and j′ be
a pair of jobs in J ′. First, suppose τdepλj

< τdepλj′
< τarrγj < τarrγj′

. Since,

by assumption, the uncoupling side of job j is not blocked by job j′, we
have that ωj′ 6= πj . Otherwise job j is being blocked. Second, suppose

τdep
λ′j

< τdepλj
< τarrγj < τarrγj′

. Again, the uncoupling of job j is not blocked by

job j′, so we must have that ωj = πj . This completes the “only-if”-part of
the proof of the lemma.

Next, suppose that each pair of jobs j and j′ ∈ J ′ satisfies the two
condition, and that the set J ′ is not compatible. Then, by definition there
is at least one job j ∈ J , whose uncoupling after trip γj from its uncoupling
side πj is blocked by another job j′ ∈ J ′. Clearly, T (j) ∩ T (j′) 6= ∅ and
τarrj < τarrj′ . The latter follows from the fact fact that if the end times of
the job are the same, then also their uncoupling sides would be the same.
Thus job j′ would not be blocking the uncoupling of job j in that case.

Furthermore, if τdepλj
= τdepλj′

, then, without loss of generality, we may

assume that job j′ is not blocking the uncoupling of job j. Otherwise the
positions of jobs j and j′ in the train could have been interchanged just
before coupling. Thus we may assume that τdepλj

6= τdepλj′
. That leaves us with

the cases τdepλj
< τdepλj′

and τdepλj′
< τdepλj

.

If τdepλj
< τdepλj′

, then we have τdepλj
< τdepλj′

< τarrγj < τarrγj′
. Thus by

assumption we have that ωj′ 6= πj . In addition, if τdepλj′
< τdepλj

, then we have

that τdepλj′
< τdepλj

< τarrγj < τarrγj′
. Thus by assumption we have that ωj = πj .

However, it is clear that in both cases job j′ does not block the uncoupling
of job j. This contradiction completes the proof of the lemma.

Corollary 1. A set of jobs J ′ ⊂ J is compatible if and only if each pair of
jobs in J ′ is compatible.

Proof : A set of jobs is compatible if each job j ∈ J ′ can be uncoupled
without being blocked by another job j′ ∈ J ′. This automatically means
that all jobs are pairwise compatible, which completes the “only-if” part of
the proof.
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Next, suppose each pair of jobs j, j′ ∈ J ′ to be compatible and assume
that set J ′ is not compatible. Then, by definition of an incompatible set,
there must be a job j whose uncoupling is blocked by a different job j′ ∈ J ′.
However, that would indicate that job j and j′ are not compatible, which
gives a contradiction and so we have that J ′ is compatible.

A set of jobs is not compatible if it contains a pair of jobs not fullfilling
one of the two conditions in Lemma 7.1. As a result, we can add constraints
to the model such that there is no such pair of jobs selected by the model.
So, no pair of jobs of the sets JP 1 and JP 2, described by Equations (7.4)
and (7.5), may be chosen.

JP 1 = {(j, j′) ∈ J×J : T (j)∩T (j′) 6= ∅∧τdepλj
< τdepλj′

< τarrγj < τarrγj′
∧ωj′ = πj}

(7.4)

JP 2 = {(j, j′) ∈ J×J : T (j)∩T (j′) 6= ∅∧τdepλj′
< τdepλj

< τarrγj < τarrγj′
∧ωj 6= πj}

(7.5)

7.2 Further notation

During the whole day jobs are performed by rolling stock units. At the
moment a disruption occurs, there are jobs already being performed by
rolling stock units. Compositions of trips that have already departed at the
start of the disruption cannot be changed. However, jobs can be changed,
as long as the compositions appointed to the trips before the disruption
takes place do not change. Denote the set of trips that have departed before
the disruption and that are still operational at the start of the disruption
by T< ⊂ T and set the parameter Gt,p equal to 1 if composition p ∈ P is
assigned to trip t ∈ T<.

The notation of the maintenance units is the same as in Section 4.2. We
add additional trips t′ and t′′ for all rolling stock units with a maintenance
appointment. These trips have the following parameters: τdept′ = hm =

τarrt′ = τ+t′ , s
dep
t′ = fm = sarrt′ , τdept′′ = hm + gm = τarrt′′ = τ+t′′ , and sdept′′ = fm =

sarrt′′ . These trips are only used to measure the inventory, so no composition
may be appointed to them. Finally, the following additional variables are
necessary in the JC model:

• Kt ∈ {0, 1} denotes whether trip t ∈ T is cancelled or not.

• Wj ∈ {0, 1} denotes whether job j ∈ J is used or not.

• Yj,m ∈ Z+ denotes the number of rolling stock units m ∈M that cover
job j ∈ J .

• Qj,m′ ∈ {0, 1} denotes whether job j ∈ J is covered by a maintenance
unit m′ ∈M ′.
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• It,m′ ∈ R+ denotes the inventory of maintenance unit m′ ∈ M ′ at

station sdept , just after the departure of trip t ∈ T .

• Appt,m′ ∈ Z+ denotes the number of maintenance units of type m′ ∈
M ′ that are not available at their maintenance location immediately
after time τ+t .

7.3 Model

Most of the constraints of the Composition model are used in the JC model
as well. The Composition model is a strong formulation with many equali-
ties, using this part in the JC model speeds up the computation. Besides the
computation time, the Composition model makes it easy to fix compositions
of trips that have departed before the disruption occurs. That is why all
variables and constraints of the Composition model are used in the model.
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The following additional constraints are part of the model as well:

min f(X,D,Z,K,App) (7.6)∑
j∈J :T (j)3t

Wj +Kt ≥ 1 ∀t ∈ T

(7.7)∑
m∈M

Yj,m ≥Wj ∀j ∈ J

(7.8)

Xt,p = Gt,p ∀t ∈ T<, p ∈ P
(7.9)

Ct,m =
∑

j∈J :λj=t
Yj,m ∀t ∈ T,m ∈M

(7.10)

Ut,m =
∑

j∈J :γj=t
Yj,m ∀t ∈ T,m ∈M

(7.11)

Wj +Wj′ ≤ 1 ∀(j, j′) ∈ JP 1 ∪ JP 2

(7.12)

It,m′ = i0
sdept ,m′

−
∑
t′∈At

∑
j∈J
λj=t

′

Qj,m′ +
∑
t′∈Bt

∑
j∈J
γj=t

′

Qj,m′ ∀t ∈ T,m′ ∈M ′

(7.13)

It,m′ +Appt,m′ ≥ am′ ∀m′ ∈M ′, t ∈ T : sdept = fm′ ,

hm′ ≤ τ+t ≤ hm′ + gm′

(7.14)

Qj,m′ ≤ Yj,m ∀j ∈ J,m′ ∈M ′,m ∈M : bm′ = m
(7.15)

It,m′ ≤ It,m ∀t ∈ T,m′ ∈M ′,m ∈M : bm′ = m
(7.16)

Wj ∈ {0, 1} ∀j ∈ J
(7.17)

Yj,m ∈ Z+ ∀j ∈ J,m ∈M
(7.18)

It,m′ ∈ R+ ∀t ∈ T,m′ ∈M ′
(7.19)

Qj,m′ ∈ {0, 1} ∀j ∈ J,m′ ∈M ′
(7.20)
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7.4 Explanation of the constraints

Constraint (7.7) states that at least one job covers trip t ∈ T or else the
trip is cancelled. Every chosen job has to be performed by at least one
rolling stock type m ∈ M , see Constraint (7.8). All trips t ∈ T< that have
departed before the start of the disruption should have the same composition
as originally appointed, this is modelled by Constraint (7.9).

Constraint (7.10) states that the number of coupled units at the start of
a trip is equal to the number of units that start their job at the trip, and
the number of uncoupled units at the end of a trip is equal to the number of
units that finish their job at the end of the trip, as modelled by Constraint
(7.11). Note that Constraints (3.5) and (3.6) are required to link the Job
part to the Composition part of the model, this is due to the fact that the
start or end of a job in the Job part leads to a composition change in the
Composition part.

At most one job of each pair of jobs in the sets JP 1 and JP 2 can be
chosen to be performed. This is modelled by Constraint (7.12).

Constraint (7.13) keeps track of the inventory of maintenance units
m′ ∈M ′ at the beginning of trip t ∈ T . Constraint (7.14) states that every
maintenance unit must be in inventory for the duration of its appointment,
at the right location and for the right duration or else the unit was either
too late or missed its appointment completely. The inventory at a station
is measured at every departing trip at that station, so units cannot leave
the inventory in between two trips. Just as in the SA model, linking con-
straints are required between the maintenance units and the corresponding
normal units. If a maintenance unit m′ ∈M ′ is used on job j ∈ J , then its
corresponding original type bm′ ∈ M must also be appointed to job j ∈ J ,
see Constraint (7.15). The same holds for the inventory: if a maintenance
unit of type m′ ∈ M ′ is in inventory, then at least one of its corresponding
units of type bm′ ∈ M must also be in inventory, as is required by Con-
straint (7.16). Finally, Constraints (7.17)-(7.20) specify the domains of the
variables.

The same objective is used as in the other models, as can be seen in
Equation (7.6).

Note that the assumption that multiple maintenance units cannot occur
in the same composition is no longer necessary to reduce the computation
time within the JC model. This is because the number of possible com-
position changes does not depend on the number of maintenance units. In
this paper we did not loosen this assumption, because we want to have
comparable results between all three models.

25



7.5 Strengthening the formulation

In the previously described model there are only constraints forbidding pairs
of jobs to be chosen at the same time. However, these constraints can be
tightened by forbidding sets, instead of pairs, of jobs to be chosen at the
same time.

To that end, we define the undirected graph Gr = (Vr, Er), where the
jobs J in route r ∈ R are the set of vertices Vr. There is an edge e between
every two jobs j and j′, if and only if (j, j′) ∈ JP1 ∪ JP2. This means that
every pair of adjacent jobs is not compatible. We call this graph the conflict
graph of route r.

A clique is a subset of vertices cl ⊂ Vr , such that for every two vertices
in cl, there exists an edge connecting the two. So, every clique of jobs,
cl ⊆ Vr within the conflict graph Gr is a set of pairwise incompatible jobs.
We could hence strengthen our formulation by adding inequalities (7.21) for
some cliques cl.∑

j∈cl
Wj ≤ 1 ∀r ∈ R, cl ⊂ Vr : cl clique (7.21)

Finding and adding all cliques (or all cliques which are maximal with respect
to inclusion) could increase the size of the IP and the overall solution time
drastically, since there could be an exponential number of those cliques. For
this reason, we add only some easy to find cliques. We make use of two
types of cliques, as described below.

Both types of cliques contain jobs j1, j2, ..., jn ∈ J . All jobs have at
least one common trip. Furthermore, for both types it holds that the unit
appointed to job ji, i ∈ {1, ..., n− 1}, is coupled to the composition earlier
than the unit appointed to job ji+1.

The first type of cliques (JB1) in our conflict graph is constructed such
that in each clique job j1 is uncoupled first, then j2 and so on. Furthermore,
the uncoupling side of job ji is equal to the coupling side of jobs ji+1, ji+2,
· · · , jn (πji = ωji+1 = ωji+2 = · · · = ωjn). This is not possible, because the
units appointed to jobs ji+1, · · · , jn are in the way. So, all tuples of jobs
within JB1 are pairwise incompatible.

The second type of cliques within our conflict graph, JB2, is defined
such that in each clique job ji+1 is uncoupled before job ji is uncoupled.
Furthermore, the uncoupling side of job ji+1 is different from the side where
it was coupled. This is not possible, because the units appointed to job
j1, j2, · · · , ji are still there (see the set JP 2 as example of a single job being
in the way). So, all tuples of jobs within JB2 are pairwise incompatible.
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JB1 ={(j1, j2, · · · , jn) ∈ J × J × · · · × J : T (j1) ∩ T (j2) ∩ · · · ∩ T (jn) 6= ∅

∧ τdep
j1

< τdep
j2

< ... < τdepjn < τarrj1 < τarrj2 < ... < τarrjn

∧ πji = ωji+1 = ωji+2 ∀i = 1, 2, · · · , n− 1} (7.22)

JB2 ={(j1, j2, · · · , jn) ∈ J × J × · · · × J : T (j1) ∩ T (j2) ∩ · · · ∩ T (jn) 6= ∅

∧ τdep
j1

< τdep
j2

< ... < τdepjn < τarrjn < τarrjn−1 < ... < τarrj1

∧ πji 6= ωji ∀i = 1, 2, · · · , n} (7.23)

There is a final constraint that can strengthen the model formulation.
By definition it is not allowed to both couple and uncouple at the end of the
same trip. That means that it is not allowed to start a job at the successor
of the last trip of a different job. So, Constraint (7.24) can be added to the
formulation as valid inequality.

Wj +Wj′ ≤ 1 ∀(j, j′) ∈ J × J : λj = σγj′ (7.24)

8 Results

In this section we discuss the results of applying the EUT model, the SA
model, and the JC model on a case from NS. We ran different experiments
on trips of the 2200, 2800, and 3000 line in the Netherlands. Here trains
are travelling from Dordrecht (Ddr) to Amsterdam (Asd) (2200 line), from
Rotterdam (Rtd) to Deventer (Dv) (2800 line), and from Den Helder (Hdr)
to Nijmegen (Nm) (3000 line). These lines lead to a total of 1095 trips. See
Figure 8 for a visual representation.

Case number #RS types Turnaround time Disrupted area

1a 2 10 Gv - Rtd

1b 2 10 Ut - Asd

2a 3 10 Gv - Rtd

2b 3 10 Ut - Asd

3a 2 30 Gv - Rtd

3b 2 30 Ut - Asd

4a 3 30 Gv - Rtd

4b 3 30 Ut - Asd

Table 1: Different cases

Table 1 gives an overview of the cases on which the models are tested.
Here, “#RS” types denotes the number of original rolling stock types used.
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Figure 8: Case lines

As can be seen, this is either two or three. In the cases with two rolling stock
types, the rolling stock units consist of either three or four carriages, while
in the cases with three different rolling stock types they consist of either
three, four or five carriages. The maximum number of carriages in a train
equals 15, so in total there are 31 compositions and 356 composition changes
possible when using two different rolling stock types, and 72 compositions
and 884 composition changes are possible when using three different rolling
stock types.

The column “Turnaround time” defines the maximum time a train is al-
lowed to wait for its successor trip. As explained in Section 3, trips within a
predefined route have a successor trip. We call the amount of time between
two succeeding trips, when turning takes place, the turnaround time. There
is a maximum amount of time allowed between two succeeding trips, called
the maximum turnaround time. The length of a route depends on the max-
imum turnaround time at the end stations in the route. If a rolling stock
unit is allowed to wait a long time at a track before departing on its suc-
cessor trip, then there are many successor trips. So, with a long maximum
turnaround time, routes can become longer. The turnaround time is fixed
by the input data. For instance, with a turnaround time of 10 minutes, a
train scheduled to wait more than ten minutes at a platform is transported
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to the shunting area, instead of waiting for its successor trip to depart. As
a result, the trip does not have a successor trip, since the three lines are
operated twice per hour in both directions. On the other hand, in the cases
with a turnaround time of 30 minutes most of the trips will have a successor
trip. This leads to an increase in the number of possible jobs in the JC
model, which influences the computation times.

In the column “Disrupted area” the location where the disruption takes
place is given. A disruption takes either place between the stations The
Hague (Gv) and Rotterdam (Rtd) or between the stations Utrecht (Ut) and
Amsterdam (Asd). In order to test whether the start time of the disruption
has any influence on the computation time, we let disruptions take place
between 07:00-09:00, 07:03-09:03, 07:06-09:06, ..., and 07:57 - 09:57, so in
total 20 different time slots. Furthermore, we experiment with a number
of rolling stock units requiring maintenance between one and six. All of
the cases in Table 1 are solved for the different time slots and the different
numbers of units requiring maintenance. As a result, there are in total
8 ∗ 20 ∗ 6 = 960 cases per model.

Parameter Penalty

Cancelling 10000

EOD deviation 100

Capacity shortage kilometer 1

Carriage kilometer 1

Deviation original plan 50

Missing maintenance 300

Table 2: Objective function values

Table 2 gives an overview of the objective function coefficients used to
solve the problem instances. Here, “Cancelling” denotes the penalty for
cancelling a trip; “EOD deviation” means the penalty for deviating from
the scheduled end of day balance; “Capacity shortage” kilometer stands for
the penalty on the number of passengers that do not fit in an appointed
train measured per kilometer. Note that we do not take changing passenger
demand into account. All operated trains are assumed to have unchanged
passenger demand. Taking accurate passenger demand into account is out-
side our scope, see Kroon et al. [7] for a paper that does take it into account.
“Carriage kilometer” is the penalty on the number of carriages appointed
per kilometer; “Deviation original plan” means the penalty on the differ-
ence between the original and rescheduled plan in numbers of couplings and
uncouplings taking place; “Missing maintenance” stands for the penalty on
the number of rolling stock units that miss their scheduled maintenance
appointment.

All computations are ran with CPLEX 12.5.1 and an Intel (R) Core
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(ITM) i5-3210M processor with 2.50 GHz and 8GB RAM. The maximum
computation time is set to 500 seconds per case and the allowed gap size is
set to 0%.

An important note to make before presenting the results, is that all
models give the same optimal solution, in the cases where they were able
to prove optimality, which was in most of the cases. Therefore, we will
compare the models in terms of computation speed and number of found
optimal solutions.

8.1 Results turnaround time 10 minutes

We start with showing the results when the maximal turnaround time equals
10 minutes.

First, the results of using two normal types are shown in Table 3a, Table
3b, and Figure 9. As can be seen, the JC model performs significantly
better than the SA and the EUT model: both the computation times, and
the numbers of found optimal solutions are better in the JC model than for
the EUT and SA model. Furthermore, the EUT model is not able to find
an optimal solution within 500 seconds in some of the cases when there are
many units requiring maintenance.

I Model Time #NF #C #V

EUT 58 0 165339 1063531
1 JC 38 0 83992 421309

SA 64 0 132646 645108

EUT 95 0 274219 1823416
2 JC 66 0 87004 438030

SA 87 0 168126 855405

EUT 133 0 383100 2562576
3 JC 74 0 90017 439832

SA 110 0 203607 1065572

EUT 172 0 474373 3216358
4 JC 83 0 92309 441043

SA 161 0 229304 1205559

EUT 268 0 568219 393142
5 JC 97 0 94641 452064

SA 213 0 260132 1443211

EUT 380 6 666201 4803231
6 JC 112 0 97032 459216

SA 256 1 291240 1603491

(a) Case 1a

I Model Time #NF #C #V

EUT 51 0 165444 1064512
1 JC 50 0 84115 436677

SA 57 0 132762 645703

EUT 97 0 274498 1825098
2 JC 60 0 87104 438490

SA 106 0 168275 856194

EUT 138 0 383490 2585684
3 JC 92 0 90166 440303

SA 128 0 203789 1066685

EUT 227 0 474856 3219325
4 JC 76 0 92461 441531

SA 199 0 229509 1206651

EUT 328 2 569021 394261
5 JC 105 0 96721 452497

SA 239 0 260405 1443981

EUT 417 8 667091 4805197
6 JC 118 0 97333 460134

SA 279 1 291865 2604754

(b) Case 1b

Table 3: Results with 2 normal types and 10 minutes turnaround time
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Figure 9: Computation times with 2 normal types and 10 minutes
turnaround time

The results of applying the models on instances with three normal types
are shown in Table 4a, Table 4b and Figure 10. The JC model performs
again best, both in terms of computation speed and the number of found
optimal solutions. The SA model is second and the EUT model performs
worst, having difficulty to solve cases with many maintenance appointments.

The JC model performs better, because it does not need any additional
compositions for an additional unit that requires maintenance. The more
additional rolling stock units requiring maintenance, the more beneficial this
becomes. As can be seen, it results in less variables and constraints than
the SA and EUT model require.
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Figure 10: Computation times with 3 normal types and 10 minutes
turnaround time

8.2 Results with turnaround time 30 minutes

In contrast with the results with a turnaround time of 10 minutes, the SA
model outperforms both the EUT and the JC model when the turnaround
time equals 30 minutes. The JC model now has many more jobs, which
makes it harder to solve. The JC model has difficulties to find a solution
from the start, but the number of rolling stock units requiring maintenance
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I Model Time #NF #C #V

EUT 112 0 305545 2048938
1 JC 141 0 169642 1013684

SA 101 0 219016 1221847

EUT 191 0 471149 32174916
2 JC 173 0 172654 1015486

SA 180 0 257384 1432144

EUT 276 5 572205 3921008
3 JC 200 0 175666 1017288

SA 227 0 285972 1571981

EUT 358 10 737810 5089561
4 JC 220 0 178679 1019090

SA 270 0 324341 1782278

EUT 404 14 885807 6131286
5 JC 251 0 181688 1020892

SA 304 2 352926 1922115

EUT 462 16 986867 6834803
6 JC 297 1 184704 1022694

SA 359 4 381618 2061952

(a) Case 2a

I Model Time #NF #C #V

EUT 88 0 305856 2050828
1 JC 89 0 169852 1014675

SA 73 0 219217 1222974

EUT 131 0 471629 3220459
2 JC 121 0 172877 1016488

SA 125 0 257618 1433465

EUT 221 1 572788 3924625
3 JC 190 0 175902 1018301

SA 160 0 286229 1573431

EUT 304 3 738562 5094256
4 JC 183 0 178928 1020114

SA 200 0 324631 1783922

EUT 421 11 886710 6136942
5 JC 226 0 181950 1021927

SA 227 0 353239 1923888

EUT 456 15 987873 6841108
6 JC 241 0 184979 1023740

SA 294 2 381854 2063854

(b) Case 2b

Table 4: Results with 3 normal types and 10 minutes turnaround time

does not influence the computation time that much.
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Figure 11: Computation times with 2 normal types and 30 minutes
turnaround time

In the case with 2 rolling stock types, the results are shown in Tables 5a
and 5b and Figure 11. As can be seen, all models tend to be slower than in
the case with a turnaround time of 10 minutes.

When comparing the EUT and SA model, it can be seen that the SA
model outperforms the EUT model, both in terms of computation times and
in terms of the numbers of found optimal solutions. This is due to the fact
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I Model Time #NF #C #V

EUT 45 0 175221 1063525
1 JC 190 0 148931 443767

SA 39 0 142730 645102

EUT 103 0 291243 1823410
2 JC 238 0 153389 447078

SA 81 0 183456 855399

EUT 203 0 407249 2583295
3 JC 270 0 157845 450389

SA 156 0 224180 1065696

EUT 235 0 504462 3216352
4 JC 315 1 162300 453700

SA 232 0 252641 1205533

EUT 361 2 602319 3904671
5 JC 369 3 167027 456918

SA 270 0 280120 1360012

EUT 430 7 700232 4700129
6 JC 425 8 171872 499812

SA 320 2 301321 1421208

(a) Case 3a

I Model Time #NF #C #V

EUT 41 0 175340 1064506
1 JC 182 0 137231 443456

SA 37 0 141586 645697

EUT 84 0 291522 1825092
2 JC 190 0 141613 446626

SA 71 0 181967 856188

EUT 172 0 407639 2585678
3 JC 210 0 145993 449796

SA 123 0 222346 1066679

EUT 231 0 504882 3219319
4 JC 220 0 150372 452966

SA 188 0 253262 1206645

EUT 290 2 607123 3924021
5 JC 296 1 154871 456723

SA 211 1 282432 1399864

EUT 410 7 710023 4647910
6 JC 398 5 158120 459102

SA 280 1 310212 15812904

(b) Case 3b

Table 5: Results with 2 normal types and 30 minutes turnaround time

that the SA model requires less additional compositions for every additional
unit requiring maintenance.

The JC model is slower than with a turnaround time of 10 minutes. As
explained before this is due to the fact that the number of possible jobs
increased. On the other hand, the computation time for the JC model does
not increase as quickly as for the other models when more maintenance units
are required. In the end, it performs even better than the EUT model when
6 rolling stock units have a maintenance appointment.

In conclusion, the SA model performs better than both the JC and the
EUT model when using two normal types and a turnaround time of 30
minutes.

The results when using three different original types are shown in Tables
6a, 6b and Figure 12. As can be seen, the SA model outperforms both the
JC and the EUT model in terms of computation times and number of found
optimal solutions again.

The JC model takes longer to find an optimal solution from the start,
but the computation time does not increase quickly when more rolling stock
units require maintenance. Only in the case with six maintenance units
the JC model is not able to find an optimal solution for any of the cases.
Note that the model was able to find feasible solutions for most cases with
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I Model Time #NF #C #V

EUT 104 0 324633 2049838
1 JC 366 3 252781 1026777

SA 116 0 232064 1221847

EUT 152 0 482393 3069888
2 JC 410 9 257343 1030192

SA 151 0 257159 1361684

EUT 194 0 590055 3794180
3 JC 430 10 258106 1030312

SA 180 0 282257 1501521

EUT 262 4 747896 4835905
4 JC 460 12 262743 1033742

SA 210 1 307352 1641358

EUT 341 9 855553 5508888
5 JC 470 15 267380 10377172

SA 222 2 332447 1781195

EUT 427 14 963208 6242939
6 JC - 20 272003 1040602

SA 241 2 357582 1921032

(a) Case 4a

I Model Time #NF #C #V

EUT 75 0 324628 2048938
1 JC 387 4 235246 1023441

SA 152 0 232229 1221847

EUT 166 0 482867 3093514
2 JC 388 5 239729 1026715

SA 179 0 257335 1361684

EUT 281 4 590112 3794180
3 JC 420 7 244215 1029989

SA 240 1 282444 1501521

EUT 300 8 747882 4835905
4 JC 440 10 248698 1033263

SA 260 3 307550 1641358

EUT 363 11 855538 5539422
5 JC 460 11 253181 1036537

SA 290 4 332656 1781195

EUT 482 14 963196 6242939
6 JC - 20 257664 1039811

SA 340 8 357782 1921032

(b) Case 4b

Table 6: Results with 3 normal types and 30 minutes turnaround time
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Figure 12: Computation times with 3 normal types and 30 minutes
turnaround time

6 maintenance units, however it was not able to prove optimality within the
time window of 500 seconds.

To conclude, the SA model outperforms both the JC and the EUT model
in terms of computation time and number of optimal solutions found when
there are three normal types and a turnaround time of 30 minutes.
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9 Conclusions and further research

In this paper, three new models are presented for rescheduling the rolling
stock of passenger trains during large disruptions, while taking scheduled
maintenance appointments into account.

The first model is the EUT model, which is an extension of the already
existing Composition model. By adding additional types for every rolling
stock unit that requires maintenance, constraints can be set on them. This
extension has a drawback that adding additional types leads to a rapid
increase in the number of possible compositions and composition changes.
As a result, the EUT model tends to require more computation time when
more units require maintenance.

The second model is the SA model. Within the SA model a shadow ac-
count for all rolling stock units is kept. In this way, maintenance constraints
can easily be put on the rolling stock units that require maintenance. The
results show that the SA model performs better than the EUT model and
better than the JC model with a long turnaround time.

The third and final model is the JC model. This model assigns rolling
stock units to jobs. As a result, paths are created for every rolling stock unit.
Specific paths can be created for rolling stock units that require maintenance.
The JC model performs best on the tested instances with a turnaround time
of 10 minutes.

There are several directions for further research. Firstly, a column gen-
eration technique could be used to create paths for individual rolling stock
units. In this way maintenance constraints can be set upon the units that
require maintenance. The main problem for using a column generation tech-
nique is that the order of units in compositions are of importance, and, as a
result, the columns are highly dependent on each other. This is in contrast
with, for instance, crew rescheduling where the different crew members per
train are independent of each other. Secondly, other practical aspects are
of importance to be included in the RSRP. For instance, station routing,
robustness, and accurate passenger demand forecasting during disruptions.
Finally, an integrated approach to tackle both timetable rescheduling, rolling
stock rescheduling and crew rescheduling is desirable in future research.
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[7] L.G. Kroon, G. Maróti, and L.K. Nielsen. Rescheduling of railway
rolling stock with dynamic passenger flows. Technical Report, No. ERS-
2010-045-LIS, Erasmus Research Institute of Management, Rotterdam,
2010. Forthcoming in Transportation Science.
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