
A Coarse-To-Fine Approach to the Railway Rolling
Stock Rotation Problem∗

Ralf Borndörfer, Markus Reuther, and Thomas Schlechte

Zuse Institute Berlin
Takustrasse 7, 14195 Berlin, Germany
reuther@zib.de

Abstract
We propose a new coarse-to-fine approach to solve certain linear programs by column generation.
The problems that we address contain layers corresponding to different levels of detail, i.e., coarse
layers as well as fine layers. These layers are utilized to design efficient pricing rules. In a nutshell,
the method shifts the pricing of a fine linear program to a coarse counterpart. In this way, major
decisions are taken in the coarse layer, while minor details are tackled within the fine layer.
We elucidate our methodology by an application to a complex railway rolling stock rotation
problem. We provide comprehensive computational results that demonstrate the benefit of this
new technique for the solution of large scale problems.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases column generation, coarse-to-fine approach, multi-layer approach, rolling
stock rotation problem

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.79

1 Introduction

This paper is motivated by an application in railway optimization, namely the rolling stock
rotation problem (RSRP). This problem consists of several “layers” that address different
levels of detail. The major decisions of the RSRP deal with covering timetabled trips by
rolling stock rotations. This is a coarse layer of the problem. At the same time minor
decisions, for example, about the detailed arrival of a multi-traction vehicle composition at
some station, must be considered for technical reasons. This defines a fine layer. Suppose
there is a solution for the coarse layer that has been found by ignoring the details of the fine
layer. Then it is often possible to extend this coarse solution to a solution for the fine layer,
but not always. In this situation one can try to refine the coarse model locally at the critical
parts. This leads to an iterative refinement approach with a model that mixes coarse and
fine parts and is therefore difficult to handle. The idea of this paper is different. We propose
to work with a version of the fine model that is restricted to a small subset of variables. This
restricted model is iteratively extended using information from the coarse model. In other
words, the coarse model is used to identify the relevant parts of the fine model, (hopefully)
focusing the attention exactly to where it is needed.

Technically, the variable selection process is handled by column generation. Our idea is
to work with two linear programs (LPs), one for the coarse and one for the fine layer. The
coarse LP is constructed by aggregating suitable rows of the fine LP and sometimes turns out
to be a combinatorial optimization problem of low complexity, e.g., a network flow problem.

∗ This work was partially supported by DB Fernverkehr AG.

© Ralf Borndörfer, Markus Reuther, and Thomas Schlechte;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 79–91

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.79
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

80 A Coarse-To-Fine Approach to the RSRP

Variables for the fine LP are generated using the coarse LP until convergence. This method
aims at a rapid solution progress and at a complete elimination of stalling and tailing-off
effects that are due to the fine layer.

Row aggregation techniques for column generation algorithms are a topical research area.
Elhallaoui et al. [3] present a multi-phase dynamic constraint aggregation approach to solve
large scale set partitioning type models. Desrosiers and Lübbecke [2] use row aggregation to
utilize degeneracy in linear programming to improve the convergence characteristics of column
generation algorithms. Coarse-to-fine ideas have also been studied to solve optimization
problems on graphs. Raphael [6] describes an algorithm for solving a dynamic program (DP)
on a large graph corresponding to a state space. A sequence of coarse DPs is solved, and
the level of detail in the fine DP increases gradually. Schlechte et al. [10] used a two level
micro-macro approach to solve railway track allocation models. An exact iterative graph
aggregation procedure for solving network design problems is considered in Bärmann [1]. For
a survey on aggregation and disaggregation techniques for optimization problems, see Rogers
et al. [9].

In contrast to our approach, all these methods mix the coarse and the fine layer within
one model, while our approach separates the coarse and the fine layer. This approach turns
out to be easier. Of course, the layers have to be defined in a meaningful way and the success
of the method depends on the quality of the layering. While we offer no general theory how
to do this, in many applications the layers are evident, e.g., for the RSRP. These are the
applications that we have in mind. We remark that a somehow similar idea of separated
layers is used by multi-grid methods to solve linear equation systems, see [11]. Here, the
preconditioner plays the role of the coarse layer which improves the tractability of the fine
layer.

The paper is organized as follows. In Section 2 we describe our general coarse-to-fine
column generation approach for linear programming. Section 3 introduces the RSRP applic-
ation. Three layers for the RSRP that are motivated by combinatorial vehicle composition
requirements for rolling stock are introduced and motivated in Section 4. We present in
Section 5 our instantiation of the coarse-to-fine method for the RSRP. Finally, we provide
comprehensive computational results for real-world instances of the RSRP given by our
industrial partner DB Fernverkehr AG. We assume that the reader is familiar with column
generation methods for linear programming, see [5] for an introduction.

2 A Coarse-To-Fine Approach to Column Generation

Given index sets I = {1, . . . ,m} and J = {1, . . . , n}, a matrix A ∈ RI×J , and vectors b ∈ RI

and c ∈ RJ , consider a linear program {A, b, c}(J)

min cTx

(MP)(J) s.t. Ax = b

x ∈ RJ
+,

max bTπ

and its dual s.t. ATπ ≤ c
π ∈ RI .

We call (MP) = (MP)(J) the master LP. If |J | is very large, the column generation
algorithm (CGA) is the method of choice to solve the master problem. By using the CGA
one restricts J to a sub-set J ′ ⊆ J of columns to solve the restricted master problem (RMP).
We assume xi to be zero for i ∈ J \ J ′. In each iteration of the CGA we try to price columns
(i.e., to find at least one column that is added to (RMP)) j ∈ J \ J ′ by solving the pricing
problem. The pricing problem is to solve c := min {cj − πTaj | j ∈ J} where aj ∈ Rm is the
column vector of A for column j ∈ J and cj ∈ R is the objective coefficient for column j. If
c ≥ 0 we have a proof that an optimal solution x∗ for (MP)(J ′) is also an optimal solution

R. Borndörfer, M. Reuther, and T. Schlechte 81

for (MP)(J). Otherwise, we select a set of columns J∗ ⊆ J such that at least one j ∈ J∗ has
negative reduced cost dj := cj − πTaj , add the columns associated with J∗ to (RMP), and
continue with re-optimizing (RMP).

We are free in selecting columns for the set J∗ by a column selection rule as long as at
least one element of J∗ has negative reduced cost. But, it is obvious that a better column
selection rule improves the efficiency of the CGA. In particular, it can be beneficial to add
also columns with positive reduced cost as we will see. We address applications where J is
enumerated to check every j ∈ J whether dj is negative, e.g., the simplex method. We call
this enumeration pricing loop. For a survey on column generation techniques see [5].

Our main idea is to introduce layers (precise definition follows) that are utilized to
improve two aspects of the column generation method. The first one is to speed-up the
pricing loop in each iteration of the CGA. The second one is to refine the column selection
rule. The latter, aims at reducing the total number of iterations performed by the column
generation algorithm and to reduce the total number of columns generated.

We restrict our considerations for general linear programs to two layers, namely the coarse
layer and the fine layer. The fine layer is equal to (RMP). The coarse layer appears by the
following considerations.

Let [·] : I 7→ [I] be a coarsening projection that maps the index set I of the equations
of (MP) to a smaller coarse index set [I] of size |[I]| ≤ |I|. We use this notation because
[·] induces an equivalence relation on the row indices I, namely, i ∼ j ⇐⇒ [i] = [j]. Let
v ∈ RI be a (column) vector with index set I, let vi be the element of v with index i ∈ I,
and let τ(v, i) be the cardinality of the set {vk 6= 0 | [k] = [i]}, i.e., τ(v, i) is the number of
non-zero coefficients in v supported by rows equivalent to row i. We define [v] ∈ R[I] to be
the coarse vector or coarsening of v using coarse coefficients

[v][i] := ([v][i]1, [v][i]2) := (min {vk | k ∈ I : [k] = [i]},max {vl | l ∈ I : [l] = [i]}) · τ(v, i).

Note that [v][i] is a pair of numbers, namely, the minimal and the maximal coefficient in the set
of rows equivalent to row i, multiplied by the number of non-zeros. Let ([A·j])j=1,...,|J| be the
bimatrix of coarse column vectors of A. Typically, this bimatrix contains identical columns
caused by the coarsening projection, see Example 3. We chose exactly one representative for
a set of identical columns and denote the resulting bimatrix by [A] with columns [J]. Further,
we define the coarse objective coefficient [cj] := mini∈J{ci | [i] = [j]} for column j ∈ J .

Let π ∈ RI be an optimal dual solution vector of (MP) and let aj , j ∈ J , be a column
vector with objective coefficient cj . For ease of notation, the coarse reduced cost [d] is defined
via coefficients [dj] := [cj]− [π]T · [aj], j ∈ J , where we define the multiplication of pairs as
(a1, b1) · (a2, b2) := max {a1b1, a1b2, a2b1, a2b2} for two pairs (a1, a2) ∈ R2 and (b1, b2) ∈ R2.
Note that the coarse reduced cost is not the coarsening of the reduced cost vector d. The
coarse reduction of the master (MP) is

(R) min [d]Tx s.t.[A]x[=][b], x ∈ R[J]
+ ,

where we define

[A]x[=][b] :⇔ [b][i]1 ≤
∑
j∈J

[A·j][i]2xj ,
∑
j∈J

[A·j][i]1xj ≤ [b][i]2 ∀[i] ∈ [I].

That is, the coarse reduction (R) approximates every equation of the master LP by two
extreme case constraints arising from the minimum and maximum coefficients in equivalent
rows. Note that the objective function of the coarse reduction is to minimize [d] (and not c);
the reason for this will become clear in the sequel. Let R? ⊆ [J] be all coarse columns that

ATMOS’14

82 A Coarse-To-Fine Approach to the RSRP

Algorithm 1: Coarse-To-Fine column generation iteration for linear programs.
Data: (RMP) given by {A, b, c} and coarsening projection [·]
Result: a set of columns J∗ to be added to (RMP)

1 compute optimal solution of (RMP) with optimal dual solution vector π∗ ∈ Rm;
2 compute coarse dual solution vector [π∗] defined by [·];
3 compute [J∗] := {[j] ∈ [J] | [dj] < 0} ; /* pricing loop in coarse layer */
4 compute J? ⊆ {j ∈ J | [j] ∈ [J∗], dj < 0};
5 compute optimal solution of (R) and R?;
6 compute J? := J? ∪ {j ∈ J | [j] ∈ R?} ; /* column selection rule */

have a non-zero primal solution value in the optimal solution of the coarse reduction (R).
We also address the coarse reduction as coarse LP and the master LP as fine LP.

The polytope associated with (MP)(J) is denoted by P(MP)(J). Coarsening has the
following simple but important properties.

I Lemma 1. The coarse polytope associated with (R) includes the fine polytope associated
with (MP), i.e., P(R) ⊇ P(MP).

Proof. Every row in (R) is a relaxation of an original row of (MP). J

I Lemma 2. The coarse reduced cost can be used to underestimates the reduced cost, i.e.,

[dj] = [cj]− [π]T · [aj] ≤ cj − πT · aj = dj .

Proof. By definition we have [cj] ≤ cj and each summand in πT · aj is overestimated by a
summand of [π]T · [aj]. J

Lemma 1 shows that the coarse reduction (R) provides an approximation of the fine
master LP which has fewer rows and thus is probably easier to solve. We want to take
advantage of this approximation in a column generation algorithm (CGA) for the fine master
LP by shifting the pricing loop to the coarse reduction. A naive way to do this is to solve
the coarse reduction by a CGA in a first step, producing a set of columns J? ⊆ J , and then
to solve the fine master LP in a second step, starting from the restriction (MP)(J?) to the
set of columns J?. However, this simplistic procedure is unlikely to work well because of
a lack of information exchange between the coarse and the fine linear programs. Also the
quality of the polyhedral approximation of the coarse reduction is unclear.

Lemma 2 proposes an alternative to simply price in the coarse reduction using the
coarsened reduced cost from the fine master LP. This generic idea is formalized in Algorithm 1
that illustrates one iteration within a CGA.

The coarse-to-fine column generation algorithm solves the fine master LP by a CGA that
iterates though a coarse-to-fine pricing loop. In this loop an optimal dual solution (step 2)
of the restricted fine master LP is computed and coarsened. Afterwards, we compute the
coarse reduced cost in the coarse layer that defines the set J∗ of coarse columns with negative
coarse reduced cost and select some of them in step 4. By Lemma 2 we can not miss any
columns in the fine layer with negative reduced cost. That shows that the preselection by J∗
is exact. There is one more ingredient that is crucial for the performance of our coarse-to-fine
approach, namely, a column selection rule to restrict the set of coarsely priced columns. We
propose to compute a reasonable combination of (hopefully) improving columns by solving
the coarse reduction in step 5 and 6. Using the coarse reduced cost as an objective aims at a

R. Borndörfer, M. Reuther, and T. Schlechte 83

“good combination” of improving columns of negative reduced cost and further columns of
positive reduced cost that are “necessary” to complete the construction of the solution. This
iteration is performed until convergence. This is the general method that we propose. It
works particularly well when the coarse reduction turns out to be a simple combinatorial
optimization problem such as a network flow problem. We will discuss an example of this
type in the context of our RSRP application in Section 4.

I Example 3. Consider the following matrix and coarsening projection:

A =
(

1 0 0 −4
0 1 2 0

)
and [i] :=

⌊
i

2

⌋
.

Then we have [A] = ((0, 1) (0, 2) (−4, 0)).

Example 3 shows that coarsening typically produces many identical columns, in particular,
for matrices arising from combinatorial optimization problems. As defined, identical columns
are reduced, keeping only the copy with the smallest objective coefficient. This a desirable
effect that can produce a substantial speed-up of the coarse-to-fine pricing loop.

3 The Rolling Stock Rotation Problem

In this section we consider the Rolling Stock Rotation Problem (RSRP) and state a hypergraph
based integer programming formulation, see [7]. We apply the ideas of Section 2 to the
LP-relaxation of this formulation. We focus here on the main modeling ideas and refer
the reader to our paper [7] for technical details including the treatment of maintenance
and capacity constraints. The extension of the following problem description and model to
include maintenance constraints is straight forward and does not affect the content nor the
contribution of the paper.

We consider a cyclic planning horizon of one standard week. The set of timetabled
passenger trips is denoted by T . Let V be a set of nodes representing timetabled departures
and arrivals of vehicles operating passenger trips of T , let A ⊆ V × V be a set of directed
standard arcs, and H ⊆ 2A a set of hyperarcs. Thus, a hyperarc h ∈ H is a set of standard
arcs. The RSRP hypergraph is denoted by G = (V,A,H). The hyperarc h ∈ H covers t ∈ T
if each standard arc a ∈ h represents an arc between the departure and arrival of t. We define
the set of all hyperarcs that cover t ∈ T by H(t) ⊆ H. By defining hyperarcs appropriately,
vehicle composition rules and regularity aspects can be directly handled by our model. We
define sets of hyperarcs coming into and going out of v ∈ V in the RSRP hypergraph G

as H(v)in := {h ∈ H | ∃ a ∈ h : a = (u, v)} and H(v)out := {h ∈ H | ∃ a ∈ h : a = (v, w)},
respectively.

The RSRP is to find a cost minimal set of hyperarcs H0 ⊆ H such that each timetabled
trip t ∈ T is covered by exactly one hyperarc h ∈ H0 and

⋃
h∈H0

h ⊆ A is a set of rotations,
i.e., a packing of cycles (each node is covered at most once).

Using a binary decision variable for each hyperarc, the RSRP can be stated as an integer
program as follows:

ATMOS’14

84 A Coarse-To-Fine Approach to the RSRP

min
∑
h∈H

chxh, (MP)∑
h∈H(t)

xh = 1 ∀t ∈ H, (1)

∑
h∈H(v)in

xh =
∑

h∈H(v)out

xh ∀v ∈ V, (2)

xh ∈ {0, 1} ∀h ∈ H. (3)

The objective function of model (MP) minimizes the total cost of the chosen hyperarcs.
For each trip t ∈ T the covering constraints (1) assign one hyperarc of H(t) to t. The
equations (2) are flow conservation constraints for each node v ∈ V that define a set of cycles
of arcs of A. Finally, (3) states the integrality constraints for our decision variables.

The RSRP is NP-hard, even without maintenance and base constraints and if con-
straints (1) are trivially fulfilled, i.e., |H(t)| = 1 for all trips t ∈ T , see [4].

4 Three Layers for the RSRP

The mixed integer programming formulation for the RSRP defined in Section 3 only depends
on a hypergraph and a cost function. It is therefore natural to define the layers to be used in
our coarse-to-fine approach as projections of node sets. Such projections induce hypergraphs
themselves. The layers, namely, a composition layer G = (V,A,H), a configuration layer
[G] = ([V], [A], [H]), and a vehicle layer [[G]] = ([[V]], [[A]]), are motivated by our application
at Deutsche Bahn Fernverkehr AG. In this application the RSRP must be solved for the
composition layer, but many technical rules only apply to the configuration layer, which is
much smaller w.r.t. the size of the set of hyperarcs. In addition, we define a vehicle layer to
set up a super-coarse RSRP that provides a reasonable description of the major problem
characteristics (i.e., the total number of rolling stock vehicles used in a solution) and that is
solvable in polynomial time. We discuss in the following the detailed combinatorial aspects
of vehicle composition that motivate our layers.

A fleet is a basic type of rail vehicles. For example, the slightly more than 220 Intercity-
Express rail vehicles of Deutsche Bahn Fernverkehr AG are partitioned into several structurally
identical sets of vehicles named fleets. Let F be the set of fleets.

An orientation is an element of the set O = {Tick, Tack}. Orientation describes the two
options of how vehicles can be placed on a railway track. At Deutsche Bahn Fernverkehr AG
this is distinguished by the position of the first class carriage of the vehicle w.r.t. the driving
direction. Tick (Tack) means that the first class carriage is located at the head (tail) of the
vehicle w.r.t. the driving direction.

A (vehicle) composition c of size n ∈ N+ is an n-tuple of the form

c = ((f1, o1), (f2, o2), ..., (fn, on)) ∈ (F ×O)n.

A sub-index p ∈ {1, . . . , n} of c is called a position of an individual vehicle in a vehicle
composition. In rolling stock rotation planning, a vehicle composition has to be chosen for
each departure of a timetabled trip.

For example, if we consider the set of fleets F = {Red,Blue} we get the following vehicle
compositions of size one: (Red, T ick), (Red, Tack), (Blue, T ick), (Blue, Tack). Figure 1
illustrates the 16 possibilities for such vehicle compositions of size two. The fleet Red is

R. Borndörfer, M. Reuther, and T. Schlechte 85

Ë Ê Ë Ê Ë Ê ËÊ ËÊ Ë Ê ËÊ ËÊ

Ë Ê Ë Ê Ë Ê ËÊ ËÊ Ë Ê ËÊ ËÊ

Ë Ê Ë Ê Ë Ê ËÊ ËÊ Ë Ê ËÊ ËÊ

Ë Ê Ë Ê Ë Ê ËÊ ËÊ Ë Ê ËÊ ËÊ

Figure 1 Vehicle compositions of size two for two fleets. The trees indicate the driving directions.

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

fl
ee
t
A

fl
ee
t
A

fl
ee
t
B

v
eh

icle
A
1

v
eh

icle
A
2

v
eh

icle
B

co
n
fi
g
u
ra
ti
o
n

{A
,
A

,
B

} co
n
fi
g
u
ra
tio

n
{
A

,
A

,
B

}

tr
ip

1

trip
2

Figure 2 Possible hyperarcs for vehicle compositions of two trips operated with vehicle configura-
tion {A,A,B}.

represented by the red vehicle, while the blue vehicles represent the fleet Blue. Each gray
vehicle has orientation Tack and each white vehicle has orientation Tick w.r.t. the driving
direction indicated by the blue tree.

A (vehicle) configuration is a multiset of fleets. We say that the configuration k is realized
by the vehicle composition c = ((f1, o1), (f2, o2), ..., (fn, on)) if k = {f1, ..., fn}, i.e., if the
multi-set of fleets used in the composition c is equal to the configuration k. In the above
example the configurations {Red}, {Blue}, {Red,Red}, {Red,Blue}, and {Blue,Blue} are
realized by the 20 compositions.

We define an event as a triple e = ({d, a}, t, p) defining the departure (d) or the arrival
(a) of an individual vehicle at position p ∈ N+ in a vehicle composition operating trip t ∈ T .

We define the composition layer as the hypergraph G = (V,A,H); here, each hyperarc
h ∈ H identifies a vehicle composition, as shown in Figure 2. A node v ∈ V is a four-tuple
v = (e, k, f, o) defining an event e, the vehicle configuration k, the fleet f , and an orientation
o ∈ O.

A discussion of the detailed reasons for defining the composition layer on the proposed
form is out of the scope of this paper. It relies on experience of how the arising requirements
in rotation planning for rolling stock can be handled.

ATMOS’14

86 A Coarse-To-Fine Approach to the RSRP

Consider the following projections:

[v] := (e, k) for v = (e, k, f, o) ∈ V,

[a] := ([v], [w]) for a = (v, w) ∈ A,

[h] := {[a] | a ∈ h} for h ∈ H,

[V] := {[v] | v ∈ V }, [A] := {[a] | a ∈ A}, and [H] := {[h] |h ∈ H}.

Given a composition layer with G = (V,A,H), we define the configuration layer as the
hypergraph [G] := ([V], [A], [H]). The projection omits the orientation and the fleet and
therefore the hyperarcs of [H] can be interpreted as connections of timetabled trips with
vehicle configurations.

Consider the following further projections:

[[v]] := e for [v] = (e, k) ∈ [V],

[[a]] := ([v], [w]) for a = (v, w) ∈ A,

[[V]] := {[v] | v ∈ V }, and [[A]] := {[a] | a ∈ A}.

For the sake of a uniform notation, we also define a set of hyperarcs [[H]] as follows. Let
t ∈ T and let [H](t) be the set of hyperarcs that cover t in [G]. We define h(t) := {[[a]] ∈
[[A]] | ∃[h] ∈ [H](t) : [a] ∈ [h]} as the unique hyperarc that covers t in the vehicle layer.
Finally, we denote by [[H]] :=

⋃
t∈T h(t) ∪ {{[[a]]} | [[a]] ∈ [[A]]}) the set of unique hyperarcs

that cover the trips combined with all standard directed arcs of [[A]] denoted as hyperarcs.
Given a configuration layer with [G] = ([V], [A], [H]), we define the vehicle layer as

[[G]] := ([[V]], [[A]]); note that [[G]] is a standard directed graph. Moreover, the coarse
reduction w.r.t. the vehicle layer [[G]] is solvable in polynomial time. In fact, each timetabled
trip is uniquely covered by the hyperarcs of [[H]]. Therefore, constraints (1) are trivially
fulfilled. The remaining problem is defined by the flow conservation constraints (2) and the
integrality constraints (3) for a standard directed graph, i.e., this problem is a standard
network flow problem. In our application the total number of rail vehicles used is of major
importance. In our computations, we observed that it can be approximated reasonably well
by considering only the RSRP on the vehicle layer.

With respect to the applicatiom, our layers are motivated as follows. Rail vehicles are
not very flexible w.r.t. shunting operations, e.g., it is difficult to change the orientation.
In addition, there are technical constraints stipulating dedicated orientations at locations.
One reason for these constraints are the indicator tables that are used in Germany at
passenger platforms; they show the position and orientation of individual carriages to provide
informations w.r.t. seat reservations to the passengers. Those tables can not be changed easily
in operation. Hence, these tables imply a lot of constraints w.r.t. position and orientation
of individual vehicles within vehicle compositions. Moreover, some vehicle compositions
are forbidden. For a dedicated fleet f the single vehicle composition ((f, Tack), (f, T ick))
results in a reduction of the maximal speed to 80 km/h. Because of these (and many other)
detailed technical requirements we need to consider the composition layer in our application.

Nevertheless, the concept of vehicle configurations plays an essential role in our application.
Most of the time-dependent constraints, e.g., the minimal time needed for cleaning or refueling,
refer “only” to the configuration layer, i.e., they are independent of the concrete vehicle
composition that is realized.

R. Borndörfer, M. Reuther, and T. Schlechte 87

Algorithm 2: Coarse-To-Fine column generation iteration for the RSRP.
Data: (RMP) given by (MP) from Section 4 for G = (V,A,H),

G = (V,A,H) as composition layer,
[G] = ([V], [A], [H]) as configuration layer, and

[[G]] = ([[V]], [[A]], [[H]]) as vehicle layer

Result: a set of hyperarcs H∗ ⊆ H\H to be added to (RMP)

1 set H∗ := ∅;
2 compute optimal solution of (RMP) with optimal dual solution vector π∗ ∈ Rm;
3 compute [π∗] defined by model (MP) for [G];
4 compute [d] as reduced cost defined by model (MP) for [G] and [π∗];

/* PRICE by enumeration in COMPOSITION LAYER and */
/* PRUNE enumeration by [d] of CONFIGURATION LAYER */

5 foreach v ∈ V do
6 compute h1, h2, . . . , hn, . . . , h|H(v)out| such that dhi ≤ dhj < 0 for i < j < n;
7 set H∗ := H∗ ∪

{
h1, . . . , hd 3√ne

}
;

/* PRICE by solving the flow problem in VEHICLE LAYER */
8 set (FP) as flow problem defined by model (MP) for [[G]] = ([[V]], [[A]], [[H]]) with
objective function

[[c]] : [[A]] 7→ R : [[c]]([[a]]) := min
{

[dh]
|h|

∣∣∣∣ [a] ∈ [h] ∈ [H]
}

9 compute optimal solution [[A]]∗ ⊆ [[A]] of (FP);
10 set H∗ := H∗ ∪

{
h ∈ H | ∃a ∈ h : [[a]] ∈ [[A]]∗

}
;

To compare the size of the composition and configuration layer we consider a vehicle
configuration k that consists of the fleets {f1, ..., fl} ⊆ F such that fleet fi appears mi ∈ N+
times in k. Let C be the set of all possible vehicle compositions that realize k. Each
composition of c ∈ C must be of size n :=

∑l
i=1 mi. We have 2n possibilities of different

combinations of orientations in C. Furthermore, we have n! possible permutations of fleets.
A fleet that appears m times reduces this number by m! equal permutations. In summary
we have |C| = 2n · n!/(

∏n

i=1
mi!). For one fleet we have |C| = 4, for two different fleets we

get |C| = 8, for three different fleets we get |C| = 48. Hence, the cardinality of the set of
hyperarcs in the composition layer G is exponential in the size of the set of hyperarcs in the
configuration layer.

5 Application and Computational Study

We study the integer programming formulation for the RSRP of Section 3 as a prototype
application for our coarse-to-fine approach proposed in Section 2 using the three layers
introduced in Section 4.

Algorithm 2 summarizes our specialization of the general coarse-to-fine method for the
RSRP. We are given a restricted master problem (RMP) that only includes columns for
a sub-set H of hyperarcs that are already priced. The set H∗ of new hyperarc variables

ATMOS’14

88 A Coarse-To-Fine Approach to the RSRP

is found by two strategies. First, we enumerate hyperarcs of the composition layer with
negative reduced cost. If a node has n outgoing hyperarcs with negative reduced cost we
add the d 3

√
ne “best” ones to H∗, see line 7. This enumeration, i.e., the pricing loop, is

performed by using a pruning strategy, i.e., we only have to consider hyperarcs h ∈ H of the
composition layer that have negative reduced cost [dh] (denoting the reduced cost of the
column that corresponds to h in model (MP)) in the configuration layer, see Lemma 2. The
second strategy is to solve the flow problem (see Section 4) defined by the vehicle layer and
the objective function [[c]] (line 8 of Algorithm 2). This is a canonical way to approximate the
reduced cost of the configuration layer to be used in the vehicle layer. We add all hyperarcs
to H∗ that correspond to an arc of the optimal solution of the flow problem, see line 10 of
Algorithm 2. This strategy is our interpretation of the coarse reduction (R) introduced in
Section 2 for the RSRP and acts as an efficient column selection strategy.

In our computational study we ”only“ focus on the linear relaxation of model (MP) to
highlight the impact of the coarse-to-fine feature. The interior point solver (without crossover)
of the commercial software Cplex 12.1 is used to solve the linear programs arising during
our CGA. All our computations were performed on computers with an Intel(R) Xeon(R)
CPU X5672 with 3.20GHz, 12MB cache, and 48GB of RAM in single thread mode. We
remark that we could have reported results for the algorithm proposed in [7] to generate
integer feasible solutions for the RSRP as well, because our method clearly also applies to
integer programming. This algorithm, however, is not completely exact. Therefore, the effect
of our approach can become blurred.

A notable implementation detail is how we handle the hypergraphs. We only store the
hypergraph associated with the configuration layer in memory. Given a hyperarc [h] ∈ [H] we
can enumerate all fine hyperarcs that map to [h] by an iterator routine for the composition
layer on the stack of the computer program. This can be seen as a dynamic graph generation
approach, since by using our pruning strategy we do not have to handle or enumerate
the whole fine hypergraph at any time (but we do this once to count the total number of
hyperarcs).

We run four different algorithmic variants for each instance of our test set to show the
relevance of all algorithmic ingredients we introduced:

Variant 1: The first variant is exactly as described in Algorithm 2.
Variant 2: This variant is defined by Algorithm 2 excluding lines 8 to 10, i.e., we omit

our column selection strategy.
Variant 3: This variant is defined by lines 5 to 7 Algorithm 2 without our column

selection strategy and without our pruning strategy by [d].
Variant 4: We solve the RSRP for the composition layer from scratch, i.e., without any

column generation.
Table 1 reports major characteristics of the considered instances of the RSRP, namely the

number |T | of trips to cover, the number |V | of nodes, and the number |H| of hyperarcs for 14
of our 147 test instances for the RSRP. These instances were chosen to form a representative
test set; the remaining results can be found in the Appendix of the corresponding technical
report [8]. The columns of Table 2 in the appendix denote the number of columns, rows, and
non-zeros that were generated as well as the maximal memory usage in Megabytes, that was
allocated by the executing process of the algorithm. The last two columns report the running
time of the algorithm and the time to resolve the generated model from scratch (which is
essential when the algorithm is used within an integer programming method). The rows
of Table 2 in the appendix correspond to each run of the four variants for a single RSRP
instance in the canonical order (the first row corresponds to variant 1 for RSRP_010, the last
one to variant 4 for RSRP_140). A row showing no results indicates an ”out of memory“-run.

R. Borndörfer, M. Reuther, and T. Schlechte 89

Table 1 Characteristics of instances.

instance |T | |V | |H|
RSRP_010 884 1768 6508938
RSRP_020 277 1464 390110
RSRP_030 310 620 805482
RSRP_040 2030 4910 8464864
RSRP_050 1126 4696 20963280
RSRP_060 174 898 271794
RSRP_070 277 1443 377056
RSRP_080 4216 13354 25521577
RSRP_090 277 1464 1347270
RSRP_100 1126 4696 19234364
RSRP_110 73 146 21796
RSRP_120 1033 3106 8407556
RSRP_130 1488 2976 11670716
RSRP_140 987 16790 75274348

Our results show that the running time of our algorithm, namely variant 1, is competitive
with the running time of variant 4. Moreover, the size of the generated model, i.e., the set
of generated columns indicated by column 2 to 5 is dramatically reduced by variant 1 in
comparison to variant 4. The most drastic improvement was achieved for the resolving time
(that is equal to the solving time for variant 4), since an integer programming algorithm
often resolves the linear program that is slightly changed by perturbation (for heuristics)
and branching.

The results for variant 2 and variant 3 demonstrate that each of our two additional layers
for the RSRP is needed to be competitive to a ”from scratch“ approach if we only restrict to
the linear programming relaxation. Nevertheless, some of the instances, e.g., RSRP_140 with
more than 7 · 107 hyperarcs could only be solved using the new technique.

Acknowledgments. We want to thank three anonymous referees for improving this paper
by their valuable comments.

References
1 Andreas Bärmann, Frauke Liers, Alexander Martin, Maximilian Merkert, Christoph

Thurner, and Dieter Weninger. Solving network design problems via iterative aggregation.
Technical report, Department Mathematik, 2013.

2 Jacques Desrosiers, Jean Bertrand Gauthier, and Marco E. Lübbecke. Row-reduced column
generation for degenerate master problems. European Journal of Operational Research,
236(2):453 – 460, 2014.

3 Issmail Elhallaoui, Abdelmoutalib Metrane, François Soumis, and Guy Desaulniers. Multi-
phase dynamic constraint aggregation for set partitioning type problems. Mathematical
Programming, 123(2):345–370, 2010.

4 Olga Heismann. The Hypergraph Assignment Problem. PhD thesis, Technische Universität
Berlin, 2014.

5 M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Oper. Res.,
53(6):1007–1023, 2005.

ATMOS’14

90 A Coarse-To-Fine Approach to the RSRP

6 C. Raphael. Coarse-to-fine dynamic programming. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(12):1379–1390, 2001.

7 Markus Reuther, Ralf Borndoerfer, Thomas Schlechte, and Steffen Weider. Integrated
optimization of rolling stock rotations for intercity railways. In Proceedings of the 5th
International Seminar on Railway Operations Modelling and Analysis (RailCopenhagen),
Copenhagen, Denmark, May 2013.

8 Markus Reuther, Ralf Borndörfer, and Thomas Schlechte. A coarse-to-fine approach to
the railway rolling stock rotation problem. Technical Report 14-26, ZIB, Takustr.7, 14195
Berlin, 2014.

9 David F. Rogers, Robert D. Plante, Richard T. Wong, and James R. Evans. Aggregation
and disaggregation techniques and methodology in optimization. Operations Research,
39(4):553–582, 1991.

10 Thomas Schlechte, Ralf Borndörfer, Berkan Erol, Thomas Graffagnino, and Elmar Swarat.
Micro-Macro Transformation of Railway Networks. Journal of Rail Transport Planning &
Management, 1(1):38–48, 2011.

11 J. Tang, S. MacLachlan, R. Nabben, and C. Vuik. A comparison of two-level preconditioners
based on multigrid and deflation. SIAM Journal on Matrix Analysis and Applications,
31(4):1715–1739, 2010.

A Computational results

Table 2 Computational results (time format is dd:hh:mm:ss).

instance columns rows non-zeros memory time resolving time
RSRP_010 309538 42208 1691612 1032 00:00:23:56 00:00:01:06
RSRP_010 1451027 151613 7917223 2869 00:04:51:01 00:00:04:02
RSRP_010 1451027 151613 7917223 2849 00:05:29:36 00:00:03:30
RSRP_010 7272961 767255 41617693 9354 00:00:16:51
RSRP_020 49359 3245 170109 96 00:00:00:56 00:00:00:01
RSRP_020 129539 3245 394285 185 00:00:02:25 00:00:00:03
RSRP_020 129539 3245 394285 188 00:00:03:19 00:00:00:02
RSRP_020 391991 3245 1170461 380 00:00:00:38
RSRP_030 86385 12523 485291 188 00:00:02:57 00:00:00:04
RSRP_030 266931 29065 1493851 542 00:00:21:05 00:00:00:17
RSRP_030 266931 29065 1493851 515 00:00:24:13 00:00:00:16
RSRP_030 901805 97443 5265727 1223 00:00:01:34
RSRP_040 412359 13080 1433948 995 00:00:08:21 00:00:00:32
RSRP_040 1648117 13080 5449094 2212 00:01:05:24 00:00:01:08
RSRP_040 1648117 13080 5449094 2258 00:01:35:45 00:00:01:11
RSRP_040 8473291 13080 26999090 7321 00:00:07:07
RSRP_050 1002933 180804 7369383 2605 00:05:25:32 00:00:13:56
RSRP_050 2981197 440050 21510641 6561 01:19:15:26 00:00:43:16
RSRP_050 3232294 463437 23487090 7263 02:00:47:44 00:00:42:45
RSRP_050 - - - - - -
RSRP_060 46462 9000 239702 110 00:00:01:40 00:00:00:03
RSRP_060 116000 15810 579422 208 00:00:04:08 00:00:00:06
RSRP_060 116000 15810 579422 213 00:00:04:43 00:00:00:06

Continued on next page

R. Borndörfer, M. Reuther, and T. Schlechte 91

Table 2 – continued from previous page
instance columns rows non-zeros memory time resolving time
RSRP_060 305740 35630 1521254 421 00:00:00:48
RSRP_070 48698 3364 168309 98 00:00:01:01 00:00:00:01
RSRP_070 119940 3364 364469 183 00:00:02:23 00:00:00:03
RSRP_070 121100 3364 370291 185 00:00:03:23 00:00:00:02
RSRP_070 379026 3364 1133345 386 00:00:00:40
RSRP_080 1303150 34288 4305082 2838 00:01:01:08 00:00:03:19
RSRP_080 3910682 34288 12948542 5716 00:05:27:09 00:00:06:13
RSRP_080 3910682 34288 12948542 5687 00:07:48:10 00:00:05:54
RSRP_080 - - - - - -
RSRP_090 121974 26232 943030 302 00:00:09:43 00:00:00:25
RSRP_090 380082 55912 2951626 775 00:00:46:06 00:00:01:11
RSRP_090 380082 55912 2951626 754 00:00:52:15 00:00:01:02
RSRP_090 1525138 181872 12410680 2307 00:00:05:08
RSRP_100 749426 91325 4988934 1876 00:03:03:44 00:00:07:01
RSRP_100 2819827 255646 18306921 5801 01:04:35:17 00:00:28:35
RSRP_100 2717973 248122 17483355 5735 01:05:01:23 00:00:22:33
RSRP_100 20680283 1454616 140691067 26817 00:03:15:58
RSRP_110 7284 366 25694 67 00:00:00:39 00:00:00:00
RSRP_110 13046 366 43554 67 00:00:00:42 00:00:00:00
RSRP_110 13046 366 43554 67 00:00:00:34 00:00:00:00
RSRP_110 22050 366 81276 67 00:00:00:38
RSRP_120 491219 76767 2754706 1058 00:00:40:04 00:00:02:23
RSRP_120 1079795 144509 5931178 2251 00:03:01:27 00:00:04:44
RSRP_120 1079795 144509 5931178 2208 00:03:21:02 00:00:04:25
RSRP_120 9414973 1012971 46583640 11235 00:00:36:03
RSRP_130 753109 131693 5721831 1921 00:01:08:04 00:00:03:27
RSRP_130 2348603 329385 17919703 5024 00:11:58:58 00:00:13:14
RSRP_130 2348603 329385 17919703 5032 00:12:41:50 00:00:13:00
RSRP_130 13556953 1894535 104249717 19983 00:01:02:15
RSRP_140 3639659 103609 31758855 8721 01:17:04:26 00:02:50:51
RSRP_140 - - - - - -
RSRP_140 - - - - - -
RSRP_140 - - - - - -

ATMOS’14

	Introduction
	A Coarse-To-Fine Approach to Column Generation
	The Rolling Stock Rotation Problem
	Three Layers for the RSRP
	Application and Computational Study
	Computational results

