320 research outputs found

    New Methods for Network Traffic Anomaly Detection

    Get PDF
    In this thesis we examine the efficacy of applying outlier detection techniques to understand the behaviour of anomalies in communication network traffic. We have identified several shortcomings. Our most finding is that known techniques either focus on characterizing the spatial or temporal behaviour of traffic but rarely both. For example DoS attacks are anomalies which violate temporal patterns while port scans violate the spatial equilibrium of network traffic. To address this observed weakness we have designed a new method for outlier detection based spectral decomposition of the Hankel matrix. The Hankel matrix is spatio-temporal correlation matrix and has been used in many other domains including climate data analysis and econometrics. Using our approach we can seamlessly integrate the discovery of both spatial and temporal anomalies. Comparison with other state of the art methods in the networks community confirms that our approach can discover both DoS and port scan attacks. The spectral decomposition of the Hankel matrix is closely tied to the problem of inference in Linear Dynamical Systems (LDS). We introduce a new problem, the Online Selective Anomaly Detection (OSAD) problem, to model the situation where the objective is to report new anomalies in the system and suppress know faults. For example, in the network setting an operator may be interested in triggering an alarm for malicious attacks but not on faults caused by equipment failure. In order to solve OSAD we combine techniques from machine learning and control theory in a unique fashion. Machine Learning ideas are used to learn the parameters of an underlying data generating system. Control theory techniques are used to model the feedback and modify the residual generated by the data generating state model. Experiments on synthetic and real data sets confirm that the OSAD problem captures a general scenario and tightly integrates machine learning and control theory to solve a practical problem

    Performance Evaluation of Network Anomaly Detection Systems

    Get PDF
    Nowadays, there is a huge and growing concern about security in information and communication technology (ICT) among the scientific community because any attack or anomaly in the network can greatly affect many domains such as national security, private data storage, social welfare, economic issues, and so on. Therefore, the anomaly detection domain is a broad research area, and many different techniques and approaches for this purpose have emerged through the years. Attacks, problems, and internal failures when not detected early may badly harm an entire Network system. Thus, this thesis presents an autonomous profile-based anomaly detection system based on the statistical method Principal Component Analysis (PCADS-AD). This approach creates a network profile called Digital Signature of Network Segment using Flow Analysis (DSNSF) that denotes the predicted normal behavior of a network traffic activity through historical data analysis. That digital signature is used as a threshold for volume anomaly detection to detect disparities in the normal traffic trend. The proposed system uses seven traffic flow attributes: Bits, Packets and Number of Flows to detect problems, and Source and Destination IP addresses and Ports, to provides the network administrator necessary information to solve them. Via evaluation techniques, addition of a different anomaly detection approach, and comparisons to other methods performed in this thesis using real network traffic data, results showed good traffic prediction by the DSNSF and encouraging false alarm generation and detection accuracy on the detection schema. The observed results seek to contribute to the advance of the state of the art in methods and strategies for anomaly detection that aim to surpass some challenges that emerge from the constant growth in complexity, speed and size of today’s large scale networks, also providing high-value results for a better detection in real time.Atualmente, existe uma enorme e crescente preocupação com segurança em tecnologia da informação e comunicação (TIC) entre a comunidade científica. Isto porque qualquer ataque ou anomalia na rede pode afetar a qualidade, interoperabilidade, disponibilidade, e integridade em muitos domínios, como segurança nacional, armazenamento de dados privados, bem-estar social, questões econômicas, e assim por diante. Portanto, a deteção de anomalias é uma ampla área de pesquisa, e muitas técnicas e abordagens diferentes para esse propósito surgiram ao longo dos anos. Ataques, problemas e falhas internas quando não detetados precocemente podem prejudicar gravemente todo um sistema de rede. Assim, esta Tese apresenta um sistema autônomo de deteção de anomalias baseado em perfil utilizando o método estatístico Análise de Componentes Principais (PCADS-AD). Essa abordagem cria um perfil de rede chamado Assinatura Digital do Segmento de Rede usando Análise de Fluxos (DSNSF) que denota o comportamento normal previsto de uma atividade de tráfego de rede por meio da análise de dados históricos. Essa assinatura digital é utilizada como um limiar para deteção de anomalia de volume e identificar disparidades na tendência de tráfego normal. O sistema proposto utiliza sete atributos de fluxo de tráfego: bits, pacotes e número de fluxos para detetar problemas, além de endereços IP e portas de origem e destino para fornecer ao administrador de rede as informações necessárias para resolvê-los. Por meio da utilização de métricas de avaliação, do acrescimento de uma abordagem de deteção distinta da proposta principal e comparações com outros métodos realizados nesta tese usando dados reais de tráfego de rede, os resultados mostraram boas previsões de tráfego pelo DSNSF e resultados encorajadores quanto a geração de alarmes falsos e precisão de deteção. Com os resultados observados nesta tese, este trabalho de doutoramento busca contribuir para o avanço do estado da arte em métodos e estratégias de deteção de anomalias, visando superar alguns desafios que emergem do constante crescimento em complexidade, velocidade e tamanho das redes de grande porte da atualidade, proporcionando também alta performance. Ainda, a baixa complexidade e agilidade do sistema proposto contribuem para que possa ser aplicado a deteção em tempo real

    Advanced Data Analytics Methodologies for Anomaly Detection in Multivariate Time Series Vehicle Operating Data

    Get PDF
    Early detection of faults in the vehicle operating systems is a research domain of high significance to sustain full control of the systems since anomalous behaviors usually result in performance loss for a long time before detecting them as critical failures. In other words, operating systems exhibit degradation when failure begins to occur. Indeed, multiple presences of the failures in the system performance are not only anomalous behavior signals but also show that taking maintenance actions to keep the system performance is vital. Maintaining the systems in the nominal performance for the lifetime with the lowest maintenance cost is extremely challenging and it is important to be aware of imminent failure before it arises and implement the best countermeasures to avoid extra losses. In this context, the timely anomaly detection of the performance of the operating system is worthy of investigation. Early detection of imminent anomalous behaviors of the operating system is difficult without appropriate modeling, prediction, and analysis of the time series records of the system. Data based technologies have prepared a great foundation to develop advanced methods for modeling and prediction of time series data streams. In this research, we propose novel methodologies to predict the patterns of multivariate time series operational data of the vehicle and recognize the second-wise unhealthy states. These approaches help with the early detection of abnormalities in the behavior of the vehicle based on multiple data channels whose second-wise records for different functional working groups in the operating systems of the vehicle. Furthermore, a real case study data set is used to validate the accuracy of the proposed prediction and anomaly detection methodologies

    A Study of Feature Reduction Techniques and Classification for Network Anomaly Detection

    Get PDF
    Due to the launch of new applications the behavior of internet traffic is changing. Hackers are always looking for sophisticated tools to launch attacks and damage the services. Researchers have been working on intrusion detection techniques involving machine learning algorithms for supervised and unsupervised detection of these attacks. However, with newly found attacks these techniques need to be refined. Handling data with large number of attributes adds to the problem. Therefore, dimensionality based feature reduction of the data is required. In this work three reduction techniques, namely, Principal Component Analysis (PCA), Artificial Neural Network (ANN), and Nonlinear Principal Component Analysis (NLPCA) have been studied and analyzed. Secondly, performance of four classifiers, namely, Decision Tree (DT), Support Vector Machine (SVM), K Nearest Neighbor (KNN) and Naïve Bayes (NB) has been studied for the actual and reduced datasets. In addition, novel performance measurement metrics, Classification Difference Measure (CDM), Specificity Difference Measure (SPDM), Sensitivity Difference Measure (SNDM), and F1 Difference Measure (F1DM) have been defined and used to compare the outcomes on actual and reduced datasets. Comparisons have been done using new Coburg Intrusion Detection Data Set (CIDDS-2017) dataset as well widely referred NSL-KDD dataset. Successful results were achieved for Decision Tree with 99.0 percent and 99.8 percent accuracy on CIDDS and NSLKDD datasets respectively

    Investigating the effectiveness of novel support vector neural network for anomaly detection in digital forensics data

    Get PDF
    As criminal activity increasingly relies on digital devices, the field of digital forensics plays a vital role in identifying and investigating criminals. In this paper, we addressed the problem of anomaly detection in digital forensics data. Our objective was to propose an effective approach for identifying suspicious patterns and activities that could indicate criminal behavior. To achieve this, we introduce a novel method called the Novel Support Vector Neural Network (NSVNN). We evaluated the performance of the NSVNN by conducting experiments on a real-world dataset of digital forensics data. The dataset consisted of various features related to network activity, system logs, and file metadata. Through our experiments, we compared the NSVNN with several existing anomaly detection algorithms, including Support Vector Machines (SVM) and neural networks. We measured and analyzed the performance of each algorithm in terms of the accuracy, precision, recall, and F1-score. Furthermore, we provide insights into the specific features that contribute significantly to the detection of anomalies. Our results demonstrated that the NSVNN method outperformed the existing algorithms in terms of anomaly detection accuracy. We also highlight the interpretability of the NSVNN model by analyzing the feature importance and providing insights into the decision-making process. Overall, our research contributes to the field of digital forensics by proposing a novel approach, the NSVNN, for anomaly detection. We emphasize the importance of both performance evaluation and model interpretability in this context, providing practical insights for identifying criminal behavior in digital forensics investigations. © 2023 by the authors

    Intrusion Detection: Embedded Software Machine Learning and Hardware Rules Based Co-Designs

    Get PDF
    Security of innovative technologies in future generation networks such as (Cyber Physical Systems (CPS) and Wi-Fi has become a critical universal issue for individuals, economy, enterprises, organizations and governments. The rate of cyber-attacks has increased dramatically, and the tactics used by the attackers are continuing to evolve and have become ingenious during the attacks. Intrusion Detection is one of the solutions against these attacks. One approach in designing an intrusion detection system (IDS) is software-based machine learning. Such approach can predict and detect threats before they result in major security incidents. Moreover, despite the considerable research in machine learning based designs, there is still a relatively small body of literature that is concerned with imbalanced class distributions from the intrusion detection system perspective. In addition, it is necessary to have an effective performance metric that can compare multiple multi-class as well as binary-class systems with respect to class distribution. Furthermore, the expectant detection techniques must have the ability to identify real attacks from random defects, ingrained defects in the design, misconfigurations of the system devices, system faults, human errors, and software implementation errors. Moreover, a lightweight IDS that is small, real-time, flexible and reconfigurable enough to be used as permanent elements of the system's security infrastructure is essential. The main goal of the current study is to design an effective and accurate intrusion detection framework with minimum features that are more discriminative and representative. Three publicly available datasets representing variant networking environments are adopted which also reflect realistic imbalanced class distributions as well as updated attack patterns. The presented intrusion detection framework is composed of three main modules: feature selection and dimensionality reduction, handling imbalanced class distributions, and classification. The feature selection mechanism utilizes searching algorithms and correlation based subset evaluation techniques, whereas the feature dimensionality reduction part utilizes principal component analysis and auto-encoder as an instance of deep learning. Various classifiers, including eight single-learning classifiers, four ensemble classifiers, one stacked classifier, and five imbalanced class handling approaches are evaluated to identify the most efficient and accurate one(s) for the proposed intrusion detection framework. A hardware-based approach to detect malicious behaviors of sensors and actuators embedded in medical devices, in which the safety of the patient is critical and of utmost importance, is additionally proposed. The idea is based on a methodology that transforms a device's behavior rules into a state machine to build a Behavior Specification Rules Monitoring (BSRM) tool for four medical devices. Simulation and synthesis results demonstrate that the BSRM tool can effectively identify the expected normal behavior of the device and detect any deviation from its normal behavior. The performance of the BSRM approach has also been compared with a machine learning based approach for the same problem. The FPGA module of the BSRM can be embedded in medical devices as an IDS and can be further integrated with the machine learning based approach. The reconfigurable nature of the FPGA chip adds an extra advantage to the designed model in which the behavior rules can be easily updated and tailored according to the requirements of the device, patient, treatment algorithm, and/or pervasive healthcare application
    corecore