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Early detection of faults in the vehicle operating systems is a research domain of high signifi-

cance to sustain full control of the systems since anomalous behaviors usually result in performance

loss for a long time before detecting them as critical failures. In other words, operating systems

exhibit degradation when failure begins to occur. Indeed, multiple presences of the failures in the

system performance are not only anomalous behavior signals but also show that taking mainte-

nance actions to keep the system performance is vital. Maintaining the systems in the nominal

performance for the lifetime with the lowest maintenance cost is extremely challenging and it is

important to be aware of imminent failure before it arises and implement the best countermeasures

to avoid extra losses. In this context, the timely anomaly detection of the performance of the

operating system is worthy of investigation. Early detection of imminent anomalous behaviors of

the operating system is difficult without appropriate modeling, prediction, and analysis of the time

series records of the system. Data based technologies have prepared a great foundation to develop

advanced methods for modeling and prediction of time series data streams.



In this research, we propose novel methodologies to predict the patterns of multivariate time

series operational data of the vehicle and recognize the second-wise unhealthy states. These

approaches help with the early detection of abnormalities in the behavior of the vehicle based on

multiple data channels whose second-wise records for different functional working groups in the

operating systems of the vehicle. Furthermore, a real case study data set is used to validate the

accuracy of the proposed prediction and anomaly detection methodologies.

Keywords: Time series data analytics, Operational behavior prediction, Unhealthy states detection
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CHAPTER I

INTRODUCTION

1.1 Background

Anomaly detection is a group of techniques to identify the abnormalities or outliers in the given

data set. These techniques are of great interest to diverse fields, including data mining and machine

learning, and play an essential role in a wide range of real-world applications, such as systems

health monitoring, medical care, credit card fraud, and intrusion detection. The abnormalities

or the outliers are those points or regions whose patterns do not conform to the expected values.

These are the significantly discordant objects compared with the rest and could be the exceptions,

aberrations, or peculiarities depending on the application scenarios. Anomaly detection has been

applied in a variety of data-rich domains such as high-dimensional data, uncertain data, streaming

data, network data, and time series data. Among them, time series data anomaly detection is

of specific interest due to its inherent nature of time. The temporal (time series data) anomaly

detection analysis aims to identify the abnormal behaviors of the system over time. Anomaly

detection is truly an application based technique. For example, an abrupt change or unusual pattern

in the financial or stock market data needs to be captured to prevent occasional disruption of

markets; anomalies in the DNA sequences or proteins provide information about genetic mutation

or diseases.
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Vehicles systems include diverse operational subsystems, called Functional Working Groups

(FWGs). Each FWG is included in the vehicle system for a specific function, and the integration of

all FWGs aims to achieve the designed performance of the vehicle. Therefore, failure of any FWG

degrades the vehicle performance and results in cost and time losses. This study aims to analyze

time-series operational data of the vehicles to reduce maintenance costs and extend the lifetime of

the vehicles. Hence, we develop a pattern prediction based anomaly detection methods to model

and predict the behaviors of the vehicle and recognize the anomalous states based on individual time

series data channels or multiple time series data channels of different FWGs. These models predict

and monitor the health status of the operating vehicle during time series and identify unhealthy

time intervals. The identified anomalous behaviors of the vehicle represent the performance issues,

deterioration, or usage anomalies that require further technical investigation.

1.2 Data Scope

The scope of data in this study includes 15 months of time series data recorded between

2013 and 2014. The vehicle data box collects data in the format of CDF files. These CDF

files are converted to CSV files for further analysis. The parametric data used in this study were

collected with 1HZ frequency and includes approximately 100 data channels. This data set includes

multivariate second-wise records between January 01, 2013, and March 31, 2014. The data were

collected with 1 HZ frequency when the vehicle was actively operating. The raw data set consists

of 1,973,797 rows and 101 data channels. In other words, the vehicle got turned on for a duration of

1,973,797 seconds, which amounts to 548 hours. This indicates that the vehicle was not operating

2



on a 24/7 basis. Dealing with this data set is challenging due to its high dimensionality, combined

operation status, and missing data.

1.3 Research questions

This research aims to cover three main research challenges in analyzing the performance of

the operating vehicle based on multiple time series data channels as follows:

1. How to recognize and predict the vehicle behavior pattern using time series operational

channels data?

2. How to detect the failure-in-performance states in single channel time series data?

3. How to detect the failure-in-performance states in multiple channel time series data?

1.4 Dissertation organization overview

In Chapter 2, we present a hybrid prediction methodology for characterizing the complex

and dynamical behavior of the vehicle during large scale time series vehicle operating data.

This approach analyzes the performance of each FWG individually to predict their behavioral

pattern and recognizes the anomalous states in the data channel. As complex time series data

usually involves both linear and nonlinear patterns, neither conventional AutoRegressive Integrated

Moving Average (ARIMA) model nor neural network model is adequate to individually recognize

the patterns accurately. We propose a novel hybrid ARIMA-WANN approach by integrating the

ARIMAmodel andWavelet Autoencoder Neural Network (WANN) to accurately detect anomalies

for large scale time series vehicle operating data. To recognize the dynamic patterns, this approach

exploits the strength of the ARIMAmodel in recognizing linear autocorrelations and the flexibility
3



of the feed-forward WANN model in capturing the nonlinear nature of complex time series. In the

training of the proposedWANNmodel, the backpropagation algorithm, the most popular algorithm

for training neural networks, is used. Furthermore, we apply the proposed hybrid methodology for

predicting the patterns and identifying the abnormal states of each data channel of a real large scale

multiple-channel time series data set including one-year second-wise records of 101 operational

performance channels of a specific vehicle.

With the growing complexity of modern vehicle systems, the capability of modeling the be-

havior of different vehicle subsystems and predicting their forthcoming patterns become vital

for decision makers to extend the vehicle’s life cycle and control its maintenance costs. Using

statistical and deep learning approaches, various hybrid models are evaluated in Chapter 3 to

model the behavior of the vehicle subsystems, predict the future trend, and consequently assist to

make appropriate maintenance decisions. In this study, Auto-Regressive Integrated Moving Av-

erage (ARIMA), Multilayer Perceptrons Neural Network (MLPNN), and Wavelet Neural Network

(WNN) are used to develop several series hybrid models (i.e. ARIMA-MLPNN, ARIMA-WNN,

MLPNN-ARIMA, and WNN-ARIMA) to model and predict the behavior of the operating subsys-

tems. Moreover, a threshold-based anomaly detection method is developed for the early detection

of abnormalities. The analytical results of the case study show that the WNN-ARIMA model

outperforms other hybrid models. A threshold-based anomaly detection approach developed based

on the residual errors of the WNN-ARIMA model can accurately capture the abnormal states of

vehicle subsystems which could support the vehicle maintenance decision making.

In Chapter 4, the research objective is to develop a multivariate model and an anomaly detection

method to detect abnormalities in the operational behavior of different subsystems and identify the

4



unhealthy states of the vehicle. This model monitors the health status of different subsystems and

quickly recognizes the timely abnormalities or unexpected patterns based on multiple time series

data. Given the multivariate time series data sequences collected by a variety of sensors installed in

the vehicle, we propose a Multi-Layer Long Short Term Memory (LSTM) network combined with

an Autoencoder architecture (ML-LSTMAE) to monitor and predict the operations of different

components of the vehicle. By learning the proper encoding-decoding scheme in the training data,

One-Class Support Vector Machine (OCSVM) algorithm is used to analyze the reconstruction

errors and build a support boundary. Utilizing the learned support boundary, the prediction errors

in the test data are further analyzed to distinguish the healthy and unhealthy states. To validate the

performance of the proposed behavior modeling and anomaly detection approach, the real vehicle

systemmultivariate data set and a NASA bearing multivariate data set are applied. The results from

both case studies confirm the high accuracy of the proposed ML-LSTMAE network for learning

the latent normal behaviors of different subsystems. Subsequently, the OCSVM algorithm can

correctly classify the healthy and unhealthy states for both case studies.
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CHAPTER II

PREDICTION AND ABNORMAL STATE DETECTION WITH HYBRID ARIMA-WNN

MODEL IN LARGE SCALE TIME SERIES VEHICLE OPERATING DATA

2.1 Introduction: Time series anomaly detection

Anomaly detection has been widely investigated across various domains such as manufac-

turing, lifeline systems, and telecommunication networks. Many prior pertinent parametric and

nonparametric studies have been conducted to analyze anomalies using data driven approaches, in-

cluding Neural Networks [217, 176, 61], Wavelet analysis [135, 119, 141], entropy-based methods

[68, 156, 136, 22, 170, 169] and Bayesian networks [86, 14, 51, 144].

It would be fascinating and useful to apply the anomaly detection techniques in the vehicle

operational data records, towards the goal of determiningwhether the vehicle is healthy or unhealthy

during operation. This research aims to identify the abnormal states of the vehicle based on the

time-series records of data collected by monitoring parametric channels of the vehicle system.

Outliers fall outside the normal operational profile of the vehicle and could represent performance

issues, deterioration, or usage anomalies that require further investigation. The presence of outliers

can also identify issues with the source data quality or data collection procedures. Outliers will be

recorded and presented for comparison with the standard vehicle operating conditions to identify

potential issues for further review. The application of anomaly detection would be challenging

in the vehicle data, not only because of the scale but also for the diversity. Because, the vehicle
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performs in different extremities, including different geographic locations. So, it is challenging to

identify different outliers, corresponding to different environments.

2.2 Review on nonlinear and non-stationary models for time series prediction and anomaly
detection

We survey various methods studied in the literature and categorize them based on how they

have been applied for predicting real-world time series applications. Broadly speaking, literature

methodologies can be categorized into two groups of parametric and non-parametric approaches

depending on whether the predictors are given a pre-determined form or are constructed purely

based on the data. Figure 2.1 on page 56 represents a broad classification of time series prediction

models.

2.2.1 Parametric models

Parametric models account for explicit functions with a finite number of parameters, which

describe the relationship between the input (e.g., the intrinsic variables and their autoregressive

terms) and the output variables (e.g., the future values of the intrinsic variables). These model

parameters are estimated after time series realizations.

2.2.2 Autoregressive methods

Many anomaly detection studies have been focused on time series forecasting problems. Au-

toregressive models are most widely studied due to their flexibility in analyzing time series data

[43]. Among them, AutoRegressive Moving Average (ARMA) is one of the well-known used

time series analysis methodologies developed by [26], which assumes a linear relationship between

lagged variables. Although these linear models are limited to model stationary time series process
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and generally fail to model the nonlinear and non-stationary processes. Later, AutoRegressive

Integrated Moving Average (ARIMA) method was proposed to address the limitation of ARMA

in handling the non-stationary time trends [58]. ARIMA method has been extensively used for

various anomaly detection applications [130, 206, 232]. [225] investigated the ARIMA models to

detect platoon and mobility anomalies and design a two-step prediction model for diminishing the

false alarms due to road curves. [147] studied the traffic characterization and abnormality detection

in network management by applying ARIMA model and traditional Holt-Winters methods. [145]

developed an ARIMA-based anomaly detection model to specify the traffic network behavior and

recognize the traffic patterns. [101] studied the ARMA and ARIMA forecasting methods for de-

tecting abnormalities in the electricity consumption of residential and non-residential consumers.

They found the ARIMAmodels are more suitable due to their capability in handling non-stationary

consumption behavior. [209] proposed an improved ARIMA algorithm to detect traffic abnormal-

ities in wireless sensor networks. [186] developed an ARIMA-based anomaly detection method

to monitor patients’ activities in several closed ward hospitals. [90] applied ARIMA technique

to detect anomalies in the information system data collected through regular vehicle sensors to

efficiently score and rank drivers.

Furthermore, [184] extended the linear ARMA models to Threshold Autoregressive (TAR)

models to incorporate nonlinearity. TAR models were successfully used for time series prediction

in neuroscience and economics [207]. To address the abrupt switch in Self-Excited Threshold

AR (SETAR) models [183], [181, 167] introduced Smooth Transition AR (STAR) models to

capture smooth transitions between regimes. Later [124] applied multi-regime smooth transition in

heterogeneous AR models for financial time series prediction. [19] studied multi-regime threshold
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models to specify regime transitions based on time and time series values. Toward incorporating

nonlinearity as a part of the model, [113] decomposed nonlinear and non-stationary time series

into orthogonal trend series and detail series, and then developed ARMA and TAR models for

predicting each decomposed time series. For nonlinear prediction, [102] integrated AR models

with a HiddenMarkovModel (HMM) in which AR parameters switch in time based on a finite-state

Markov chain realization. Although most of these models were limited to nonlinear and stationary

time series.

2.2.3 Neural Network and neuro-fuzzy-type methods

Neural Networks (NNs) as nonlinear time series prediction models have been widely used in

different applications such as manufacturing systems, finance, systems health monitoring, health

care, energy grids, etc [118, 99, 73]. These models do not rely on prior linearity or nonlinearity

assumptions. That is, they are capable of approximating any continuous function to any arbitrary

precision [143].

Feed-forward Neural Network models (FNNs) parameterized with the back-propagation algo-

rithm have been widely used for nonlinear time series predicting [105, 59]. However, these models

outperform conventional statistical models such as regression and Box-Jenkins approaches, the

dynamics of time series in these models are time-invariant. [18] developed a Self-Organizing Map

Neural Network model (SOMNN) to improve the predicting accuracy of FNNs for nonlinear time

series. FNNs have also been extended to Recurrent Neural Network models (RNNs) by incorpo-

rating recurrent feedback connections [46]. RNNs have been employed for nonlinear time series

prediction in various fields [67, 103, 64, 56]. [159] integrated a RNNwith particle filtering models
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for one-step prediction of the nonlinear signal patterns in ultra-precision manufacturing processes.

[127] developed an RNN structure of nonlinear ARmodels for multi-step prediction of chaotic time

series. Later, [74] studied a variant of RNNs, called Long Short-Term Memory (LSTM), to avoid

the problem of vanishing or exploding gradient in traditional RNNs. Using the Piece-Wise linear

degradation concept [72, 78] investigated the LSTM implementation for estimating the Remain-

ing Useful Life (RUL). [188] developed an LSTM model by training on both censored instances

and failed instances. In terms of mean squared error and score, this model outperforms LSTM

models proposed by [228, 228, 69], which only trains on failed instances. Besides, [129] studied

a dual-task LSTM model to simultaneously assess the degradation and predict the RUL. [197]

applied LSTM for modeling long-sequence trends and gradient boosting regression. To predict

RUL, [111] combined LSTM and feature augmentation technique, which augments the forward

difference between the current and previous values of sensors. Additionally, conventional LSTM

models were extended to bi-directional LSTM (BiLSTM) models, which connects two hidden lay-

ers with opposite directions to the same output. These models can learn the dependencies of sensor

data in both forward and backward directions [168]. BiLSTM models have also been attempted to

estimate the RUL at time series data [80, 194, 219].

Ensemble NNs [218, 104] such as Wavelet Neural Networks (WNNs) are another variant of

NN that have been studied for nonlinear time series prediction. For instance, [104] investigated an

ensemble nonlinear NN model for financial time series prediction. In this model, different weights

were initially generated, and then Principal Component Analysis (PCA) was employed to choose

appropriate NN ensembles. A wavelet NNmodel facilitates the learning process of new time series

as well as the separating process of noises from relevant information, especially for those time
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series with low frequency [177]. This superiority of WNN models is achieved by combining the

functional approximation advantage of FNNs and the strength of wavelet analysis to demonstrate

the non-stationary patterns in time series data [230]. There is a growing interest in neuro-fuzzy

models for various time series prediction applications [98, 138, 163, 95]. These models can express

large nonlinear time series whose underlying physical relationships are not known.

2.2.4 SVM methods

SVM methods founded based on generalized regression models, such as Support Vector Re-

gression (SVR) and Least-Squares Support VectorMachines (LS-SVMs) [175, 16]. [191] studied a

Bayesian method to parameterize LS-SVM models for predicting financial time series data. Using

an exponentially increasing regularization and exponentially decreasing tube size, [29] proposed

a dynamic SVM model to recognize the structural changes in the data. [106] investigated LS and

Radial Basis Function (RBF) predictor to develop a local SVM for chaotic time series prediction.

They showed that local SVM models with local LS- and RBF-based predictors result in higher

accuracy for long-term prediction. [34] developed a reconstructed training-set SVM (RTS-SVM)

to classify high-noise time series data in which the roulette cooperative coevolution algorithm

(R-CC) is applied to optimize the parameters of RTS-SVM.

Hybrid SVM models have also been studied for predicting time series data. Applying a

wavelet kernel to approximate arbitrary nonlinear functions, [221] proposed a wavelet SVMmodel.

Assuming that most recent observations are most informative, [96] developed a fuzzy SVR model

for predicting non-stationary time series data. Thismodel diminishes over-fitting and computational

costs compared to traditional SVR. [229] combined the Particle Swarm Optimization (PSO) and
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SVM to accelerate the parameter selection of the model. [12] studied the hybrid ARIMA-SVM

method to decompose time series data into a linear part for ARIMA prediction and nonlinear part

for SVM prediction. The results showed efficient prediction compared with the results given by

conventional methods.

2.2.5 Hidden Markov methods

Most of the methods reviewed above involve batch data processing. That is, the model is fitted

and updated intermittently using batches of time series data. Although the curse of dimensionality

due to large data sizes, memory requirements, and computational effort limits these methods

application for solving real-world problems. Various sequential (also known as online or recursive)

prediction models such as HiddenMarkovModels (HMMs) [157] have been studied to address this

significant limitation. An HMM is a special class of mixture models in which the observed time

series data Yt is treated as a function of unobserved/hidden state vector St . Figure 2.2 on page 56

depicts the graphical representation of an HMM.

The prediction performance of HMMs is particularly sensitive to the order of the Markov

property that is employed to represent the states. That is, an n-th order Markov process in one

where St , given St−1, . . . ,St−n, is independent of Sj for j < t − n. HMM is an attractive approach

for modeling the time series data generated from a discrete state space. In this approach, switching

between the finite states follows a definite pattern [63]. Generally, state space models such as

Kalman Filter (KF) and Particle Filter (PF) are classified as HMMs. However, [200] developed the

Extended Kalman Filter (EKF) model to address the restrictive Gaussian and linearity assumptions

in KF models, it still assumes a Gaussian posterior. [192] introduced the Unscented KF (UKF)
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model to overcome the Gaussian limitation of EKFs. Dual KF methods [133] and Expected

Maximization-based algorithms for nonlinear state space models [60] were also introduced for

predicting the nonlinear and non-stationary time series data. [65, 100] investigated PF models

for structured approximation with Bayesian estimation in nonlinear time series prediction. PF

models estimate the posterior density by generating discrete samples from the continuous state

variables. Using Fuzzy C-Means (FCM) clustering and fuzzy integral, [109] proposed an HMM

model to detect anomalies in multivariate time series. [149] developed a new HMMmodel to treat

temporal dependencies as latent variables over which inference is made. A variety of research

has been focused on developing HMMs for mapping the degradation pattern and predicting RUL

[197, 203, 49]. For instance, [197] introduced a cluster-based HMM to predict RUL and [203]

developed three HMMs for predicting RUL value and its lower and upper bounds.

2.2.6 Literature on hybrid methods

Among many factors that are significant for selecting the best time series prediction model,

accuracy is themostwell-known criterion. Improving prediction accuracy has been always the focus

of decision-makers in various fields of time series analysis. It is widely accepted that combining

different models or leveraging hybrid approaches can considerably improve the prediction accuracy

or succeed in dealing with the limitations of single models [15]. That is because the underlying

process of real data generation cannot be easily determined or the single models may not be able

to appropriately identify the true data generation process. Moreover, it is believed that combining

heterogeneous models or hybridization will result in lower generalization variance or error [94].

In other words, hybrid models will reduce the risk of using an inappropriate model with low
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prediction accuracy by combining several models. Recently, studies about combination techniques

of prediction models have attracted plenty of attentions [70]. The combination models can be

mainly classified into two categories: series and parallel models. Parallel combination models

generate the hybrid predictions by combing the predicting results of single models; while series

combination models separate a time series analysis into two main components: the first model

analyzes one of the components of the time series in the first stage and then another component is

modeled in the second stage based on the results obtained in the first stage. Series combination

models, particularly linear/nonlinear combinations, are one of the most commonly used hybrid

approaches for time series predicting in various applications.

Incorporating hybrid linear/nonlinear approaches have attracted extensive attentions in time

series analysis since the early study of [215]. [40] proposed a series hybridmodel to predict seasonal

time series by combining Seasonal Auto-Regressive Integrated Moving Average (SARIMA) and

Support Vector Machine (SVM) methods. [150] combined ARIMA with Generalized Auto-

Regressive Conditional Heteroskedasticity (GARCH) to estimate and predict machine health states

based on vibration signal. [140] developed a hybrid ARIMA-SVM model for short-term load

prediction. [38] proposed a hybrid ARIMA-GARCH model to predict short-time traffic flows.

[107] introduced a hybrid model based on ARIMA and Genetic Programming (GP) to forecast

the financial time series. [178] studied a combination of the Auto-Regressive Moving average

(ARMA) model with different types of GARCH models to model and predict solar radiation. [11]

constructed a hybrid ARIMA-GARCH model to detect attacks (anomalies) in network traffic.

In many applications, proper integration of linear and nonlinear models would provide more

accurate results than individual linear or nonlinear approach in predicting time series data [15].
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Several studies developed hybrid approaches by combining ARIMA with other methods for pre-

diction [115, 47, 11]. By incorporating ARIMA and Artificial Neural Network (ANN), [215]

proposed a hybrid ARIMA–ANNmodel, which shows better performance than individual ARIMA

and ANN models in Wolf’s sunspot, Candian lynx and exchange rate time series data sets. [83]

developed hybrid approaches to combine conventional Autoregressive based models (e.g., AR,

ARMA, and ARIMA) and ANN techniques to capture the non-linear nature of complex time series

data. [211] integrated ARIMA and Multilayer ANN (MLANN) for nonlinear prediction of vehicle

traffic flows.

Artificial Neural network (ANN) is among the most significant and widely used nonlinear mod-

els for time series prediction [125]. Many literature research constructed hybrid linear/nonlinear

models using various types of neural network. [161] developed a hybrid neural and fuzzy network

for system modeling and time series prediction. [132] developed a series hybrid approach for

volatility forecasting in financial markets by integrating ANN and GARCH models. [1] combined

ANN with an improved shark smell optimization algorithm to predict solar powers. Due to the

capability of ANN in capturing nonlinear relationships, ANN is frequently used in the prior stud-

ies as a part of hybrid models. Moreover, combining ARIMA and ANN models is one of the

common hybrid methods for time series prediction. Since the real-world systems barely reveal

pure linear or nonlinear patterns, ARIMA and ANN are not individually appropriate to analyze

both linear and nonlinear patterns together. Thus, combining these models can be an efficient

approach to model real-world problems. Many recent studies constructed various ARIMA-ANN

models by combining ARIMA with Multilayer Perceptrons Neural Network (MLPNN)[13, 196],

Elman’s recurrent neural networks [5], radial basis function neural network [171], and probabilistic

15



neural networks [93] for time series prediction. Besides, [53] combined the ARIMA model with

MLPNN and explanatory variables (ARIMAX) to predict air quality in urban areas. By combining

ARIMA with MLPNN and Support Vector Regression (SVR), [54] presented two hybrid systems

ARIMA-MLPNN and ARIMA-SVR for time series forecasting which also determines a suitable

function for gathering the linear and nonlinear prediction components. In addition, [48] introduced

a Particle Swarm Optimization (PSO) algorithm that searches for the best parameters of the linear

and nonlinear components in a series of ARIMA-ANN prediction models. The ANN-ARIMA

models have been studied for time series forecasting [162] and short-term traffic flow prediction

[212]. [94] compared the performance of ARIMA-ANN and ANN-ARIMA for predicting stock

prices. More recently, [71] evaluated four different hybrid models ARIMA–SVM, ARIMA–MLP,

SVM–ARIMA, and MLP–ARIMA to distinguish better sequences in time series prediction.

On the other hand, many studies applied Wavelet Basis Functions (WBFs) as a transformation

function in the hidden layer of standard ANN model [224] to take the self-organizing benefits of

ANN and time-frequency properties of WBF [153, 180]. [199] pointed out that wavelet neural

network (WNN) outperforms the conventional ANN for time series prediction due to its wavelet ac-

tivation function in the hidden neurons. WNNswere employed in diverse time series prediction and

anomaly detection domains such as renewable energy resources prediction [55, 164, 172, 198], stock

price forecasting [108, 25], and network intrusion detection [116, 6, 82]. By leveraging wavelet

activation function in the hidden neurons of WNN, several prior studies combined the ARIMA and

WNN to improve the prediction accuracy. For instance, [81] constructed a multi-scale decompo-

sition and reconstruction approach by combining Multi-Resolution Analysis (MRA), WNN, and

ARIMA to predict real-time traffic behaviors. [160] proposed a hybrid ARIMA-WNN model to
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predict wheat yield time series data. [154] presented a hybrid ARIMA-WNN model to determine

the performance status of the cloud environment and detect short-term performance anomalies.

[220] combined ARIMA,WNN, and Improved Empirical Mode Decomposition (IEMD) to predict

short-term electricity loads in power systems.

WNNs have been used in various applications including time series prediction [30, 45, 41],

nonlinear modeling and approximation [201, 84, 24], and classification [151, 87]. [165] presented

a hybrid method combines wavelet map patterns and supervised multilayer ANN to detect faults

in rotating machinery. [190] combined discrete wavelet transform (DWT) and ANN to detect

high impedance faults in distribution network. [88] integrated ANN, WNN, and Hilbert transform

to detect short and long-term abnormal patterns. More recently, [198] combined WNN with

classification technique and two detection strategies to identify anomalies in the ocean fix-point

observing time series data.

Inspired by recent studies in anomaly detection of time series data and due to non-stationary

of the proposed large scale vehicle operating data set, we developed a novel hybrid approach that

combines ARIMA and WNN to predict behaviors and detect unhealthy states of the operating

vehicles over the planning horizon. This method incorporates an ARIMA model in the first stage

to construct the linear component of prediction and WNN in the second stage to generate the

nonlinear component of prediction based on the results obtained from the first stage. Then, the

performance of the proposed hybrid model for predicting the behavior of an operating vehicle is

compared with the single ARIMAmodel as well as the singleWNNmodel to validate the usability.

Finally, a time series anomaly detection strategy is developed to recognize the unhealthy states of

the vehicle by thresholding the relative prediction errors.
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2.3 Prediction modeling and anomaly detection methodology

Modern vehicle systems become increasingly complicated due to themany precise and complex

subsystems installed to satisfy customized requirements. The complexity creates many severe

reliability problems that need to be recognized as early as possible to reduce the operating cost

and extend the life cycle. Early detection of faults in the vehicle operating system is a highly

significant research domain to sustain full control of the system because anomalous behaviors

usually pose performance loss for a long time before detecting them as critical failures. In other

words, the vehicle operating system exhibits degradation when failure begins to occur. Indeed,

multiple presences of the performance failures in the vehicle system are not only the anomalous

behavior signals but also show that taking maintenance actions to keep the system performance

is vital. Maintaining a vehicle system in the nominal performance for the lifetime with the

lowest maintenance cost is extremely challenging. It is important to be aware of imminent failure

before it arises and implements the best countermeasures to avoid extra losses. In this context,

the timely detection of the abnormal performance of the vehicle’s operating system is worthy of

investigation. Early detection of imminent anomalous behaviors of the vehicle operating system

is difficult without appropriate modeling, predicting, and analyzing the time series records. This

study focuses on developing a pattern prediction method to model and predict the behavior of the

vehicle and recognize the unhealthy states based on multiple time series data recorded by different

sensors of the vehicle. This model predicts and monitors the health status of the operating vehicle

and identifies unhealthy time intervals. The identified anomalous behaviors of the vehicle represent

the performance issues, deterioration, or usage anomalies that are worthy of further investigation.

18



In this research, we aim to design a prediction model to differentiate the healthy and unhealthy

states of the vehicle using a large scale of time series data set. The vehicle system can be broken

down into several FWGs. A vehicle is defined to be unhealthy if one or more FWGs are unhealthy.

The healthy/unhealthy condition of each FWG will be determined based upon the parametric data

channels. The parametric data channels will be analyzed and results will be mapped into FWGs to

determine whether the vehicle is healthy or not.

We design a temporal anomaly detection framework by developing a hybrid prediction model

over an offline multiple-channel time series data set. In this framework, the assumption of temporal

continuity plays a significant role inmodeling the behavior of the data channels [2]. This assumption

states that the patterns in the data are not expected to change abruptly unless there are abnormalities

in the data. Thus, the goal is to detect sudden changes in the trends of the underlying operational

data channels. These sudden changes in the time series values are identified as anomalies and

exhibit a lack of continuity with respect to their immediate data history.

2.3.1 Hybrid time series prediction model

This research aims to develop a hybrid prediction model for monitoring the behavior of an

operating vehicle and alerting unhealthy states by analyzing the time series data of the operating

vehicle. The vehicle system can be decomposed into several functions such as engine, transmission,

and fuel systems. A vehicle is defined to be unhealthy if at least one of its functions is at unhealthy

operating states. The healthy/unhealthy condition of each functions can be determined based on

different time series data channels. In other words, the performance of various functions of the

vehicle is analyzed to determine whether the vehicle is in a healthy state or not. Considering the
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temporal continuity role in modeling the behavior of the data channels, the goal of this research is

to detect sudden changes in the trends of the underlying operational data channels.

In this section, we presented a hybrid anomaly detection model to characterize the stochastic

process of each time series data channel. We start by modeling the linear relationship within

the time series data channels using the ARIMA model. However, this model is only able to

capture the linear correlations in stationary time series data, there are a lot of cases where the

time series is not stationary. Hence, it is necessary to develop a robust prediction model to deal

with non-stationary real data sets with nonlinear correlations. Due to the flexibility of ANNs

in modeling nonlinear relationship, we incorporated a new class of neural networks, WNN, to

tackle the nonlinear limitation of the ARIMA model. Thus, the proposed hybrid model utilizes

the capability of the ARIMA model for predicting the unseen patterns without labeled historical

data and flexibility of WNN in analyzing different variations of time series data. This research

develops a novel hybrid prediction model by integrating the ARIMA model with WNN. Figure 2.3

on page 57 represents the broad representation of the proposed hybrid approach.

2.3.2 ARIMA model

In this section, we developed an ARIMAmodel to fit a linear model to each time series channel

data based on several past observations and random errors. ARIMA models are the most general

class of models for forecasting future values of time series by using historical data and random

errors. These models consists of two main components: Auto Regressive (AR) and Moving
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Average (MA). To fit a linear model to the time series data channel c ∈ C, an ARIMA model can

be formulated as follows. The general ARIMA process can be illustrated as below:

φ(B)(1 − B)d(xc
t − µ) = θ(B)εt ∀ t ∈ T , c ∈ C (2.1)

where, xc
t is the actual value of data channel c ∈ C in time t ∈ T and the white noise εt ≈iid(0,σ2).

φ(B) = 1−
∑p

i=1 φi Bi and θ(B) = 1−
∑q

j=1 θ j B j stand for the polynomial functions of the backshift

operator B with degree p and q, respectively. Moreover, φi, i = 1,2, . . . , p, and θ j , j = 1,2, . . . ,q

are the model parameters in which integers p and q are often referred to the orders of the model

and d refers to as the order of differencing. In other words, order p refers to the number of lags of

xc
t to be used as regressors and order q indicates the number of lagged prediction errors for making

prediction in ARIMA model.

According to Box and Jenkins [214] methodology, ARIMA modeling approach consists of

three main steps: model identification, parameter estimation, and diagnostic checking. These steps

are briefly described as follows:

1. Model identification: This step looks for the actual values of the number of auto-regressive

terms (p), the number ofmoving average terms (q), and the number of differencing operations

(d). To identify the order of the ARIMA models, Box and Jenkins [214] introduced the

AutoCorrelation function (ACF) and the Partial AutoCorrelation function (PACF) of the

sample time series data.These functions examine the time series data for determining the

temporal correlation structure of the series; and in diagnostic checking step, the forecasting

will be performed.
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2. Parameter estimation: After defining the structure of the model ARIMA(p,d,q), this step

estimates the model parameters which were identified in the previous step using the Ordinary

Least Squared (OLS) method.

3. Diagnostic checking: The last step checks the adequacy of the constructed model. Indeed,

this step checks whether or not the selected model appropriately model and predict the

historical data. The best model structure is selected by using different diagnostic statistics

such as the Sum of Squared estimate of Errors (SSE), Akaike Information Criterion (AIC),

and residuals plots. The AIC is a measure of the quality of the model. This criterion rewards

the goodness of fit of the model and includes penalty as the increasing function of the number

of parameters in the model.

If the selected model does not adequately fit the sample time series data, a new ARIMA model

will be constructed, and the three described steps will be repeated until the best model structure is

found.

2.3.2.1 Autoregressive and Moving Average orders selection

After stationarizing time series data, we can testify the autocorrelation in the time series data

using Ljung-Box Q-statistic [117]. This test is used to check if there is no autocorrelation existed

in the time series data set. In this test, the rejection of null hypothesis exposes the dependency

of sequential time series data and then the existed autocorrelation can be used to develop the

prediction model.

The ACF and PACF are useful statistical tools for measuring the correlations between the

current and earlier time series data and errors. These functions can be used to determine whether
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the autoregressive (AR) or moving average (MA) terms are necessary to realize the autocorrelation

of the time series data. The ACF illustrates the coefficients of correlation between the values of

the series and their lag values, while the PACF indicates the coefficients of correlation between the

values of the series and their lags after removing the effect of any correlations due to the terms at

shorter lags. As different channels in time series data set create different ACF and PACF graphs,

it needs to select optimal ARIMA models.

2.3.2.2 ARIMA models comparisons

To determine the optimal seasonal and non-seasonal parameters for the ARIMA model to fit

the time series data, we need to evaluate the performance of various models. Three significant

criteria including (1) p-value, (2) error sum of squares (SSE), and (3) Akaike information criterion

(AIC) are used to assess the performance of the models. The p-value criterion determines whether

there is any autocorrelation in the residuals of the ARIMA model. The SSE and AIC criteria are

formulated as below:

SSE =
|T |∑
t=1
(xc

t − x̂c
t )

2, ∀c ∈ C (2.2)

AIC = |T |
(
ln

(2πSSE
|T |

)
+ 1

)
+ 2k (2.3)

where |T | and k = p+q show the length of time series and the number ofterms estimated by the

ARIMAmodel, respectively. The SSE criterion shows the squared value of the prediction residuals

for the model. The AIC criterion assigns credits to the models which reduce aggregated error,

while gives penalties to the models that increase error [3]. Thus, among the candidate models, a

model with a large p-value and relevant small AIC and SSE values will be selected to fit the time

series data. When an appropriate model is fitted and its parameters are determined, the residuals of
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the model’s prediction will be taken to test the fitness to the time series data. Several approaches are

applied to determine whether the residuals are independent and normally distributed. To evaluate

the independence of the residuals, we plot the values of the residual autocorrelation function (RACF)

against the lag numbers. If the ARIMAmodel is determined with proper parameters, the estimated

autocorrelations of the residuals are uncorrelated and approximately normally distributed with the

center of zero. The Ljung–Box–Pierce Q-statistic is used to test whether the autocorrelations of

the residuals are white noise, which means the model is appropriate.

2.3.3 Wavelet Neural Network Model

WNN model is a new class of standard ANN models that involves wavelet analysis in the

prediction model by incorporating WBF as a transformation function in the hidden layer of the

neural network. Wavelet analysis is a powerful tool for analyzing various time series data [7]. [224]

proposedWNN to address a series of drawbacks in standard feed-forward neural networks including

random weight initialization, local minima, and model complexity. One of the significant strengths

of WNN is its capability of estimating the nonlinear processes with limited or no information on

processes. As a generalized radial basis function networks, the WNN model is composed of three

layers: an input layer, a hidden layer, and an output layer. The input layer represents the time series

of exploratory variables. The hidden layer contains the hidden units (i.e., wavelons) which transfer

the input variables to translated and dilated versions of the mother wavelet. Finally, the output

layer provides the estimations of the target values. The general structure of the proposed WNN

model is presented in Figure 2.4 on page 57.
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For each time series data channel c ∈ C, the input layer of WNN is fed with past lagged values

of actual data (xc
t−1, x

c
t−2, . . . , x

c
t−ρ) ∀t = ρ+ 1, . . . , |T | as an input vector to predict the future value

xc
t . The hidden layer interacts between the input layer and the output layer with m nodes. The m

nodes of this layer are connected to the single output node of the output layer. Thus, the input layer

of the proposed WNN model consists of ρ nodes that are connected to m nodes of the hidden layer

and to the single node of the output layer. Finally, the output layer predicts the future values of the

time series. Since the one-step-ahead forecasting strategy is considered in this paper for predicting

future values, the output layer of the proposed WNN model contains only one node. Therefore,

x̂c
t corresponds to t-th time series prediction of WNN for data channel c ∈ C by involving ρ past

time series data (xc
t−1, x

c
t−2, . . . , x

c
t−ρ) in the input layer and m wavelons in the hidden layer. Note

that, however, deciding the number of lagged observations in the input layer, ρ, and the number

of wavelons in the hidden layer, m, is vital for the proposed WNN architecture, no systematic rule

exists to select these parameters, and the only way for determining the optimal ρ and m is trial and

error [92].

Moreover, Ωc = (Ωc[0],Ωc[1],Ωc[2]) shows the connection weights of WNN for data channel

c ∈ C that are adjusted during the training phase. To performwell in presence of linearity, theweight

set Ωc[0] = (Ω
c[0]
t−1 , . . . ,Ω

c[0]
t−ρ ) ∀t = ρ+ 1, . . . , |T | directly connects the lagged observations of input

layer to the output unit. Theweight setΩc[1] = (Ω
c[1]
t−i,j) ∀i = 1, . . . , ρ, j = 1, . . . ,m, t = ρ+1, . . . , |T |

connects the input layer to the hidden layer in which Ωc[1]
t−i,j = (ω

c[1]
(τ)t−i,j,ω

c[1]
(ϑ)t−i,j) ∀i = 1, . . . , ρ, j =

1, ...,m, t = ρ + 1, . . . , |T |consists of translation factors ωc[1]
(τ)t−i,j and dilation factors ωc[1]

(ϑ)t−i,j .

The weight set Ωc[2] = (Ω
c[2]
1 ,Ω

c[2]
2 , ...,Ω

c[2]
m ,Ω

c[2]
m+1) establishes the linear connections between the
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wavelons of hidden layer and the output unit. Each wavelon j of hidden layer is operated by a

wavelet function as follows:

Γj(χ
c) =

ρ∏
i=1

ψ(
xc

t−i − ω
c[1]
(τ)t−i,j

ω
c[1]
(ϑ)t−i,j

) ∀ j = 1, ..,m, t = ρ + 1, . . . , |T |, c ∈ C (2.4)

where ψ stands for mother wavelet. According to literature, three common mother wavelets are

the Gaussian derivative, the second derivative of the Gaussian (i.e., so-called Mexican Hat), and

the Morlet wavelet. Although choosing the mother wavelet depends on the case application and is

not limited to the aforementioned functions. In this paper, the Mexican Hat function is used as a

mother wavelet since it is proved to be useful and efficient in various applications [20, 24, 223].

Then, the proposed mother wavelet is defined by:

ψ(θc
t−i,j) = (1 − (θ

c
t−i,j)

2)e−
1
2 (θ

c
t−i, j )

2
∀ i = 1, . . . , ρ, j = 1, ..,m, t = ρ + 1, . . . , |T |, c ∈ C (2.5)

where θc
t−i,j =

xct−i−ω
c[1]
(τ)t−i, j

ω
c[1]
(ϑ)t−i, j

. Thus, the proposed WNN model predicts t-th time series value of data

channel c ∈ C as follows:

x̂c
t = Ω

c[2]
m+1 +

m∑
j=1
Ω

c[2]
j Γj(χ

c) +

ρ∑
i=1
Ω

c[0]
t−i xc

t−i ∀ t = ρ + 1, . . . , |T |, c ∈ C (2.6)

Similar to standard neural networks, the connection parameters of the WNN model need to

be initialized. The random initialization of the translation and dilation parameters may not be a

suitable approach [142]. A wavelet is a rapidly decaying waveform with a finite duration, zero

mean, and localized properties. Hence, a random initialization of parameters may lead to wavelons

with zero values in hidden layer. Moreover, training methods such as gradient descent with random

initialization are inefficient [222] due to their low training speed and potential local minima of loss

function [152].
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Leveraging the information that the wavelet analysis extracts from the input time series data,

the wavelons parametersΩc[1] of the proposedWNN can be initialized in an efficient way. It should

be noted that efficient initialization results in less training iterations and avoids local minima trap

during the training phase. This paper used the translation and dilation initialization proposed by

[224] as follows:

ω
c[1]
(τ)t−i,j = 0.5 (Mc

t−i + Nc
t−i)∀ i = 1, . . . , ρ, j = 1, ..,m, t = ρ + 1, . . . , |T |, c ∈ C (2.7)

ω
c[1]
(ϑ)t−i,j = 0.2 (Mc

t−i − Nc
t−i)∀ i = 1, . . . , ρ, j = 1, ..,m, t = ρ + 1, . . . , |T |, c ∈ C (2.8)

where Mc
t−i and Nc

t−i show the maximum and minimum values of input data xc
t−i over training

samples set N as follows:

Mc
t−i = maxn=1,...,N (xc

t−i,n) ∀ i = 1, . . . , ρ, t = ρ + 1, . . . , |T |, c ∈ C (2.9)

Nc
t−i = minn=1,...,N (xc

t−i,n) ∀ i = 1, . . . , ρ, t = ρ + 1, . . . , |T |, c ∈ C (2.10)

where |N | = |T | − ρ and xc
t−i,n stands for (t − i)-th lagged actual data of n-th training sample in data

channel c ∈ C. Since the initialization of the weights Ωc[0] and Ωc[2] is less important, they are

randomly initialized in small values between 0 and 1. Once connection parameters are initialized,

the WNN model begins training to determine the optimal weights that minimize the lost function.

In this research, the ordinary BackPropagation (BP) algorithm is used to train the proposed WNN

model. BP determines the percentage of contribution of each connection weight of the network to

the training error. The training error of t-th sample in data channel c ∈ C, ec
t , is defined by the

difference between the target value xc
t and the WNN output x̂c

t . Then, the pairwise error Ec
t is used

for network training as follows:

Ec
t =

1
2
(xc

t − x̂c
t )

2 =
1
2
(ec

t )
2 ∀ t = ρ + 1, . . . , |T |, c ∈ C (2.11)
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Thus, the connection weights of the WNN model are trained to minimize the mean quadratic

lost function as follows:

Lc =
1
|N |

|T |∑
t=ρ+1

Ec
t =

1
2|N |

|T |∑
t=ρ+1
(ec

t )
2 ∀ c ∈ C (2.12)

For each data channel c ∈ C, the WNN model is iteratively trained until a vector of connection

weights Ωc = (Ωc[0],Ωc[1],Ωc[2]) that minimizes the cost function of equation (2.12) is found. At

each training iteration κ, the derivative of the loss function with respect to the connection weights

are computed to update the network parameters based on the following learning rule:

Ω
c
κ+1 = Ω

c
κ − γ

∂Lc

∂Ωc
κ
+ η(Ωc

κ −Ω
c
κ−1) ∀ c ∈ C (2.13)

where γ and η represent learning rate and momentum term that usually take values between 0 and

1. Note that the momentum term expedites the training phase and helpsWNN to avoid oscillations.

Therefore, the partial derivative of the loss function with respect to the network weight Ωc at data

channel c ∈ C can be computed as follows:

∂Lc

∂Ωc =
1

2|N |

|T |∑
t=ρ+1

∂Ec
t

∂Ωc =
1

2|N |

|T |∑
t=ρ+1

∂Ec
t

∂ x̂c
t

∂ x̂c
t

∂Ωc =

−1
|N |

|T |∑
t=ρ+1
(xc

t − x̂c
t )
∂ x̂c

t

∂Ωc =
−1
|N |

|T |∑
t=ρ+1

ec
t
∂ x̂c

t

∂Ωc∀ c ∈ C

(2.14)

The partial derivatives of the prediction x̂c
t with respect to network weights Ωc[0],Ωc[1], and

Ωc[2] and input variables xc
t−1, . . . , x

c
t−ρ are evaluated as follows:

1. Partial derivatives with respect to direct connections Ωc[0] = (Ω
c[0]
t−1 , . . . ,Ω

c[0]
t−ρ ):

∂ x̂ct
∂Ω

c[0]
t−i

= xc
t−i ∀ i = 1, . . . ρ, t = ρ + 1, . . . , |T |, c ∈ C
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2. Partial derivatives with respect to linear connections between wavelons and the output node,

Ω
c[2]
j :

∂ x̂ct
∂Ω

c[2]
j

= Γj(χ
c) ∀ j = 1, ..,m, t = ρ + 1, . . . , |T |, c ∈ C

3. Partial derivatives with respect to bias term Ωc[2]
m+1:

∂ x̂ct
∂Ω

c[2]
m+1
= 1 ∀ t = ρ + 1, . . . , |T |, c ∈ C

4. Partial derivatives with respect to translation parameters ωc[1]
(τ)t−i,j :

∂ x̂ct
∂ω

c[1]
(τ)t−i, j

=
∂ x̂ct

∂Γj (χc)
·
∂Γj (χ

c)

∂ψ(θct−i, j )
·
∂ψ(θct−i, j )

∂θct−i, j
·

∂θct−i, j

∂ω
c[1]
(τ)t−i, j

= Ω
c[2]
j · ψ(θc

t−1,j) . . . ψ
′(θc

t−i,j)

. . . ψ(θc
t−ρ,j) ·

−1
ω
c[1]
(ϑ)t−i, j

= −
Ω

c[2]
j

ω
c[1]
(ϑ)t−i, j

ψ(θc
t−1,j) . . . ψ

′(θc
t−i,j) . . . ψ(θ

c
t−ρ,j)

∀ i = 1, . . . , ρ, j = 1, ..,m, t = ρ + 1, . . . , |T |, c ∈ C

5. Partial derivatives with respect to dilation parameters ωc[1]
(ϑ)t−i,j :

∂ x̂ct
∂ω

c[1]
(ϑ)t−i, j

=
∂ x̂ct

∂Γj (χc)
·
∂Γj (χ

c)

∂ψ(θct−i, j )
·
∂ψ(θct−i, j )

∂θct−i, j
·

∂θct−i, j

∂ω
c[1]
(ϑ)t−i, j

= Ω
c[2]
j · ψ(θc

t−1,j) . . . ψ
′(θc

t−i,j)

. . . ψ(θc
t−ρ,j) ·

xct −ω
c[1]
(τ)t−i, j

(ω
c[1]
(ϑ)t−i, j

)2
=

Ω
c[2]
j

ω
c[1]
(ϑ)t−i, j

·
xct −ω

c[1]
(τ)t−i, j

ω
c[1]
(ϑ)t−i, j

· ψ(θc
t−1,j) . . . ψ

′(θc
t−i,j) . . . ψ(θ

c
t−ρ,j)

=
Ω

c[2]
j

ω
c[1]
(ϑ)t−i, j

θc
t−i,jψ(θ

c
t−1,j) . . . ψ

′(θc
t−i,j) . . . ψ(θ

c
t−ρ,j) = −θ

c
t−i,j

∂ x̂ct
∂ω

c[1]
(τ)t−i, j

∀ i = 1, . . . , ρ, j = 1, ..,m, t = ρ + 1, . . . , |T |, c ∈ C

6. Partial derivatives with respect to input variables xc
t−i:

∂ x̂ct
∂xct−i
= Ω

c[0]
t−i +

∑m
j=1Ω

c[2]
j

∂Γj (χ
c)

∂ψ(θct−i, j )
·
∂ψ(θct−i, j )

∂θct−i, j
·
∂θct−i, j
∂xct−i

= Ω
c[0]
t−i +

∑m
j=1Ω

c[2]
j · ψ(θc

t−1,j)

. . . ψ′(θc
t−i,j) . . . ψ(θ

c
t−ρ,j) ·

1
ω
c[1]
(ϑ)t−i, j

= Ω
c[0]
t−i +

∑m
j=1

Ω
c[2]
j

ω
c[1]
(ϑ)t−i, j

ψ(θc
t−1,j) . . . ψ

′(θc
t−i,j) . . .

ψ(θc
t−ρ,j) = Ω

c[0]
t−i −

∑m
j=1

∂ x̂ct
∂ω

c[1]
(τ)t−i, j

∀ i = 1, . . . , ρ, j = 1, ..,m, t = ρ + 1, . . . , |T |, c ∈ C
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After the initialization phase, the connection parameters of the WNN model are trained during the

learning phase for approximating the target values. Finally, the training phase stops when one of

the following criteria is met: the difference between cost functions of consecutive iterations be less

than 10−5 or the maximum iteration of 1000 epochs.

2.3.4 Hybrid ARIMA-WNN model

This section presents the proposed hybrid approach that combines ARIMA and WNN models.

It is considered that the time series data of each channel c ∈ C consists of a linear autocorrelation

structure and a nonlinear component as follows:

xc
t = Υ

c
t + Φ

c
t ∀ t = ρ + 1, . . . , |T |, c ∈ C (2.15)

whereΥc
t andΦc

t respectively show the linear and nonlinear components that are estimated from the

data using the proposed hybrid ARIMA-WNNmodel. The idea of hybrid modeling arises from the

fact that if a time series data is modeled by a linear model such as ARIMA, its prediction residuals

will only contain nonlinear structure. Then, the nonlinear component of the time series can be

modeled based on the linear model’s residual errors. Hence, the proposed hybrid ARIMA-WNN

model utilizes unique attributes and strengths of ARIMA and WNN models in exploring different

patterns. Additionally, since realizing the characteristics of the data in real problems is almost

difficult, modeling the linear and nonlinear components of time series sequentially by different

models improves the overall prediction accuracy in practical uses. Thus, the linear part of the time

series is computed by ARIMA model in the first stage as follows:

rc
t = xc

t − Υ̂
c
t ∀ t = ρ + 1, . . . , |T |, c ∈ C (2.16)
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where Υ̂c
t and rc

t stand for the output and residual errors of the ARIMA model at time t of data

channel c ∈ C, respectively. Then, the nonlinear part is modeled by the WNN in the second stage

using the residuals of the first stage model. With ρ input nodes, the WNN model for the residuals

is presented as follows:

Φ̂
c
t = f (rc

t−1,r
c
t−2, ...,r

c
t−ρ) ∀ t = ρ + 1, . . . , |T |, c ∈ C (2.17)

rc
t = Φ̂

c
t + ε

c
t ∀ t = ρ + 1, . . . , |T |, c ∈ C (2.18)

where f , Φ̂c
t , and εc

t indicate the nonlinear function determined by WNN, the predicting value at

time t, and the corresponding random errors. Note that if the model f does not fit well for the first

stage residuals, the error term will not be necessarily random. Hence, configuring an appropriate

WNN model is essential. Consequently, the combined prediction for time t in data channel c ∈ C

is computed as follows:

x̂c
t = Υ̂

c
t + Φ̂

c
t ∀ t = ρ + 1, . . . , |T |, c ∈ C (2.19)

2.3.5 Unhealthy State Detection Strategy

In this research, the normal behavior of the time series in different data channels is modeled

by ARIMA-WNN such that a significant deviation from this model is considered as the abnormal

behavior. Given the actual observed data xc
t and the predicted value x̂c

t , the residual error εc
t =

xc
t − x̂c

t is used as a deviation metric to identify the unhealthy state of the vehicle at time t for

data channel c. If the absolute value of error falls outside the pre-defined threshold, an abnormal

behavior alert is issued. Using hypothesis testing, the maximum likelihood distribution of residual

errors εc
t is determined. Since the residual error sequence follows a certain distribution (e.g.,
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normal, lognormal, gamma, logistic), its probability distribution can be estimated by using the

maximum likelihood estimation approach. Then, the classifying threshold T c for recognizing the

unhealthy states of the vehicle based on data channel c can be constructed [198] as follows:

T c =
1
2

[���a + ln(
α

1 − α
)b

��� + ���a + ln(
1 − α
α
)b

���] ∀ c ∈ C (2.20)

where a and b are the parameters of the probability distribution fitting for the residuals of different

data channels. In case of normal distribution, these parameters are mean a = µ and standard

deviation b = σ. For logistic distribution, a = µ and b = s are the location and scale parameters.

The classifying level α (e.g., 90%, 0.95%, 99%, etc.) indicates the probability to accurately predict

the values of different data channels. Note that the proposed threshold is computed based on the

classifying level instead of user-defined value. This method guides constructing the threshold in

the form of predictive levels that requires no experiential knowledge or parameter measurements.

2.4 Operating Vehicle Multiple Channel Time Series Data Wrangling
2.4.1 Data Description and Challenges

The vehicle time series parametric data set used in this study includes approximately 100 data

channels. This data set includes the time series records for the vehicle consisting of 381 days

second-wise records with the time span of January 1, 2013 through March 31, 2014. The data

were collected only when the vehicle got turned on with a frequency of 1HZ. The raw data consists

of 1,973,797 rows and 101 columns. In other words, the vehicle got turned on for a duration of

1,973,797 seconds, which amounts to 548 hours. This indicates that the vehicle was not operating

on a 24/7 basis. Dealing with this data set is challenging due to high dimensional data, combined

operation status, and missing data. To test the proposed hybrid approach, we use a relatively small
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scale of the data set. This partial data set includes three-month records including 473,290 rows of

101 attributes as multiple time series data channels per second. These channels include vehicle

speed, engine oil pressure, transmission gear, engine torque, and others. These parametric data

channels are ‘intermittent’ and do not have continuous values since the vehicle is not operating

with a 24/7 schedule. The data set must be broken into on/off cycles. The on-cycle accounts for a

time period in which the vehicle was turned on and the data were collecting whereas the off-cycle

shows that the vehicle was turned off during that time period and no data were collected. If there

is a gap of 10 seconds or more, it is assumed that the vehicle was turned off and no data were

recorded. An on-off cycle indicator is created and added as an extra channel to the parametric data.

Thus, the time series data of this study is wrangled using below steps:

1. All data channels c ∈ Cwith at least 20%missing values throughout all timestamps are excluded

from the analysis. Thus, 21 data channels such as unsprung mass, roll angels, and relative speed

of front axles are removed from the main data set.

2. All data channels c ∈ C with a constant value or very low standard deviation are excluded from

the analysis. Thus, 53 channels such as vehicle brake dynamic control, clutch switch, and brake

switch are removed.

3. Let %t represents the value of t-th timestamp of data. Enumerating the time gaps between

sequential on-cycle data sets, the main data is decomposed to multiple on-cycle subsets K ={
1, . . . , |K |

}
as follows:

Yk =
{

xc
t ,∀ t ∈ T , c ∈ C | %t − %t−1 < 10

}
∀ k ∈ K (2.21)
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4. When the data is not correctly captured for data channel c ∈ C, a null value will be assigned

to it. We referred to these null values as missing values. Generally, the null values are deleted

from the data or can be imputed. Since the data is continuous within each on-cycle Yk , these

null values can be imputed. If null values are at the beginning or end of the cycle, they are

replaced by the nearest non-null value. If they are in the middle of the cycle, they are imputed

using a linear interpolation method. Imputation is used only for a maximum of 30 points in a

row. If there are null values for more than 30 points in a row, other than 30 rows are not imputed

and are defined as missing values or NaN’s.

5. If there are two duplicate channels, the channel with a higher percentage of null values is

removed.

6. Although the data is continuously collected during each on-cycle Yk , it does not mean that the

vehicle is continuously under driving status. In other words, evaluating the values of various

data channels reveals the different operating status of the vehicle. To better analyze the behavior

of the vehicle, it needs to recognize the possible operating status of the vehicle for each on-

cycle data. By investigating many data cycles, four major status (i.e., Idle-normal, Idle-throttle,

Idle-high, and driving) are identified for defining the different operating status of the vehicle.

Therefore, each on-cycle data set Yk is decomposed to Idle-normal Y IN
k , Idle-throttle Y IT

k , Idle-

highY IH
k , drivingY D

k and OtherYO
k subsets. Using three significant data channels engine speed,

vehicle speed, and accelerator pedal position, Table 2.1 on the following page represents the

major operating status of the vehicle as follows:
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Table 2.1

Operational status of the vehicle

Case ESa (RPM) VSb (MPH) APPc (%) State
1 (650 , 750) < 0.1 < 3.0 Idle-Normal
2 - < 0.1 ≥ 3.0 Idle-Throttle
3 ≥ 770 < 0.1 < 3.0 Idle-High
4 - ≥ 0.1 ≥ 0.0 Driving
a Engine speed
b Vehicle speed
c Accelerator pedal position

where the other operational states are shown by theOther status. Case 1 represents a low-speed

status for the engine of the vehicle which means the vehicle is turned on, but not moving. For

instance, this case happens when the vehicle is turned on and stopping at a traffic light. In case

2, the vehicle is not moving, but the driver is pushing the accelerator pedal. For instance, when

the vehicle gets started in the winter and the driver pushes the accelerator pedal to warm up the

vehicle engine. In case 3, the vehicle is not moving but the engine speed is high. It happens

when the driver is running PTO or driving a pump. In case 4, the vehicle is moving. Even

though the pedal position can be 0.0%, the vehicle is still moving. For instance, the driver may

be applying brakes or driving downhill.

The proposed pre-processing procedure incorporates appropriate techniques to decompose the on-

cycle data sets to five different subsets to address the missing values, dimensional challenges, and

diverse operating status of the vehicle. Since the attributes of multiple time series data in various

subsets are different, independent predicting models are developed to fit each of the operational
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data subsets. These models predict the behavior and identify the unhealthy states of the vehicle for

different data channels.

2.4.2 Channel data preparation

Applying the proposed pre-processing steps on the main data set reveals that not all of the

data channels are helpful to model the behavior of the vehicle. Hence, the main data set is

adjusted to include the most useful data channels. This procedure identifies the useless data

channels which not only require more computational efforts but also decrease the accuracy of the

predictions. Consequently, 23 time series data channels are selected as the most important channels

to implement the proposed hybrid ARIMA-WNN model for predicting the behavior of the vehicle

and detecting the unhealthy states.

Since the data set of each on-cycleYk consists of time series data of different operating status, it is

necessary to recognize the time intervals of various status throughout themultiple data channels and

individually analyze themwith different prediction models. Hence, preparation steps are developed

to decompose each on-cycle data k, ∀k ∈ K to various operating intervals Y IN
k , Y IT

k , Y IH
k , Y D

k and

YO
k . Running the proposed time gaps identification steps resulted in |G| = 438 gaps throughout the

main data which indicates that the vehicle was turned on and subsequently turned off 438 times in

three-month data records. Thus, |K | = 439 on-cycle intervals were generated each of which with

a duration of the time length between the tuning-on and the subsequent turning-off status of the

vehicle.

Moreover, as the vehicle operates differently in various operating status, it is essential to divide

each on-cycle interval into independent operating subsets based on different status of the vehicle.
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Therefore, the whole on-cycle intervals are decomposed to
��Y IN

1
�� + . . . + ���Y IN

|K |

��� = 113,882 Idle-

normal subsets,
��Y IT

1
�� + . . . + ���Y IT

|K |

��� = 843 Idle-throttle subsets,
��Y IH

1
�� + . . . + ���Y IH

|K |

��� = 592 Idle-high

subsets,
��Y D

1
�� + . . . + ���Y D

|K |

��� = 282,032 Driving subsets, and
��YO

1
�� + . . . + ���YO

|K |

��� = 5,942 Other state

subsets. Pseudocode 1 shows the proposed data preparation procedure.

Algorithm 1: Data preparation procedure

1 Input : χ ← {xc
t , ∀ t ∈ T , c ∈ C}

2 χc ← {xc
t , ∀ t ∈ T }, ∀ c ∈ C

3 χc ← {χc} , ∅, ∀ c ∈ C

4 Yk ← {}, ∀ k ∈ K

5 Decompose χ to on-cycle subsets Yk , ∀ k ∈ K

6 Remove Yk with standard deviation less than 0.1, ∀ k ∈ K

7 Decompose Yk to different operational sets Y IN
k , Y IH

k ,Y IT
k , Y D

k and YO
k , ∀ k ∈ K

8 Output : Y IN
k , Y IH

k , Y IT
k , Y D

k and YO
k , ∀ k ∈ K

2.4.3 Hybrid ARIMA-WNNModel Implementation

After decomposing the on-cycle data series to appropriate operating subsets, the proposed

ARIMA-WNN model are implemented on each operating subset to predict the behavior of the

vehicle and identify the unhealthy states of each data channel c ∈ C. The Pseudocodes 2 and 3

represent the steps of WNN and hybrid ARIMA-WNN models. After checking the stationarity

and autocorrelation, ARIMA model is applied to realize the linear relationships of time series

data for each channel. Then WNN algorithm is implemented to detect the remaining nonlinear

relationships in the residual errors of the linear model. Finally, by fitting the maximum likelihood
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distribution, the residuals of the hybrid model are analyzed to recognize the unhealthy states of the

vehicle.

To illustrate the linear behavior of data channels in different operating subsets, the proposed

ARIM A(p, d,q)model is implemented on the subsets that contain at least 25 number of observations

[27]. This model leverages the dependency of each value of time series channel on its lagged values

by AR(p) and lagged residual errors by M A(q). Using unit root tests (i.e., Augmented Dickey-

Fuller, Dickey-Fuller GLS, Phillips-Perron, KPSS, and Variance Ratio), the stationarity of time

series data at each channel is checked and d times of differencing are used to stationarize the

non-stationary data channels. Using the astsa1 package in R environment, the best fitted ARIMA

model for different data channels of each operating subset is recognized. Then the proposed WNN

model is programmed in python 3.7.3 environment to analyze the obtained residuals from the

previous stage. Due to a large number of evaluating operating subsets and time series channels,

results obtained for Fuel Rate (FR), Engine Torque (ET), and Injector Control Pressure (ICP) data

channels of a driving subset with a time length of 22 minutes are presented in detail. The FR

sensor collects the accurate measurements of the fuel consumption of the vehicle with the unit of

U.S. Gallons per hour. The ET sensor records the percent torque of the engine. The ICP sensor

monitors the fuel pressure going to the injectors with the unit of pounds per square inch. The data

set is divided into an 80% train set and a 20% test set. The train set is applied as the background

to train ARIMA-WNN model, and the test set is used to evaluate the performance of the models.

Note that both training and test data are normalized by dividing with the standard deviation of the

training data.

1Applied Statistical Time Series Analysis, https://cran.r-project.org/web/packages/astsa/index.html
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Algorithm 2:WNN model

1 Input : Hs
k, ∀ k ∈ K, s ∈ S, S = {IN, IH, IT,D,O}

2 Hs
k ← {E

sc
k , ∀c ∈ C}, ∀ k ∈ K, s ∈ S

3 E sc
k ← {ε

sc
kt , ∀t ∈ T }, ∀ c ∈ C, k ∈ K, s ∈ S

4 Initialize ρsc
k , msc

k , γsc
k , and ηsc

k for χsc
k , ∀c ∈ C, k ∈ K, s ∈ S

5 Randomly initialize Ωsc
k = (Ω

sc[0]
k ,Ω

sc[1]
k ,Ω

sc[2]
k ) for χsc

k , ∀c ∈ C, k ∈ K, s ∈ S

6 for k ← 1 to |K | do

7 for s ∈ S do

8 if nrows(Y s
k ) ≥ 25 then

9 for c← C do

10 while not Stop-Criterion do

11 for t ← 1 to |T | − ρ do

12 Compute Γk j(χ
sc) based on equation (2.4) for χsc

k

13 Generate prediction x̂sc
kt based on equation (2.6)

14 Compute lost function Lsc
k based on equation (2.12) for χsc

k

15 Compute derivatives of weights ∂Lsc
k

∂Ωsc
k
based on equation (2.14)

16 Update weights Ωsc[0]
k ,Ω

sc[1]
k ,Ω

sc[2]
k based on equation (2.13)

17 end

18 end

19 end

20 end

21 end

22 end
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Algorithm 3: Hybrid ARIMA-WNN model

1 Input : Y s
k , ∀ k ∈ K, s ∈ S, S = {IN, IH, IT,D,O}

2 Y s
k ← {χ

sc
k , ∀ c ∈ C}, ∀ k ∈ K, s ∈ S

3 Rsc
k ← {r

sc
kt , ∀ t ∈ T }, ∀ c ∈ C, k ∈ K, s ∈ S

4 E sc
k ← {ε

sc
kt , ∀ t ∈ T }, ∀ c ∈ C, k ∈ K, s ∈ S

5 α← 0.05

6 for k ← 1 to |K | do

7 for s ∈ S do

8 if nrows(Y s
k ) ≥ 25 then

9 for c← C do

10 Perform d times differencing to stationarize channel χsc
k , if required

11 Test autocorrelation in (stationarized) channel χsc
k

12 if autocorrelation exists in channel χsc
k then

13 Find candidate MA parameters q by ACF

14 Find candidate AR parameters p by PACF

15 Fit best ARIMA(psc∗
k , dsc∗

k ,qsc∗
k ) for χ

sc
k based on AIC and SSE

16 Fit WNN (Pseudocode 2) to Rsc
k to find optimal ρsc

k , msc
k , γsc

k , and ηsc
k

for χsc
k

17 Train WNN (Pseudocode 2) with optimal parameters for χsc
k

18 Test WNN (Pseudocode 2) by one-step-ahead forecasting for χsc
k

19 Fit ML distribution to E sc
k for χsc

k

20 Construct classifying threshold T sc
k for χsc

k

21 Issue an unhealthy alert once εsc
kt exceeds T sc

k for χsc
k

22 end

23 end

24 end

25 end

26 end
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2.4.4 Results and discussion

The stationarized series, ACF, and PACF of the three FR, ET, and ICP data channels are shown

in Figure 3.2 on page 96. Note that the blue lines in ACF and PACF plots represent the lower and

upper bounds of the confidence interval. It means that falling of the correlation coefficient within

the confidence bounds results in no significant lag whereas falling outside of the confidence interval

indicates a significant lag. Figure 3.2 on page 96(a) shows that the ACF outside the confidence

interval occurs at lags 2 to 4, and lags 11, 12, and 15 for the FR data channel. So the t-2, t-3, and

t-4 as well as t-11, t-12, and t-15 are chosen as the relevant lags of prediction errors. Moreover,

as PACF falls outside of the confidence bands at lags 2 to 6 and lags 11, 12, 16, 18, and 19, the t-2

to t-6 in addition to the t-11, t-12, t-16, t-18, and t-19 are selected as the relevant lags of previous

observations. Analogously, for the ET data channel, the main relevant lags of xc
t are t-2, t-3, and

t-4 and the lags of prediction errors are t-2, t-3, t-4, and t-14. Also, the previous observations

lags and the prediction errors lags respectively are t-3 to t-5, t-7, t-13, and t-21 as well as t-3 to

t-5, t-6, t-9, t-13, and t-15 for the ICP data channel. Evaluating various combinations of the order

parameters, Table 3.1 on page 80 represents the best-fitted models for different data channels. In

this table, the best ARIMA models are selected based on low AIC and SSE values. The lower

value of these metrics indicates a better fit for the ARIMA model. In other words, low AIC and

SSE values show quality models with less complexity and lower training error.

Since ARIMAmodel leaves the nonlinear patterns in its prediction residuals, thenWNNmodel

can be used to discover these nonlinear relationships. Afterward, WNN model is trained for

different dimensions of the input vector in the input layer ρ ∈ [1,25], the various number of

neurons in the hidden layer m ∈ [2,10 × ρ], and one output neuron. Among different structures
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Table 2.2

Models evaluation for FR, ET, and ICP data channels

Channel Best model AIC SSE
FR ARIMA(4,1,2) 1848.81 357.97
ET ARIMA(3,1,4) 1018.94 159.56
ICP ARIMA(5,1,5) 901.24 141.32

of WNN model, the best model is obtained with the minimum training error. It should be noted

that to evaluate the performance of the hybrid ARIMA-WNNmodel, WNNmodel is trained on the

time series of different data channels as an individual prediction model as well as the second stage

of the hybrid model. Table 2.3 on the following page shows the optimal values of ρ, m, γ, and η

parameters to construct the best WNN models for different data channels FR, ET, and ICP.

Moreover, testing different probability distributions, the normal distribution and logistic distri-

bution are considered to determine the probability distribution of the final prediction errors. Then,

the confidence intervals 95%, 99%, and 99.5% are used for constructing different threshold levels.

2.4.4.1 Comparison of ARIMA, WNN, and ARIMA-WNN

In this section, the predictive capability of the proposed hybrid ARINA-WNN model is com-

pared with ARIMA and WNN models. Three performance indicators Mean Absolute Error

(MAE), Root Mean Square Error (RMSE), and Nash–Sutcliffe model Efficiency coefficient (NSE)
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Table 2.3

Models evaluation for FR, ET, and ICP data channels

WNN Hybrid ARIMA-WNN

Channel ρ m γ η ρ m γ η

FR 3 6 0.0001 0.1 8 14 0.01 0.1
ET 8 10 0.0001 0.1 3 6 0.01 0.0001
ICP 4 8 0.001 0.05 6 5 0.01 0.05

are employed to compare the prediction accuracy of ARIMA-WNN, ARIMA, and WNN models

as follows:

M AE =
1
|T |

|T |∑
t=1
| xc

t − x̂c
t | ×100 ∀ c ∈ C (2.22)

RMSE =

√√√
1
|T |

|T |∑
t=1

(
xc

t − x̂c
t
)2
∀ c ∈ C (2.23)

NSE = 1 −
∑|T |

t=1
(
xc

t − x̂c
t
)2∑|T |

i=1
(
xc

t − xc)2 ∀ c ∈ C (2.24)

where xc is the average of time series data in channel c ∈ C.

Figure 2.6 on page 59, Figure 2.7 on page 60, Figure 2.8 on page 61 respectively show the

expected values of FR, ET, and ICP channels estimated by ARIMA, WNN, and ARIMA-WNN

models against the actual observation in test data. Moreover, table Table 2.4 on the following

page presents the training and testing errors of the models for different channels FR, ET, and

ICP. The WNN model improves the predictions of different data channels comparing to ARIMA

model’s performance. For example, the MAE of testing data in the FR channel is decreased from

36.368 for the ARIMA model to 20.794 for the WNN model. Also, the testing MAE of the ET

data channel decreased from 24.682 in the ARIMA model to 9.045 in the WNN model. But,
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Table 2.4

Performance evaluation of models for FR, ET, and ICP data channels

ARIMA WNN ARIMA-WNN

Channel Train Test Train Test Train Test

FR
MAE 39.153 36.368 19.873 20.794 18.864 15.204
RMSE 0.59 0.534 0.269 0.269 0.227 0.179
NSE 0.652 0.735 0.927 0.933 0.948 0.97

ET
MAE 19.911 24.682 7.751 9.045 9.814 6.313
RMSE 0.394 0.399 0.101 0.119 0.137 0.078
NSE 0.845 0.887 0.990 0.990 0.981 0.996

ICP
MAE 21.178 24.564 10.163 9.258 5.690 4.701
RMSE 0.37 0.399 0.208 0.139 0.077 0.066
NSE 0.863 0.843 0.956 0.981 0.994 0.996

Average
MAE 26.748 28.538 12.596 13.033 11.456 8.739
RMSE 0.451 0.444 0.193 0.176 0.147 0.108
NSE 0.787 0.822 0.958 0.968 0.974 0.987

both models underperform the proposed hybrid ARIMA-WNN model. Numerical results show

that ARIMA-WNN model outperforms the component models ARIMA and WNN in terms of

prediction accuracy. In other words, neither ARIMA model nor WNN model can individually

capture the underlying trend of data on different channels. For instance, the RMSE of testing in

the FR data channel is decreased from 0.534 and 0.269 for ARIMA and WNN models to 0.179 for

ARIMA-WNN model. Likewise, the testing RMSE in the ICP data channel reduced from 0.399 in

the ARIMAmodel and 0.139 in theWNNmodel to 0.066 in the ARIMA-WNNmodel. In addition,

the NSE value of testing raises from 0.735 (FR), 0.887 (ET), and 0.843 (ICP) with ARIMA model

and 0.933 (FR), 0.99 (ET), and 0.981 (ICP) with WNN model to 0.97 (FR), 0.996 (ET), and 0.996

(ICP) with ARIMA-WNN model.
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Table 2.5 on the next page, Table 2.6 on page 47, and Table 2.7 on page 48 show the improvement

percentages of different models for data channels FR, ET, and ICP, respectively. Besides, Table 2.8

on page 49 represents the average improvements of models over three data channels. Results

indicate that ARIMA-WNN has overall yield better performance than WNN and ARIMA models.

The RMSE indicator in Table 2.5 on the next page reveals that ARIMA-WNN model improves

ARIMA predictions for 61.42% and WNN predictions for 33.35% in the test data of FR channel.

Table 2.6 on page 47 shows that, in terms of RMSE, the ARIMA-WNN model can respectively

improve 75.5% and 34.30% over than ARIMA and WNN models in the test data of ET channel.

Table 2.7 on page 48 indicates the 75.5% and 29.92% RMSE improvements of the proposed hybrid

model over ARIMA and WNN models in test data of ICP channel, respectively. Also, Table

Table 2.8 on page 49 reports that ARIMA-WNN model can significantly improve the average

RMSE of ARIMA and WNN models respectively for 73.33% and 32.66% in the test data. It

can be seen that the proposed hybrid model enhances the average NSE of the ARIMA and WNN

models for 19.92% and 1.82%, respectively, which suggests a model with more predictive skill.

Furthermore, the average training errors over different channels is decreased by ARIMA-WNN

model comparing with ARIMA and WNN models. Results verify that the proposed ARIMA-

WNNmodel exploits the unique strength of ARIMAmodel in determining linear relationships and

WNN model capability in detecting nonlinear patterns. Therefore, it would be more beneficial to

capture the linear and nonlinear patterns separately and make the final prediction by combining

the linear and nonlinear components which improve the overall predicting performance in different

data channels.
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Table 2.5

Improvement percentage of models for FR data channel

ARIMA WNN

Indicator Train Test Train Test

MAE WNN 49.24% 42.82% 0.0% 0.0%
ARIMA-WNN 51.82% 58.19% 5.08% 26.89%

RMSE WNN 54.35% 49.62% 0.0% 0.0%
ARIMA-WNN 61.51% 66.42% 15.67% 33.35%

NSE WNN 42.20% 26.91% 0.0% 0.0%
ARIMA-WNN 45.42% 32.04% 2.27% 4.04%

2.4.5 Unhealthy state detection

The residual errors of the predictions generated by the proposed ARIMA-WNNmodel are then

analyzed to detect the unhealthy states of the operating vehicle based on different data channels.

Testing different probability distributions, the normal and logistic distributions are considered to fit

the residual errors of the proposed hybrid model for different data channels. Using the maximum

likelihood estimationmethod, the fitness of these distributions for different data channels is checked.

Table 2.9 on page 50 represents the parameters and AIC indicator of these distributions and the

corresponding anomaly detection thresholds with different classifying levels for data channels FR,

ET, and ICP.

This table shows that comparing with the normal distribution, the logistic distribution has a

better fit to the residuals of various data channels with lower AIC values. Correspondingly, the

logistic threshold can be more effective in identifying the unhealthy states of the vehicle based

on the residual distribution of different channels. Moreover, Table 2.10 on page 51 presents the
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Table 2.6

Improvement percentage of models for ET data channel

ARIMA WNN

Indicator Train Test Train Test

MAE WNN 61.07% 63.35% 0.0% 0.0%
ARIMA-WNN 50.71% 74.42% -26.62% 30.21%

RMSE WNN 74.39% 70.21% 0.0% 0.0%
ARIMA-WNN 65.15% 80.43% -26.52% 34.3%

NSE WNN 17.14% 11.6% 0.0% 0.0%
ARIMA-WNN 16.12% 12.21% -0.88% 0.55%

false positive and false negative rates of these probability distributions when the classifying level

increases from 90% to 99%.

Results for logistic threshold in table Table 2.10 on page 51 indicate that rising the classifying

level from 90% through 99% increases the false negative rate of unhealthy states and decreases

the false positive unhealthy rate in different data channels. Also, this table shows that rising

the classifying level increases the false negative rate and decreases the false positive rate of the

normal threshold for various data channels. In real applications like operating vehicle data, the

actual unhealthy observations whose residual errors larger than the threshold are more significant

to be classified correctly than those with residual errors smaller than the threshold. In other

words, flagging the unhealthy states correctly is more important than alarming the healthy states

incorrectly. Therefore, the 95% classifying level is chosen to construct the classifying threshold

since it leads to a reasonable trade-off between the false negative and false positive unhealthy rates.

Subsequently, it is expected that 5% of the healthy states will be classified as unhealthy states.
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Table 2.7

Improvement percentage of models for ICP data channel

ARIMA WNN

Indicator Train Test Train Test

MAE WNN 52.01% 62.31% 0.0% 0.0%
ARIMA-WNN 64.9% 73.16% 26.86% 28.8%

RMSE WNN 43.84% 65.03% 0.0% 0.0%
ARIMA-WNN 61.72% 75.5% 31.84% 29.92%

NSE WNN 10.86% 16.30% 0.0% 0.0%
ARIMA-WNN 13.57% 17.46% 2.44% 1.0%

The obtained results demonstrate that the threshold constructed by the model predictions can

reasonably determine the classifying boundary between the healthy and unhealthy states of the

operating vehicle. For instance, taking the 95% classifying level with the FR data channel, the

normal distribution has a mean value µ=0.0004 and a standard deviation σ=0.269, and the logistic

distribution has a location parameter of µ=0.006 and a scale parameter of s=0.143. Then, using

equation 3.13, the respective thresholds are computed as T FR
normal=0.792 and T FR

logistic=0.42. For

the ET data channel with the classifying level 95%, the normal threshold T ET
normal=0.404 and the

logistic threshold T ET
logistic=0.203 are generated based on a a normal distribution with µ=0.006

and σ=0.137 and a logistic distribution with µ=0.02 and s=0.069, respectively. Similarly, for

the ICP data channel with the same classifying level, the normal threshold T ICP
normal=0.227 and the

logistic threshold T ICP
logistic=0.122 are computed according to a normal distribution with µ=0.003

and σ=0.077 and a logistic distribution with µ=0.001 and s=0.041, respectively. Figure 3.12 on

page 111 depicts the normal and logistic probability distributions for the residual errors of the FR,
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Table 2.8

Average improvement percentage of models

ARIMA WNN

Indicator Train Test Train Test

MAE WNN 52.91% 54.33% 0.0% 0.0%
ARIMA-WNN 55.0% 67.17% 4.44% 28.11%

RMSE WNN 57.30% 60.40% 0.0% 0.0%
ARIMA-WNN 62.62% 73.33% 12.46% 32.66%

NSE WNN 21.77% 17.77% 0.0% 0.0%
ARIMA-WNN 23.28% 19.92% 1.24% 1.82%

ET, and ICP data channels. Obviously, the logistic distributions are narrower and more centered

on the mean than the normal distributions. Thus, the classifying threshold of logistic distribution

is suggested in the presence of a small persistent sequence of unhealthy states while the normal

distribution threshold is more effective when the goal is to detect long-time anomalies.

Figure 2.10 on page 63 shows the unhealthy states flagged by the logistic and normal thresholds.

It can be seen that the logistic threshold is more effective to identify the unhealthy states of the

vehicle since these are sudden persistent changes in the operating status of different sensors of

the vehicle. As shown in Figure 2.10 on page 63 (a), the logistic threshold can detect the sudden

changes in the fuel rate of the operating vehicle. These changes are detected based on the residual

errors of ARIMA-WNNmodel that are higher than the logistic threshold in Figure 2.10 on page 63

(b). Likewise, Figure 2.10 on page 63 (c) and Figure 2.10 on page 63 (d) represent the unhealthy

states for the ET data channel. Figure 2.10 on page 63 (e) and Figure 2.10 on page 63 (f) indicate

the unhealthy states in the ICP data channel using normal and logistic thresholds.
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Table 2.9

Distribution parameters and thresholds for residual of different data channels

Normal distribution Logistic distribution

Ch µ σ AIC
T c

µ s AIC
T c

90% 95% 99% 90% 95% 99%

FR 0.0004 0.27 221.16 0.59 0.79 1.24 0.006 0.14 119.98 0.31 0.42 0.66
ET 0.006 0.14 -1157.9 0.3 0.4 0.63 0.02 0.069 -1318.041 0.151 0.203 0.32
ICP 0.003 0.08 -2333.67 0.17 0.23 0.35 0.001 0.041 -2396.17 0.09 0.12 0.2

These figures show that the proposed unhealthy detection strategy is able to detect the unhealthy

states of FR, ET, and ICP data channels successfully. The total number of 54 unhealthy states

have been detected by the logistic threshold during this test period, including 36 unhealthy states

in FR data channel, 2 in ET data channel, and 16 in ICP data channel. As illustrated in Figure 2.10

on page 63, the unhealthy timestamps can be merged to determine the time intervals for further

investigation in which the vehicle might not be operating correctly. For instance, analyzing the

unhealthy timestamps in FR data channel results in determining five unhealthy time intervals for

further investigation. Moreover, the unhealthy timestamps in ICP data channel can be summarized

as four unhealthy intervals for further analysis. Moreover, we compared the recognized unhealthy

states of these data channels with the vehicle maintenance indicator record to validate the efficiency

of the proposed approach. The comparison results confirm the accuracy of the proposed approach

in modeling the behavior of the operating vehicle and detecting the anomalous behaviors of these

data channels. According to the maintenance record, the time period that an engine maintenance

was conducted matches the unhealthy time intervals captured by the proposed approach.
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Table 2.10

False positive and false negative rates of distributions in different data channels

Normal distribution Logistic distribution

Channel 90% 95% 99% 90% 95% 99%

FPa FNb FP FN FP FN FP FN FP FN FP FN

FR 0.0 0.132 0.0 0.156 0.0 0.156 0.105 0.004 0.016 0.031 0.0 0.136
ET 0.004 0.061 0.0 0.061 0.0 0.061 0.038 0.053 0.008 0.061 0.0 0.061
ICP 0.0 0.039 0.0 0.050 0.0 0.062 0.108 0.008 0.012 0.012 0.0 0.042
Average 0.001 0.077 0.0 0.089 0.0 0.093 0.084 0.022 0.012 0.035 0.0 0.08
a Anomaly false positive rate
b Anomaly false negative rate

2.4.6 Reliability Analysis

In this section, the Receiver Operating Characteristic (ROC) curve is used to evaluate the

reliability of the proposed hybrid model in detecting the unhealthy states of the operating vehicle.

The ROC curve is one of the widely used tools for analyzing the quality and reliability of anomaly

detection models. This probability curve plots the True Positive Rate (TPR) against the False

Positive Rate (FPR) at various classifying thresholds. So, the bigger the TPR and the smaller

the FPR are, the better the model is in detecting abnormalities. In other words, it determines

how much the proposed model is capable of distinguishing between the healthy and unhealthy

states of the vehicle. Hence, the performance of the hybrid ARIMA-WNN model for detecting

the unhealthy states is compared with the WNN and ARIMA models on different data channels.

Figure 2.11 on page 64 shows the ROC curves for FR and ICP data channels. For instance, for

detecting the unhealthy states of FR channel, the areas under the ROC curve (AUC) of the ARIMA-

WNN, WNN, and ARIMA models are 0.888, 0.767, and 0.741, respectively. Similarly, the AUC

of ARIMA-WNN, WNN, and ARIMA models respectively are 0.977, 0.699, and 0.573 for ICP
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data channel. The results indicate that, comparing with the component models (i.e., ARIMA and

WNN), the proposed hybrid model has better ability to understand the underlying characteristics

of different time series data. Therefore, using the ARIMA-WNN improves the accuracy of the

anomaly detection by increasing the true positive rate and decreasing the false positive rate.

2.5 Summary and limitation

This study presents a hybrid ARIMA-WNN model for predicting the behavior of the operating

vehicle and detect the unhealthy states based on multiple channel time series data. The proposed

hybrid method incorporates the ARIMAmodel in the first stage and the WNNmodel in the second

stage for predicting the time series values. The ARIMA model constructs the linear component

of prediction in the first stage and then the WNN model is programmed on the residual errors

of the first stage model to generate the nonlinear component of prediction in the second stage.

By integrating ARIMA and WNN, the proposed hybrid model exploits the ARIMA capability for

predicting the unseen patterns in unlabeled historical data and WNN flexibility for analyzing time

series data with different variations. A threshold based anomaly detection strategy is developed to

timely recognize the unhealthy states of the vehicle. Fitting the maximum likelihood distribution

for the residual errors of the hybrid model, the classifying thresholds of different data channels

are computed. Once a residual error of a data channel exceeds the threshold, an unhealthy alert

is issued. A feed-forward neural network and backpropagation method are nested into this hybrid

model for training the WNN model. Since the WNN model is developed without any labeled data,

it can work in an unsupervised setting. This model addresses the drawbacks of the classical neural

network such as weight initialization, local minima, and model complexity.
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Compared with ANN, the proposed model is more tolerant to noise and more sensitive to

temporal anomalies. A large scale multiple time series vehicle operating data is used as a real case

study to test the performance of the proposed hybrid ARIMA-WNNand compare with ARIMA, and

WNN results. This data set includes three months of second-wise records for 101 performance data

channels of a specific vehicle. Running the proposed ARIMA-WNN, WNN, and ARIMA models

on different data channels reveals the higher accuracy of the hybrid model comparing with other

models in modeling the time series behavior of the vehicle. For instance, compared with ARIMA,

the ARIMA-WNN model improves the MAE, RMSE, and NSE for 58.19%, 66.42%, and 32.04%

when running on the test data of the FR data channel. It also improves the WNNmodel by 30.21%

inMAE, 34.3% in RMSE, and 0.55% in NSE indicators when predicting the test data of the ET data

channel. Besides, in terms of RMSE, ARIMA-WNN model improves ARIMA and WNN models

for 75.5% and 29.92% on the test data of the ICP data channel. Furthermore, the residual errors

of the hybrid ARIMA-WNN model for predicting different data channels are evaluated to identify

the unhealthy states of the operating vehicle. Evaluating different probability distributions (e.g.,

normal, logistic, gamma), the best fitted distributions for the residuals of different channels are

determined to construct the respective classifying thresholds. Testing different residual probability

distributions, the normal and logistic distributions are chosen due to their reasonable likelihood

and AIC values. Additionally, among three different classifying confidence levels (i.e., 90%, 95%,

and 99%), the classifying level 95% is chosen since it results in a reasonable trade-off between

the false negative and false positive unhealthy rates. By estimating the proper distributions for the

residuals of different channels, the classifying thresholds are then computed to efficiently identify

the unhealthy states of the vehicle. Results confirm the proficiency of the proposed threshold
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based anomaly detection strategy for detecting the abrupt changes in the behavior of different data

channels. Finally, the capability of the hybridARIMA-WNNandARIMAmodels for distinguishing

between the healthy and unhealthy states of different data channels is compared using ROC curves.

For instance, the AUC value of the FR data channel is enhanced from 0.573 in the ARIMA model

to 0.977 in the proposed hybrid model that indicates the ability of the ARIMA-WNN model in

understanding the underlying time series process of this data channel.

The proposed framework also has managerial insight contributions. First of all, the ARIMA-

WNN approach is able to model and predict vehicle behaviors which will help to better understand

the vehicle’s operating status and provide the appropriate recommendations for either predictive or

preventive maintenance. Furthermore, the anomaly detection technique will support the unhealthy

status identification, which would alert the potential harms to the managers so as to mitigate

the operating risk and avoid the further economic loss. Additionally, the proposed framework

incorporating the ARIMA-WNNmodel and anomaly detection strategy will provide a general time

series analysis mechanism to be applied to the large scale multiple channel time series data analysis

in many other domains, including marketing and stock pricing.

Although this study has several novel contributions to the state of the art, there are still

limitations that require future research. First, the proposed hybrid ARIMA-WNN, ARIMA, and

WNN models predict the time series of different data channels separately. Then, unhealthy states

of the vehicle are identified based on these predictions for individual data channels. Hence,

developing a multi-variate prediction model and anomaly detection strategy in the vehicle time

series data is worthy of investigation. Furthermore, other modeling approaches such as Hidden

Markov modeling strategies or Recurrent Neural Network models can be further studied. Finally,
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transfer learning can also be investigated to deal with the challenge of time-varying characteristics

in the time series data of the operating vehicle. The future works will take into account all these

limitations and extend the current research scope.

55



Figure 2.1

Classification of time series prediction models

Figure 2.2

Graphical representation of an HMM
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Figure 2.3

General structure of the hybrid ARIMA-WNN

Figure 2.4

Architecture of the proposed WNN
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Figure 2.5

Correlation analysis for determining the input lags for (a) FR, (b) ET, and (c) ICP data channels
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Figure 2.6

Fuel rate data channel
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Figure 2.7

Engine torque data channel
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Figure 2.8

Injection control pressure data channel
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Figure 2.9

Residual distributions for FR, ET, and ICP data channels
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Figure 2.10

Unhealthy states detection for FR, ET, and ICP data channels
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Figure 2.11

ROC curves for FR and ICP data channels
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CHAPTER III

A COMPARATIVE STUDY OF SERIES HYBRID APPROACHES TO MODEL AND

PREDICT THE VEHICLE OPERATING STATES

3.1 Introduction: Time series anomaly detection

Nowadays, the advancement of modern automobile technologies has motivated auto man-

ufacturers to implement new technologies in the vehicle system to satisfy customers’ diverse

requirements. Utilizing multiple new technologies in the vehicle system have made it more com-

plicated. Thus, monitoring the vehicle’s behavior is vital to preserve the performance and help to

extend the life cycle and decrease the operating and maintenance cost. The faulty performance of a

vehicle’s subsystem almost emerges a long time before being detected. In other words, an operating

subsystem will behave differently once a fault begins to occur, which indicates the abnormal behav-

ior of the vehicle that requires appropriate maintenance. Maintaining the nominal performance of

an operating vehicle during the lifetime without monitoring its behavior is extremely challenging.

One way to detect the imminent failures in the vehicle system is to model and predict the behavior

of the subsystems and identify the abrupt variations. For this purpose, this paper investigates

and compares various statistical analyzing and deep learning methods to model the behavior of

operating subsystems, predict the forthcoming patterns, and identify the abnormal behaviors for

multiple time series data.
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Prediction models and anomaly detection have been widely studied across various domains

such as manufacturing, lifeline systems, and telecommunication networks. Many prior studies

have analyzed trends and anomalies using data-driven modeling approaches that can be generally

categorized into two types: statistical methods and machine learning methods. In the statistical

technique group, a statistical model is developed based on data assumed to be normally distributed.

Then, anomaly scores can be computed based on the deviations or error residuals. The statistical

models can be classified as parametric [208, 23, 4] and non-parametric [62, 128] models. However,

thesemodels can recognize unseen patterns and generate statistically significant solutions, they need

a large amount of data and do not perform well when the predefined distribution is not appropriate.

By training labeled data that are marked as normal or anomalous, machine learning techniques

develop classification models to classify new data as anomalous or normal. There are various

classification algorithms such as decision tree [21], support vector machine (SVM)[182], k-nearest

neighbors [185], artificial neural network (ANN) [126], etc. These algorithms can classify unseen

data accurately if there is an appropriate amount of labeled training data. Moreover, new unknown

types of anomalies may be unfolded in the vehicle operating subsystems where no labeled training

data existed. It would also be cumbersome for some classification algorithms to detect periodic or

seasonal anomalies since they cannot recognize the temporal dependencies across timestamps.

It is widely accepted that combining different models or leveraging hybrid approaches can

considerably improve the prediction accuracy and succeed in dealing with the limitations of single

models [15]. This is due to the facts that the underlying process of real data generation cannot be

easily determined or singlemodelsmay not be able to appropriately identify the true data generation

process. Furthermore, combining heterogeneous models or hybridization would result in lower
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generalization variance or error [48, 81]. In this paper, the performances of different series hybrid

models for predicting the behavior of subsystems of an operating vehicle are evaluated. These

models include ARIMA, MLPNN, WNN, ARIMA-MLPNN, ARIMA-WNN, MLPNN-ARIMA,

and WNN-ARIMA. The main goal of this study is to evaluate the predictive capabilities of these

models and investigate which sequence of models is better to construct series hybrid models

for predicting subsystems behaviors. Furthermore, an effective anomaly detection method is

proposed to identify the abnormal behaviors based on the predicting results of the best model. This

approach detects abnormalities by thresholding the residual errors of prediction and normalizing

the dependence on the magnitude of the prediction values.

3.2 Prior Studies

Time series data is a common data type that presents data over time. To involve time series

characteristics in themodeling, many temporal approaches have been developed to detect anomalies

based on timestamps predictions. These models usually don’t need any primary data distribution

and labeled training data. Autoregressive integrated moving average (ARIMA) method has been

extensively used to model the behavior and detect abnormalities with consideration of temporal

dependencies [130, 206, 232]. [225] proposed ARIMA models to detect platoon and mobility

anomalies and design a two-step prediction model for diminishing the false alarms due to road

curves. [148] studied traffic characterizations and abnormality detection in network management

by applying the ARIMAmodel and traditional Holt-Winters methods. [146] developed anARIMA-

based anomaly detection model to specify the traffic network behavior and recognize the traffic

anomalies. [209] introduced an improved ARIMAmodel to detect traffic abnormalities in wireless
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sensor networks. [187] developed an ARIMA-based anomaly detection method to monitor patients

activities in several closed ward hospitals. [90] applied ARIMA technique to detect anomalies in

the information system data collected through regular vehicle sensors to efficiently score and rank

drivers. Although these models are sensitive to noise, they would high-likely to generate false

positive anomaly flag when the noise level is severe [198].

To address this issue in time series analysis, some recent research studiedwavelet reconstruction

methods that combinewavelet basis functions (WBFs) andANN in analyzing variations andmaking

predictions. As a pre-processing step, these techniques decompose the original data to multiple

scales and then different neural networks will be separately applied to analyze each component. For

instance, [165] integrated wavelet transforms and auto-associative neural networks to treat transient

signals for recognizing novelties or anomalies of faulty signals in rotating machinery. [190]

combined discrete wavelet transform and ANN to diagnose high impedance faults. [89] proposed a

signal processing algorithm by incorporating wavelets, ANN, and Hilbert transform to detect short

and long-term anomaly patterns in time series data. [173] also combined wavelet transformation,

ANN, and high-frequency surrogate measurements to detect water quality anomalies in water

management systems. Wavelet reconstructionmethods facilitate the training and anomaly detection

in ANNs by decomposing the original time series data to several scales, however, these techniques

may be difficult to perform online. Because, theANNof different components are trained separately

and then the obtained results will be combined, which will be labor-intensive and time-consuming.

Some other research applied WBF as a transformation function in the hidden layer of ANN [224],

which take the self-organizing advantage of ANN and time-frequency properties of WBF, and

therefore outperform the conventional ANN [199, 153, 164, 180]. For instance, [6] presented
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a self-recurrent neural network relying on wavelets architecture with multidimensional radial

wavelons for detecting network intrusions. [116] constructed a WNN model by using modified

quantum-behaved particle swarmoptimization (MQPSO) algorithm for network anomaly detection.

[82] developed an anomaly detection model by combining normalized mutual information feature

selection (NMIFS) and quantum WNN. [193] proposed a WNN model to detect cyber intrusions

and anomalies for industrial control communication. [198] integratedWNN, classifying threshold,

and two detecting strategies to identify anomalies in ocean fixed-point time series data. More

recently, [210] presented a WNN model to predict the electrical load of midterm buildings.

In recent years, studies pertaining to combination techniques of predictionmodels have attracted

a great deal of attention [70]. These combination models can be mainly classified into two

categories: series and parallel models. Parallel combinationmodels generate the hybrid predictions

by the combination of predicting results of singlemodels; while series combinationmodels consider

decomposing time series data into two main components and analyzing them separately. The first

model analyzes one of the components of the time series in the first stage and then another

component is modeled by the second stage model based on the results obtained from the first

stage. Series combination models, especially linear/nonlinear combination, are among the most

commonly used hybrid approaches for time series prediction [216]. Several literature studies

constructed various ARIMA-ANN models by combining ARIMA with multilayer perceptrons

neural network (MLPNN)[13, 196], Elman’s recurrent neural networks [5], radial basis function

neural network [171], and probabilistic neural networks [93] for time series prediction. Moreover,

[40] integrated seasonal autoregressive integratedmoving average (SARIMA) and SVMmethods to

predict seasonal time series. [140] studied a hybrid ARIMA-SVMmodel for predicting short-term
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loads in energymanagement systems. [53] combinedARIMAmodelwithMLPNNand explanatory

variables (ARIMAX) for air quality forecasting in urban areas. [54] studied the combination of

ARIMA model with MLPNN and support vector regression (SVR) models and constructed two

hybrid systems ARIMA-MLPNN and ARIMA-SVR for time series forecasting. Their proposed

hybrid systems determine a suitable function to integrate the linear and nonlinear prediction

components as well. Also, [48] proposed a particle swarm optimization (PSO) algorithm to find

the best parameters of the linear and nonlinear components of a series ARIMA-ANN prediction

model. Several studies combined ARIMA model with generalized auto-regressive conditional

heteroskedasticity (GARCH) model for diagnosing machine health condition [150], short-time

traffic flow prediction [38], solar radiation forecasting [178], and anomaly detection in network

traffic [131, 11]. By combining ANN and GARCHmodels, [132] introduced a series hybrid model

for predicting volatility in financial markets.

Some recent studies have also developed hybrid ARIMA-WNN models to improve prediction

accuracy. Integrating multi-resolution analysis (MRA),WNN, and ARIMA, [81] proposed amulti-

scale decomposition and reconstruction approach for predicting real-time traffic behaviors. [160]

studied a hybrid ARIMA-WNN model to predict wheat yield time series data. [220] constructed

a hybrid approach to predict short-term electricity loads in power systems by combining ARIMA,

WNN, and improved empirical mode decomposition (IEMD). Later, [155] introduced a hybrid

ARIMA-WNN model to evaluate the performance of a cloud environment and identify short-term

performance anomalies. In addition to applying ARIMA-ANNmodels in numerous studies, ANN-

ARIMAmodels are also studied. By combining grey relational artificial neural network (GRANN)

and ARIMA, [162] developed the hybrid GRANN-ARIMA model for time series forecasting.
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[212] developed a hybrid ANN-ARIMA model to forecast short-term traffic flow time series. [94]

evaluated the efficiency of ARIMA-ANN and ANN-ARIMAmodels for stock price forecasting. To

determine the best sequence of single models in constructing bi-component series hybrid models,

[71] compared the performance of various models including ARIMA-SVM, ARIMA–MLPNN,

SVM–ARIMA, and MLPNN–ARIMA in predicting time series data. Despite the broad study of

ARIMA-WNN models in various studies, WNN-ARIMA models have been studied in relatively

fewer papers. To accurately predict the urban traffic flow, [77] integratedWNNmodel with ARIMA

model using a fuzzy method. [134] proposed a hybrid WNN-ARIMA model for predicting the

index of stock market time series.

In this research, the proposed series hybrid methodology and structure of ARIMA-MLPNN,

ARIMA-WNN, MLPNN-ARIMA, and WNN-ARIMAmodels are described. Based on the bench-

mark case data, the performances of the proposed models in predicting the behavior of the vehicle

subsystems are analyzed and the obtained results are reported. Moreover, the abnormal behaviors

of the subsystems achieved by the thresholding method are presented.

3.3 ARIMA, MLPNN, WNNModels and their Series Hybridization

Individual approaches for time series forecasting can be mainly categorized into statistical

and intelligent models. The statistical models such as ARIMA predict the time series based on

the past values and prediction errors of the time series components. Intelligent models such as

MLPNN and WNN do not rely on the form of the relationships between the input and output

data. In other words, these models predict the outputs by analyzing the features of the input

data. The major advantage of these individual models is their capability for modeling linear and
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nonlinear relationships. ARIMA, MLPNN, and WNN models are the most widely used statistical

and intelligent models for time series forecasting. Moreover, these models have been frequently

used in the literature for constructing series hybrid prediction models.

3.3.1 ARIMAModel

ARIMAmodel is a statistical approach to predict the future values of time series based on histor-

ical observations and random errors. The ARIMA(p, d,q) model mainly comprises autoregressive

(AR) and moving average (MA) components and can be formulated as follows:

φ(B)(1 − B)d(xc
t − µ) = θ(B)εt (3.1)

where, xc
t is the actual value of subsystem c ∈ C in time t ∈ T and the white noise εt ≈iid(0,σ2).

φ(B) = 1 −
∑p

i=1 φi Bi and θ(B) = 1 −
∑q

j=1 θ j B j show the polynomial functions of the backshift

operator Bwith degree p and q, respectively. Furthermore, φi, i = 1,2, . . . , p, and θ j , j = 1,2, . . . ,q

are the model parameters, integers p and q stand for the orders of the model, and d refers to as the

order of differencing. In other words, orders p and q indicate the number of xc
t lags and the number

of lagged errors in the ARIMA model for predicting future values of subsystem c, respectively.

Using the Box and Jenkins [214] method, the procedure of ARIMA modeling consists of

three main steps: model identification, parameter estimation, and diagnostic checking. The

identification step specifies the number of AR (p) andMA terms (q) and the number of differencing

operations (d). Box and Jenkins [214] proposed the AutoCorrelation function (ACF) and the Partial

AutoCorrelation function (PACF) of the sample time series data to identify the orders of theARIMA

model. After specifying the ARIMA(p,d,q), the ordinary least squared (OLS) method is used to

estimate the parameters which were identified in the previous step. Finally, the diagnosis step
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checks the adequacy of the constructed ARIMA model. This step determines whether or not an

adequate ARIMA model is constructed to predict the time series data well, as another ARIMA

model may exist with better modeling and prediction performance. Therefore, the final structure of

the ARIMA model is selected based on the diagnostic statistics squared estimate of errors (SSE),

Akaike information criterion (AIC), and prediction residual plot. These criteria are formulated in

previous chapter. Note that if the selected model does not fit the sample time series data adequately,

a new ARIMA model will be constructed, and the three described steps will be repeated until the

best model structure is found.

3.3.2 MLPNN model

ANN models are among the most widely used intelligent models for predicting time series

data. The popularity is firstly due to the considerable capability of extrapolating the underlying

data generation without any assumption of the model form. Secondly, these models are powerful

universal estimators that can approximate a wide variety of functions. There are various ANN

models in the literature with different architecture. Single hidden layer feed-forward (also known

as multilayer perceptron) neural network (MLPNN) is the most frequently used neural network

design for modeling and predicting time series data. In this study, MLPNN is used for modeling

the nonlinear relationships in the time series data. The proposed model consists of three layers

including input, hidden, and output layers.

The input layer comprises the past lagged values of actual observations xc
t−1,x

c
t−2,. . . ,x

c
t−ρ for

subsystem c of the vehicle. The ρ nodes of input layer are individually connected to all nodes of

hidden layer. The hidden layer operates between the input and output layers with m nodes that

73



are all connected to the single node of the output layer. This layer is operated by an activation

function φ(·) which defines the relationship between the input and output layers. Neural network

models support a large class of activation functions such as linear, logistic, quadratic, and tanh. In

this paper, the common logistic function is used as the transfer function in the hidden layer of the

MLPNN model as follows:

φ(x) =
1

1 + e−x (3.2)

By choosing the logistic activation function and the appropriate number of nodes m in the hidden

layer, the single node of output layer can predict the future values of time series for different

subsystems of the vehicle. Since the one-step-ahead forecasting approach is considered in this

paper, the output layer only contains one node. Thus, the MLPNN model predicts t-th value of

time series c as follows:

x̂c
t = ω

c[2]
m+1 +

m∑
j=1

ω
c[2]
j φ

(
ω

c[1]
ρ+1,j +

ρ∑
i=1

ω
c[1]
i,j xc

t−i

)
(3.3)

where ωc[1]
i,j ∀ i = 1, . . . , ρ + 1, j = 1, . . . ,m + 1 stands for the connection weights between the

input and hidden layers and ωc[2]
j ∀ j = 1, . . . ,m + 1 shows the connection weights between the

hidden and output layer. To start the algorithm, these weights are randomly initialized in small

values between 0 and 1. Also, x̂c
t corresponds to the model prediction for t-th value of time series

in subsystem c of the vehicle.

3.3.3 WNN Model

As a new class of ANN models, WNN models incorporate wavelet analysis in the hidden layer

of the model to improve the time series predictions. [224] introduced WNN to deal with some
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drawbacks of regular ANN models such as random weight initialization, local minima, and model

complexity. Similar to the MLPNN model, the proposed WNN model consists of an input layer

with ρ nodes, a hidden layer with m nodes, and an output layer with one node. The input layer

comprises the lagged observations which are connected to the hidden layer and the single node

of the output layer. The hidden layer contains the hidden nodes (also known as wavelons) which

transfer the input variables to translated and dilated versions of the mother wavelet. Finally, the

output layer predicts the future values for the time series of different subsystems. The details of

the proposed WNN models are presented in Chapter 2.

3.3.4 The series hybridization of ARIMA, MLPNN, and WNNModels

This subsection presents the proposed series combination of the individual models. In series

linear/nonlinear hybrid models, the time series data of each subsystem c ∈ C is considered to

comprise a linear autocorrelation and a nonlinear component as follows:

xc
t = Υ

c
t + Φ

c
t (3.4)

where Υc
t and Φc

t respectively show the linear and nonlinear components that are estimated from

the time series data of c-th subsystem of the vehicle. All proposed hybrid models (i.e., ARIMA-

MLPNN, ARIMA-WNN, MLPNN-ARIMA, and WNN-ARIMA) consider that the linear part is

estimated by the ARIMA model whereas the nonlinear part is computed by either the MLPNN

model or the WNN model. For instance, in the ARIMA-MLPNN model, the linear component of

time series is modeled by ARIMA in the first stage and then the nonlinear component is modeled

by MLPNN in the second stage using residuals of the first stage. Likewise, in the WNN-ARIMA

model, the nonlinear part is estimated by WNN in the first stage and the linear part is modeled by
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ARIMA in the second stage using residuals of the WNN model. The main idea of series hybrid

model is that if the time series of a subsystem is modeled by a linear model such as ARIMA,

the residuals of prediction only contain nonlinear relationships. Alternatively, if the time series is

modeled by a nonlinear model such as MLPNN or WNN, the residuals only comprise the linear

structure. Therefore, series combinations of individual models ARIMA, MLPNN, and WNN

exploit the unique attitudes and strengths of these models for determining different patterns. It

could also be beneficial to model the linear and nonlinear components separately and then combine

the predictions to improve the overall forecasting performance. Because, in real applications such

as vehicle operating data, it is difficult to completely understand the underlying characteristics

of data. Hence, modeling different components of the time series of a subsystem sequentially

by using the individual linear or nonlinear model could enhance the prediction accuracy. The

below descriptions present different hybrid models constructed by series combination of ARIMA,

MLPNN, and WNN models.

3.3.4.1 The ARIMA-MLPNN and ARIMA-WNN models

According to the series hybridization approach, in both ARIMA-MLPNN and ARIMA-WNN

models, the ARIMAmodel constructs the linear part of time series prediction in the first stage. Let

rc
t represent the residual of the ARIMA model for subsystem c at time t as follows:

rc
t = xc

t − Υ̂
c
t (3.5)

where Υ̂c
t denotes the linear output of the ARIMA model. The ARIMA model leaves the

nonlinear patterns in the residual of the first stage. Then, in the second stage, the MLPNN explores

the nonlinear relationships in the ARIMA residual using the ARIMA-MLPNN hybrid model.
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Analogously, using the ARIMA-WNNmodel, the WNNmodel discovers the nonlinear component

of the ARIMA residual in the second stage. With ρ nodes in the input layer, the WNN model or

MLPNN model for the residual of the ARIMA model can be presented as follows:

Φ̂
c
t = f (rc

t−1,r
c
t−2, ...,r

c
t−ρ) (3.6)

rc
t = Φ̂

c
t + ε

c
t (3.7)

where f denotes the nonlinear function determined by either the WNN model or the MLPNN

model. Additionally, Φ̂c
t , and εc

t indicate the nonlinear prediction value and the corresponding

random error. Note that if the nonlinear function f is inappropriate, the error term εc
t will not

be necessarily random. Consequently, the combined prediction of sample t in subsystem c is

computed as follows:

x̂c
t = Υ̂

c
t + Φ̂

c
t (3.8)

Moreover, Figure 3.1 on page 95 represents the general frameworks of the ARIMA-MLPNN and

ARIMA-WNN models in Figure 3.1 on page 95(a) and the MLPNN-ARIMA and WNN-ARIMA

models in Figure 3.1 on page 95(b).

3.3.4.2 The MLPNN-ARIMA and WNN-ARIMA models

Similarly, the MLPNN-ARIMA and WNN-ARIMA models have two main parts. The only

difference is that in these models, the nonlinear part of time series is first constructed. Then, the

second stage model determines the linear part based on the residual of the first stage. Thus, in
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MLPNN-ARIMA or WNN-ARIMA, the nonlinear term Φ̂c′
t is initially estimated by MLPNN or

WNN. Let rc′
t denote the residual of these nonlinear models as follows:

rc′
t = xc

t − Φ̂
c′
t (3.9)

Then, in the second stage, the ARIMAmodel is fitted to the residual of nonlinear models to estimate

the linear term Υ̂c′
t as follows:

Υ̂
c′
t = f (rc

t−1,r
c
t−2, ...,r

c
t−ρ′) (3.10)

rc′
t = Υ̂

c′
t + ε

c′
t (3.11)

where f is a linear function specified by the ARIMA model, Υ̂c′ denotes the linear prediction

part generated by the ARIMA model, and εc
t is the random error. Thus, the MLPNN-ARIMA or

WNN-ARIMA make the final prediction by combining the nonlinear and linear components as

follows:

x̂c′
t = Φ̂

c′
t + Υ̂

c′
t (3.12)

3.3.4.3 Abnormal Behavior Detection Method

Evaluating different individual (i.e., ARIMA, MLPNN, WNN) and hybrid models (ARIMA-

MLPNN, ARIMA-WNN, MLPNN-ARIMA, and WNN-ARIMA), a model with the best perfor-

mance is considered to model the normal behavior and detect the abnormal behavior of different

subsystems of the vehicle. That is, a significant deviation from the behavior prediction of the best

model is considered as abnormal behavior. Given the prediction x̂c
t and the actual observation xc

t ,

the prediction error εc
t = x̂c

t − xc
t is used as a deviation metric to identify the abnormal behavior

of different subsystems. If the absolute value of error falls outside the pre-defined threshold, an
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abnormal behavior alert is issued. Using hypothesis testing, the maximum likelihood distribution

of residual errors εc
t is determined. The prediction error sequence follows a certain distribution

(e.g., normal, logistic, lognormal, gamma, etc.). Hence, its probability distribution can be esti-

mated by using the maximum likelihood estimation approach. Thus, the classifying threshold T c

for detecting the abnormal behavior of subsystem c can be defined [198] as follows:

T c =
1
2

[���a + ln(
pup

1 − pup
)b

��� + ���a + ln(
pdown

1 − pdown
)b

���] ∀ c ∈ C (3.13)

where a and b are the parameters of the probability distribution fitted to the residuals of different

subsystems. For normal distribution, a = µ and b = σ are mean and standard deviation. For

logistic distribution, a = µ and b = s are the location and scale parameters. Moreover, pup denotes

the classifying level (e.g., 90%, 0.95%, 99%, etc.) and pup+pdown=1. Since the proposed threshold

is computed based on the classifying level instead of user-defined value, this method constructs

the threshold in the form of predictive levels that requires no experiential knowledge or parameter

measurements.

3.4 Results and discussion

In this section, the results obtained by running different individual and hybrid models on the

time series of FR, ET, and ICP subsystems of the vehicle are presented.

3.4.1 Individual ARIMAModel For Different Subsystems

The stationarized series, ACF, and PACF of FR, ET, and ICP subsystems are presented in

Figure 3.2 on page 96. The blue lines in these ACF and PACF plots show the lower and upper

bounds of the confidence interval. Itmeans that correlation coefficients fallingwithin the confidence
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Table 3.1

Models evaluation for FR, ET, and ICP data channels

Channel Best model AIC SSE
FR ARIMA(4,1,2) 1848.81 357.97
ET ARIMA(3,1,4) 1018.94 159.56
ICP ARIMA(5,1,5) 901.24 141.32

bounds will result in no significant lag whereas falling outside of the confidence interval indicates

a significant lag. Figure 3.2 on page 96(a) shows that the ACF outside the confidence interval

occurs at lags 2 to 4, and lags 11, 12, and 15 for the FR subsystem. So the t-2, t-3, and t-4 as

well as t-11, t-12, and t-15 are chosen as the relevant lags of prediction errors. Moreover, as the

PACF falls outside of the confidence bands at lags 2 to 6 and lags 11, 12, 16, 18, and 19, the t-2

to t-6 in addition to the t-11, t-12, t-16, t-18, and t-19 are selected as the relevant lags of previous

observations. Analogously, for the ET subsystem in Figure 3.2 on page 96(b), the main relevant

lags of xc
t are t-2, t-3, and t-4 and the lags of prediction errors are t-2, t-3, t-4, and t-14. Also,

according to Figure 3.2 on page 96(c) the previous observations lags and the prediction errors lags

respectively are t-3 to t-5, t-7, t-13, and t-21 as well as t-3 to t-5, t-6, t-9, t-13, and t-15 for the

ICP subsystem. Evaluating various combinations of the order parameters, Table 3.1 represents

the best-fitted individual ARIMA models for different subsystems. In this table, the best ARIMA

models are selected based on low AIC and SSE values. The lower value of these metrics indicates

a better fit for the ARIMA model. In other words, low AIC and SSE values show quality models

with less complexity and lower training error.
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Table 3.2

Individual and hybrid models configuration for different subsystems

Sub-
system

MLPNN WNN ARIMA-MLPNN ARIMA-WNN MLPNN-ARIMA WNN-ARIMA

ρ m γ η ρ m γ η ρ m γ η ρ m γ η ρ m γ η ρ m γ η

FR 8 16 0.05 - 3 6 10−4 10−1 4 9 10−3 - 8 14 10−2 10−1 8 16 0.05 - 3 6 10−4 10−1

ET 8 19 10−2 - 8 10 10−4 10−1 4 9 10−4 - 3 6 10−2 10−4 8 19 10−2 - 3 6 10−2 10−4

ICP 5 14 10−2 - 4 8 10−3 0.05 4 12 10−5 - 6 5 10−2 0.05 5 14 10−2 - 4 8 10−3 0.05

3.4.2 Hybrid ARIMA-MLPNN and ARIMA-WNNModels

Using the best-fitted ARIMA model, the linear components of these hybrid models are con-

structed in the first stage. Then, the ARIMA-MLPNN/ARIMA-WNN applies the best-fitted

MLPNN/WNN model in the second stage for modeling the nonlinear relationships in the residual

of the previous step. The MLPNN and WNN model are trained for different dimensions of the

input vector in the input layer ρ ∈ [1,25], the various number of neurons in the hidden layer

m ∈ [2,10 × ρ], and one output neuron. Among different structures of the WNN model, the best

model will be obtained with the minimum training error. Table 3.2 indicates the optimal values of

ρ, m, γ, and η parameters to construct the best MLPNN, WNN, and hybrid models for different

subsystems. It should be noted that the MLPNN and WNN models are trained by the time series

of different subsystems as individual prediction models, and in the second stage to evaluate the

performance of the proposed hybrid models.

3.4.2.1 Fuel Rate Subsystem

For the FR subsystem, the best-fitted model ARIMA(4,1,2) estimates the linear component

in the first stage. According to the ARIMA-MLPNN parameters for FR subsystem in Table 3.2,

the best MLPNN model in this hybrid approach consists of 4 input, 9 hidden, and one output
81



neurons. Similarly, the best WNN parameters in the ARIMA-WNN model for fitting the FR time

series include 8 input, 14 hidden, and one output nodes. Finally, the obtained results from the

first and the second stages of each hybrid model are combined to estimate the prediction of the

hybrid approach for the FR time series. Figure 3.3 on page 97 represents the estimated values of

the individual ARIMA, MLPNN, and WNN models against the actual test data of FR time series.

Furthermore, Figure 3.4 on page 98 shows the predictions of the hybrid models ARIMA-MLPNN

and ARIMA-WNN for the test data of FR subsystem.

3.4.2.2 Engine Torque Subsystem

As results in Table 3.1 on page 80 shows, the best-fitted linear model for ET time series is

ARIMA(3,1,4). Analyzing the residual of ARIMA model by ARIMA-MLPNN, the best MLPNN

construction comprises 4 input, 9 hidden, and one output nodes. Analogously, the best WNN

structure for ET time series in ARIMA-WNN includes 3 input, 6 hidden, and one output nodes.

The estimated values of the individual ARIMA and WNN models and the predictions of hybrid

ARIMA-MLPNN and ARIMA-WNN models by combining the linear and nonlinear components

against the actual values of ET test data are plotted in Figure 3.5 on page 99 and Figure 3.6 on

page 100, respectively.

3.4.2.3 Injection Control Pressure Subsystem

Similar to the previous subsystem, the best ARIMA model fitting the time series of ICP

subsystem is ARIMA(5,1,5). Then, the best nonlinear model for the residual of ARIMA model

consists of 4 input, 12 hidden, and one output nodes in ARIMA-MLPNN and 6 input, 5 hidden,

and one output nodes in ARIMA-WNN models. Figure 3.7 on page 101 shows the prediction
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Table 3.3

Second stage ARIMA configuration for FR, ET, and ICP subsystems

Sub-
system

MLPNN-ARIMA WNN-ARIMA

Best model AIC SSE Best model AIC SSE

FR ARIMA(11,0,4) 334.33 80.11 ARIMA(8,0,6) -1294.72 16.23
ET ARIMA(3,0,6) -2128.29 7.29 ARIMA(10,0,9) -2974.17 3.10
ICP ARIMA(9,0,5) -1292.09 16.35 ARIMA(7,0,9) -477.35 36.03

of the individual ARIMA and WNN models for the ICP subsystem. Integrating the linear and

nonlinear parts, the estimated values of hybrid ARIMA-MLPNN and ARIMA-WNN models for

this subsystem are presented in Figure 3.8 on page 102.

3.4.3 Hybrid MLPNN-ARIMA and WNN-ARIMA models

In these hybrid models, theMLPNN/WNNmodel is initially fitted to the time series of different

subsystems for capturing the nonlinear patterns in the first stage. Then, the residual errors of the

first stage are treated by the ARIMAmodel in the second stage for gathering the linear relationships.

Finally, the estimations of the first and the second stage models are combined to construct the final

prediction of the proposed MLPNN-ARIMA and WNN-ARIMA models.

3.4.3.1 Fuel Rate Subsystem

As shown in Table 3.2 on page 81, the MLPNN with 8 input, 16 hidden, and one output nodes

has the best configuration in the first stage of the MLPNN-ARIMA model to accurately estimate

the nonlinear component of the FR series. Table 3.3 represents the order of the ARIMA structure

as the second stage of the MLPNN-ARIMA and WNN-ARIMA models. Thus, ARIMA(11,0,4)
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has the best structure to estimate the linear component of the FR series based on the residual errors

of the first stage model. Similarly, the best configuration of the first and the second stage models

in WNN-ARIMA approach consists of 3 input, 6 hidden, and one output nodes for the WNN

model and ARIMA(8,0,6) for the ARIMA model, respectively. Figure 3.9 on page 103 presents

the estimated values of the MLPNN-ARIMA and WNN-ARIMA models against the actual test

observations of FR subsystem.

3.4.3.2 Engine Torque Subsystem

For accurately estimating theET series, Table 3.2 on page 81 indicates that theMLPNN-ARIMA

approach incorporates 8 input, 19 hidden, and one output nodes in the first stageMLPNNmodel and

an ARIMA(3,0,6) in the second stage model. Likewise, the WNN-ARIMA approach comprises 3

input, 6 hidden, and one output node in the first stage WNN model and an ARIMA(10,0,9) in the

second stage model. Figure 3.10 on page 104 depicts the estimated values of these hybrid models

against the test data of ET subsystem.

3.4.3.3 Injection Control Pressure Subsystem

According to Table 3.2 on page 81, the best MLPNN-ARIMA model for estimating the time

series of ICP subsystem is decomposed of 5 input, 14 hidden, and one out nodes in the first stage

MLPNNmodel and anARIMA(9,0,5) in the second stagemodel. Similarly, the bestWNN-ARIMA

involves 4 input, 8 hidden, and one output nodes in the first stage WNN and an ARIMA(7,0,9) in

the second stage models. Figure 3.11 on page 105 represents the prediction of these hybrid models

for the test observations of the ICP subsystem.

84



3.4.4 Comparison of Hybrid Models Results

This subsection evaluates the predictive capability of the proposed hybrid models as well as the

component models ARIMA, MLPNN, andWNN. The performance indicators mean absolute error

(MAE), root mean square error (RMSE), and Nash–Sutcliffe model efficiency coefficient (NSE)

were used to compare the forecasting efficiency of the hybrid models and their components.

Table 3.4 on page 106 represents the training and testing errors of various models for different

subsystems FR, ET, and ICP. However, the WNN model improves the prediction accuracy over

different subsystems comparing to the ARIMA and MLPNN models, it has lower forecasting

efficiency than the hybrid approaches. Table 3.5 on page 107, Table 3.6 on page 107, and

Table 3.7 on page 108 represent the improvement percentages of hybrid models comparing to

the component models for different subsystems FR, ET, and ICP, respectively. Numerical results

show that the hybrid models outperform their component models. This may suggest that none

of the ARIMA, MLPNN, and WNN models can completely capture the underlying trend of data

in different subsystems. For instance, in terms of MAE, the ARIMA-MLPNN and MLPNN-

ARIMAmodels respectively improve the prediction for FR test data by 58.3% and 69% comparing

to the ARIMA model and by 43.2% and 57.7% comparing to the MLPNN model. From the

RMSE perspective, the ARIMA-WNN and WNN-ARIMA models respectively enhance the FR

test series prediction by 66.4% and 85.7% comparing to the ARIMA model and by 33.3% and

71.5% comparing to the WNN model. For ET test data, the ARIMA-MLPNN and MLPNN-

ARIMA models can respectively improve the MAE of the ARIMA model by 64.5% and 73.5%

and the MLPNN model by 38.9% and 54.4%. Likewise, the ARIMA-WNN and WNN-ARIMA

models can respectively enhance the RMSE of predicting the ET test series by 80.4% and 85.6%
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comparing to the ARIMA model and by 34.3% and 51.7% comparing to the WNN model. For

ICP subsystem, the ARIMA-MLPNN and MLPNN-ARIMAmodels improve the MAE of ARIMA

Model for 71.5% and 63.5%, respectively. These hybrid models can also improve the MAE of

MLPNN model for 41.3% and 60.6%, respectively. Similarly, the ARIMA-WNN model reduces

the RMSE of the ARIMA and WNN models for predicting the ICP test data by 75.5% and 29.9%,

respectively. Moreover, the WNN-ARIMA model respectively reduces the RSME of the ARIMA

and WNN models for predicting the ICP test data by 85.6% and 51.7%. Table 3.8 on page 108

shows the average improvements of different models over these three subsystems. It can be seen

that the ARIMA-MLPNN and MLPNN-ARIMA models respectively enhance the average NSE of

the ARIMA model for 19.3% and 19.9% and the MLPNN model for 4% and 4.5%. Besides, the

ARIMA-WNN and WNN-ARIMA models respectively increase the average NSE of the ARIMA

model by 19.9% and 21.2% and the WNN model by 1.8% and 2.9%. Improving the average

NSE reveals the higher predictive performance of the hybrid models comparing to the component

models. The average training errors over different subsystems are also decreased by the hybrid

models comparing to the component models. The obtained results verify that the proposed hybrid

models exploit the capacity of the ARIMA model in modeling the linear relationships and the

capability of the MLPNN and WNN models in capturing the nonlinear patterns. Therefore, using

hybrid models could be advantageous to separately determine the linear and nonlinear components

by using different models and then combine these components to make the final prediction, which

improve the overall predicting performance in different subsystems.

Furthermore, changing the sequence of using component models ARIMA,MLPNN, andWNN

in the hybrid approaches highly impacts the overall prediction performance. Note that, in linear-
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nonlinear combination (i.e., ARIMA-MLPNN and ARIMA-WNN models), the ARIMA model is

fitted in the first stage to capture the linear relationships and the MLPNN/WNN model determines

the nonlinear patterns in the second stage. Conversely, in nonlinear-linear combination (i.e.,

MLPNN-ARIMA and WNN-ARIMA models), the MLPNN/WNN model captures the nonlinear

relationships in the first stage and the ARIMA model determines the linear patterns in the second

stage. For instance, in terms of MAE, the MLPNN-ARIMAmodel improves the ARIMA-MLPNN

by 25.6% and ARIMA-WNN by 25.8% for predicting the test series of FR subsystem. The

WNN-ARIMA model respectively reduces the RMSE of ARIMA-MLPNN, ARIMA-WNN, and

MLPNN-ARIMA by 61.6%, 57.3%, and 47.1% for predicting the FR test data. For predicting the

ET test data, the ARIMA-WNN and MLPNN-ARIMA models respectively enhance the ARIMA-

MLPNN by 33% and 16.2% in terms of RMSE. Analogously, the WNN-ARIMA model improves

the MAE of ARIMA-MLPNN, ARIMA-WNN, and MLPNN-ARIMA by 53.4%, 35.4%, and 37.7

% for predicting the ET test series, respectively. For predicting the ICP test data, the ARIMA-

WNN model reduces the MAE of the ARIMA-MLPNN and MLPNN-ARIMA by 6.1% and

26.4%, respectively. Also, in terms of RMSE, the WNN-ARIMA model respectively improves the

other hybrid models ARIMA-MLPNN, ARIMA-WNN, and MLPNN-ARIMA by 32.7%, 32.5%,

and 51.7% for predicting the ICP test series. Therefore, as Table 3.8 on page 108 shows, the

nonlinear-linear combinationmodelsWNN-ARIMAandMLPNN-ARIMAcan yield slightly better

performance than linear-nonlinear models ARIMA-WNN and ARIMA-MLPNN on average. For

instance, the MLPNN-ARIMA model respectively decreases the MAE of ARIMA-MLPNN and

ARIMA-WNN models by 13.3 % and 4.7% on average. Likewise, the WNN-ARIMA model

respectively increases the NSE of ARIMA-MLPNN and ARIMA-WNNmodels by 1.6% and 1.1%
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on average, which indicates its higher predictive skills. Moreover, comparing the two nonlinear-

linear hybrid models for predicting various subsystems, the WNN-ARIMA performs better than

the MLPNN-ARIMA on average, with 46.9%, 47.3%, and 1.1% improvements in MAE, RMSE,

and NSE indicators, respectively.

3.4.5 Abnormal Behavior Detection

The WNN-ARIMA model showed better performance comparing to the other hybrid and

component models for predicting the series of different subsystems. Thus, the residual errors

of the predictions generated by this model are analyzed to detect the abnormal behavior of the

operating vehicle based on different subsystems. Testing various probability distributions, the

normal and logistic distributions are selected to fit the residual errors of the WNN-ARIMA model

for different subsystems. Table 3.9 on page 109 shows the parameters, log-likelihood value (LLV),

and AIC indicator of these distributions and the corresponding anomaly detection thresholds with

different classifying levels for subsystems FR, ET, and ICP. The maximum likelihood estimation

method is used to evaluate the fitness of these distributions for different subsystems.

As Table 3.9 on page 109 indicated, the logistic distribution with higher LLV and lower AIC

values has a better fit to the residuals of various subsystems comparing to the normal distribution.

For fitting the probability distribution to the residual errors of the FR subsystem, the LLV value

increases from 667.78 for normal distribution to 729.39 for logistic distribution. Likewise, the

AIC value decreases from -1331.55 to -1454.78 when respectively fitting the normal and logistic

distributions to the residual errors of the FR subsystem. Comparing to the normal distribution,

fitting the logistic distribution to the residual errors of the ET subsystem improves the LLV and AIC
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values for 3.22% and 3.23%, respectively. Also, fitting the logistic distribution to the residuals

of the ICP subsystem increases the LLV and AIC values of the normal distribution by 47.94%

and 48.11%, respectively. Hence, the threshold constructed based on the logistic distribution can

be more effective for recognizing the abnormal behavior of the operating vehicle. Table 3.10 on

page 110 shows the false positive (FP) and false negative (FN) rates of these probability distributions

when the classifying level (CL) varies between 90% and 99%.

The FP and FN rates in this table indicate that increasing the classifying level from 90% to 99%

increases the false negative rate and decreases the false positive rate for detecting abnormal behavior

in different subsystems. In real applications like operating vehicle time series data, correctly

identifying the actual abnormal observations with residual errors larger than the threshold is more

important than those with residual errors smaller than the threshold. In other words, flagging the

abnormal behaviors correctly is more significant than alarming the normal behaviors incorrectly.

Testing different classifying levels 90%, 95%, and 99%, the reasonable level is chosen to hold

a good trade-off between the false negative and false positive rates for detecting the abnormal

behaviors in different subsystems. The obtained results represent that the threshold constructed

based on the residual errors of the prediction model can reasonably determine the classifying

boundary between the normal and abnormal behaviors of the vehicle. For FR subsystem, the

logistic distribution has a location parameter of µ=0.0029 and a scale parameter of s=0.065, and

the normal distribution has a mean value µ=-0.0012 and a standard deviationσ=0.126. Then, using

equation 3.13, the corresponding thresholds are computed as T FR
logistic = 0.143 and T FR

normal = 0.277

by taking the classifying level 90%. For the ET subsystem with the classifying level 95%, the

logistic threshold T ET
logistic=0.085 and the normal threshold T ET

normal=0.162 are computed based on
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the logistic distribution with µ=0.0009 and s=0.029 and the normal distribution with µ=-0.0002

and σ=0.055, respectively. Analogously, for the ICP subsystem with the classifying level 95%,

the logistic threshold T ICP
logistic=0.165 and the normal threshold T ICP

normal=0.417 are generated by

the logistic distribution with µ=0.0051 and s=0.056 and the normal distribution with µ=0.0011

and σ=0.142, respectively. Figure 3.12 on page 111 shows the normal and logistic probability

distributions fitting to the residual errors of the FR, ET, and ICP subsystems. It can be seen that the

logistic distributions are narrower and more centered on the mean than the normal distributions.

Therefore, the classifying threshold constructed based on the logistic distribution is suggested in

the presence of a small persistent sequence of abnormal behaviors while the normal distribution

threshold is more applicable when the goal is to detect long-time anomalies.

Figure 3.13 on page 112 shows the abnormal behaviors that are identified by the logistic and

normal thresholds. In this figure, the vertical grey lines show the actual abnormalities and the

blue dots show the abnormalities detected by the logistic threshold. Besides, the blue dots with

red edge color represent the anomalies identified by both normal and logistic thresholds. Clearly,

the logistic threshold is more effective to identify the abnormal behaviors of the vehicle that are

sudden persistent changes in the operating status of different subsystems. As shown in Figure 3.13

on page 112(a), the logistic threshold can detect the sudden changes in the fuel rate of the operating

vehicle with lower FN rate 0.137 and higher FP rate 0.023 than the normal threshold with FN rate

0.186 and FP rate 0.0. Note that detecting the actual abnormality correctly is more significant than

alarming the normal behaviors incorrectly. Thus, for better detecting the actual abnormalities in

FR subsystem behavior, the logistic threshold is preferred due to its lower FN rate than the normal

threshold. These abnormalities are detected based on the residual errors of WNN-ARIMA model
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that are higher than the logistic threshold in Figure 3.13 on page 112(b). Figure 3.13 on page 112(c)

indicates that the abnormal behaviors of the ET subsystem are detected by the logistic threshold

with lower FN rate 0.004 than the normal threshold with FN rate 0.05. Similarly, Figure 3.13 on

page 112(e) presents the abnormal states in the ICP subsystem using logistic threshold since it has

lower FN rate 0.023 comparing to the normal threshold with FN rate 0.035.

These abnormality plots verify the capability of the proposed anomaly detection method in

detecting the abnormal behaviors of the operating vehicle based on the FR, ET, and ICP subsystems.

The total number of 76 abnormal states have been detected by the logistic threshold during the given

time period, including 21 unhealthy states in FR subsystem, 35 in ET subsystem, and 20 in ICP

subsystem. As shown in Figure 3.13 on page 112, the abnormal timestamps of different subsystems

can be merged to construct the time intervals for further investigation in which the vehicle might

not be operating correctly. For example, the abnormal timestamps in FR subsystem can be

summarized as five abnormal time intervals for further analysis. Similarly, the abnormal timestamps

in ICP subsystem can be merged into four abnormal intervals for further investigation. Moreover,

comparing the identified abnormal states of these subsystems with the vehicle maintenance record

confirmed the effectiveness of the proposed approach for detecting the abnormal behaviors of the

vehicle. According to the vehicle maintenance record, the time period that engine maintenance

was conducted matches the abnormal time intervals captured by the proposed approach.

3.5 Summary and limitation

Nowadays, the growing complexity of modern vehicles requires decision-makers to monitor

the behavior of the vehicle subsystems for preserving proper operating performance. This will not

91



only extend the life cycle and decrease the maintenance costs of the vehicle, but also help with

early detecting the imminent abnormal behaviors of operating subsystems. Making appropriate

maintenance decisions for preserving the operating performance of the vehicle in its life cycle is

highly challenging without appropriate modeling, predicting, and analyzing the time series records.

By applying various statistical and deep learning techniques, this study develops several series

hybrid models to model the behavior and predict the forthcoming pattern of multiple operating

subsystems of the vehicle. Combining different predictive models is one of the efficient and most

popular methods in the literature for overcoming the deficiency of single models and improving

the prediction accuracy. Series hybrid models that decompose the time series data to linear and

nonlinear components are among the widely-used hybrid models. These models exploit the unique

advantages of linear and nonlinear models for capturing different relationships in the time series

data.

This study investigates the predictive capability of four series hybrid linear/nonlinear combina-

tions of autoregressive integratedmoving average (ARIMA),multilayer perceptrons neural network

(MLPNN), and wavelet neural network (WNN) models. The performance of these hybrid models

(ARIMA-MLPNN, ARIMA-WNN, MLPNNN-ARIMA, and WNN-ARIMA) are compared mutu-

ally and with their component models for modeling the behavior and predicting the future trend of

different subsystems. Moreover, a threshold-based anomaly detection method based on the best-

fitted model is proposed to identify the abnormal behaviors of operating subsystems. Results with

three months second-wise time series data of 101 subsystems in a real application reveal the higher

accuracy of these series hybrid models comparing to the component models. For instance, the

ARIMA-MLPNN and MLPNN-ARIMA models respectively reduce the prediction MAE for FR
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test data by 58.3% and 69% comparing to the ARIMA model and by 43.2% and 57.7% comparing

to the MLPNN model. Analogously, in terms of RMSE, the ARIMA-WNN and WNN-ARIMA

models improve the prediction of ICP test data by 75.5% and 85.6% comparing to the ARIMA

model and by 29.9% and 51.7% comparing to the WNN model. Moreover, changing the sequence

of using component models in the hybrid approaches highly impacts the overall prediction per-

formance. For predicting the FR test data, the MLPNN-ARIMA model decreases the MAE of

ARIMA-MLPNN and ARIMA-WNN models by 25.6% and 25.8%, respectively. Similarly, the

WNN-ARIMA model respectively improves the RMSE of ARIMA-MLPNN, ARIMA-WNN, and

MLPNN-ARIMA models by 50.8%, 26.5%, and 41.2% for predicting the test data of ET subsys-

tem. The comparison of the four series hybrid models shows that the WNN-ARIMAmodel overall

outperforms the other hybrid models. This model respectively enhances the NSE of ARIMA-

MLPNN, ARIMA-WNN, and MLPNN-ARIMAmodels by 1.6%, 1.1%, and 1.1% which indicates

its higher predictive skills. The obtained results demonstrate that the WNN-ARIMA model can

be considered as an appropriate alternative for behavior forecasting in various operating subsys-

tems of the vehicle. Furthermore, the proposed threshold-based anomaly detection method helps

decision-makers to analyze the prediction residual errors and early detect the abnormal behaviors

in different subsystems.

The findings of this study have significant contributions to vehicle system management. First

and foremost, by comparing four series hybrid models, the most fitted model will be determined

and this model will be helpful to understand the behavior of each vehicle subsystem over time.

Furthermore, based upon the most fitted model results, the anomaly detection approach would

detect abnormalities for the vehicle in the operation which would provide reliable and intelligent
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decision support for preventive and predictive maintenance for the vehicle and ultimately extend

the vehicle life cycle. In addition, the vehicle behavior modeling and anomaly detection would

provide recommendations and insights to vehicle system reliability analysis, and therefore support

the vehicle system design so as to improve the reliability performance over the lifetime.

Although several novel contributions have made in this study, some limitations are needed to be

tackled in future research. Since the proposed hybrid and componentmodels analyze the time series

of different subsystems separately, developing multi-variate prediction models for jointly analyzing

various subsystems are worthy of investigation. Moreover, some other modeling approaches such

as recurrent neural networks and hiddenMarkov models can be further studied. Finally, time series

decomposition-based methods can also be used to develop another class of anomaly detection

techniques for identifying abrupt changes in the behavior of the subsystems. The future study will

extend the scope of this research to address all these limitations.
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Figure 3.1

Frameworks of hybrid models
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Figure 3.2

Correlation analysis for determining the input lags for (a) FR, (b) ET, and (c) ICP data channels
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Figure 3.3

Individual models predictions for FR subsystem
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Figure 3.4

Hybrid ARIMA-MLPNN and ARIMA-WNN predictions for FR subsystem
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Figure 3.5

Individual models predictions for ET subsystem
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Figure 3.6

Hybrid ARIMA-MLPNN and ARIMA-WNN predictions for ET subsystem
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Figure 3.7

Individual models predictions for ICP subsystem
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Figure 3.8

Hybrid ARIMA-MLPNN and ARIMA-WNN predictions for ICP subsystem
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Figure 3.9

Hybrid MLPNN-ARIMA and WNN-ARIMA predictions for FR subsystem
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Figure 3.10

Hybrid MLPNN-ARIMA and WNN-ARIMA predictions for ET subsystem
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Figure 3.11

Hybrid MLPNN-ARIMA and WNN-ARIMA predictions for ICP subsystem
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Table 3.4

Forecasting efficiency of different models for FR, ET, and ICP subsystems
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Table 3.5

Improvement percentage of models for subsystem FR

Indicator ARIMA MLPNN WNN ARIMA-MLPNN ARIMA-WNN MLPNN-ARIMA WNN-ARIMA

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

MAE

MLPNN 27.0% 26.7% 0.0% 0.0% – – – – – – – – – –
WNN 49.2% 42.8% 30.4% 22.0% 0.0% 0.0% – – – – – – – –

ARIMA-MLPNN 61.7% 58.3% 47.5% 43.2% 24.5% 27.1% 0.0% 0.0% 20.5% 0.3% – – – –
ARIMA-WNN 51.8% 58.2% 34.0% 43.0% 5.1% 26.9% -20.0% -0.3% 0.0% 0.0% – – – –

MLPNN-ARIMA 69.6% 69.0% 58.3% 57.7% 40.1% 45.7% 20.6% 25.6% 36.9% 25.8% 0.0% 0.0% – –
WNN-ARIMA 77.3% 85.0% 68.8% 79.6% 55.2% 73.8% 40.7% 64.1% 52.8% 64.2% 25.2% 51.8% 0.0% 0.0%

RMSE

MLPNN 35.5% 34.6% 0.0% 0.0% – – – – – – – – – –
WNN 54.4% 49.6% 29.2% 22.9% 0.0% 0.0% – – – – – – – –

ARIMA-MLPNN 65.7% 62.7% 46.8% 42.9% 24.8% 25.9% 0.0% 0.0% 10.9% -11.2% – – – –
ARIMA-WNN 61.5% 66.4% 40.3% 48.6% 15.7% 33.3% -10.9% 10.0% 0.0% 0.0% – – – –

MLPNN-ARIMA 72.2% 72.9% 56.9% 58.5% 39.2% 46.1% 19.1% 27.3% 27.9% 19.2% 0.0% 0.0% – –
WNN-ARIMA 78.6% 85.7% 66.9% 78.1% 53.2% 71.5% 37.7% 61.6% 44.5% 57.3% 23.0% 47.1% 0.0% 0.0%

NSE

MLPNN 31.2% 20.7% 0.0% 0.0% – – – – – – – – – –
WNN 42.2% 26.9% 8.4% 5.1% 0.0% 0.0% – – – – – –

ARIMA-MLPNN 47.1% 31.0% 12.1% 8.5% 3.4% 3.2% 0.0% 0.0% 1.1% -0.8% – – – –
ARIMA-WNN 45.4% 32.0% 10.9% 9.4% 2.3% 4.0% -1.1% 0.8% 0.0% 0.0% – – – –

MLPNN-ARIMA 49.2% 33.4% 13.8% 10.5% 4.9% 5.1% 1.5% 1.9% 2.6% 1.0% 0.0% 0.0% – –
WNN-ARIMA 50.9% 35.3% 15.1% 12.1% 6.1% 6.6% 2.6% 3.3% 3.8% 2.5% 1.1% 1.4% 0.0% 0.0%

Table 3.6

Improvement percentage of models for subsystem ET

Indicator ARIMA MLPNN WNN ARIMA-MLPNN ARIMA-WNN MLPNN-ARIMA WNN-ARIMA

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

MAE

MLPNN 50.5% 41.9% 0.0% 0.0% – – – – – – – – – –
WNN 61.1% 63.4% 21.4% 36.9% 0.0% 0.0% 9.4% -3.2% 21.0% -30.2% – – – –

ARIMA-MLPNN 57.0% 64.5% 13.3% 38.9% -9.4% 3.2% 0.0% 0.0% 12.9% -27.9% – – – –
ARIMA-WNN 50.7% 74.4% 0.5% 56.0% -26.6% 30.2% -12.9% 27.9% 0.0% 0.0% -41.7% 3.5% – –

MLPNN-ARIMA 71.3% 73.5% 42.0% 54.4% 26.2% 27.7% 33.1% 25.3% 41.7% -3.5% 0.0% 0.0% – –
WNN-ARIMA 80.2% 83.5% 60.0% 71.6% 49.0% 54.9% 53.8% 53.4% 59.7% 35.4% 30.9% 37.7% 0.0% 0.0%

RMSE

MLPNN 63.0% 50.2% 0.0% 0.0% – – – – – – – – – –
WNN 74.4% 70.2% 30.8% 40.1% 0.0% 0.0% 9.2% -1.9% 26.5% -34.3% – – – –

ARIMA-MLPNN 71.8% 70.8% 23.8% 41.3% -9.2% 1.9% 0.0% 0.0% 19.1% -33.0% – – – –
ARIMA-WNN 65.1% 80.4% 5.8% 60.7% -26.5% 34.3% -19.1% 33.0% 0.0% 0.0% -38.4% 20.1% – –

MLPNN-ARIMA 78.5% 75.5% 42.0% 50.8% 16.2% 17.8% 23.9% 16.2% 38.4% -20.1% 0.0% 0.0% – –
WNN-ARIMA 86.0% 85.6% 62.2% 71.1% 45.4% 51.7% 50.4% 50.8% 59.8% 26.5% 34.8% 41.2% 0.0% 0.0%

NSE

MLPNN 15.8% 9.6% 0.0% 0.0% – – – – – – – – – –
WNN 17.1% 11.6% 1.1% 1.8% 0.0% 0.0% 0.2% 0.0% 0.9% -0.6% – – – –

ARIMA-MLPNN 16.9% 11.6% 0.9% 1.8% -0.2% 0.0% 0.0% 0.0% 0.7% -0.6% – – – –
ARIMA-WNN 16.1% 12.2% 0.2% 2.4% -0.9% 0.6% -0.7% 0.6% 0.0% 0.0% -1.2% 0.2% – –

MLPNN-ARIMA 17.5% 11.9% 1.4% 2.2% 0.3% 0.3% 0.5% 0.3% 1.2% -0.2% 0.0% 0.0% – –
WNN-ARIMA 18.0% 12.4% 1.9% 2.6% 0.7% 0.8% 0.9% 0.8% 1.6% 0.2% 0.4% 0.4% 0.0% 0.0%
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Table 3.7

Improvement percentage of models for subsystem ICP

Indicator ARIMA MLPNN WNN ARIMA-MLPNN ARIMA-WNN MLPNN-ARIMA WNN-ARIMA

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

MAE

MLPNN 50.5% 41.9% 0.0% 0.0% – – – – – – – – – –
WNN 61.1% 63.4% 21.4% 36.9% 0.0% 0.0% 9.4% -3.2% 21.0% -30.2% – – – –

ARIMA-MLPNN 57.0% 64.5% 13.3% 38.9% -9.4% 3.2% 0.0% 0.0% 12.9% -27.9% – – – –
ARIMA-WNN 50.7% 74.4% 0.5% 56.0% -26.6% 30.2% -12.9% 27.9% 0.0% 0.0% -41.7% 3.5% – –

MLPNN-ARIMA 71.3% 73.5% 42.0% 54.4% 26.2% 27.7% 33.1% 25.3% 41.7% -3.5% 0.0% 0.0% – –
WNN-ARIMA 80.2% 83.5% 60.0% 71.6% 49.0% 54.9% 53.8% 53.4% 59.7% 35.4% 30.9% 37.7% 0.0% 0.0%

RMSE

MLPNN 63.0% 50.2% 0.0% 0.0% – – – – – – – – – –
WNN 74.4% 70.2% 30.8% 40.1% 0.0% 0.0% 9.2% -1.9% 26.5% -34.3% – – – –

ARIMA-MLPNN 71.8% 70.8% 23.8% 41.3% -9.2% 1.9% 0.0% 0.0% 19.1% -33.0% – – – –
ARIMA-WNN 65.1% 80.4% 5.8% 60.7% -26.5% 34.3% -19.1% 33.0% 0.0% 0.0% -38.4% 20.1% – –

MLPNN-ARIMA 78.5% 75.5% 42.0% 50.8% 16.2% 17.8% 23.9% 16.2% 38.4% -20.1% 0.0% 0.0% – –
WNN-ARIMA 86.0% 85.6% 62.2% 71.1% 45.4% 51.7% 50.4% 50.8% 59.8% 26.5% 34.8% 41.2% 0.0% 0.0%

NSE

MLPNN 15.8% 9.6% 0.0% 0.0% – – – – – – – – – –
WNN 17.1% 11.6% 1.1% 1.8% 0.0% 0.0% 0.2% 0.0% 0.9% -0.6% – – – –

ARIMA-MLPNN 16.9% 11.6% 0.9% 1.8% -0.2% 0.0% 0.0% 0.0% 0.7% -0.6% – – – –
ARIMA-WNN 16.1% 12.2% 0.2% 2.4% -0.9% 0.6% -0.7% 0.6% 0.0% 0.0% -1.2% 0.2% – –

MLPNN-ARIMA 17.5% 11.9% 1.4% 2.2% 0.3% 0.3% 0.5% 0.3% 1.2% -0.2% 0.0% 0.0% – –
WNN-ARIMA 18.0% 12.4% 1.9% 2.6% 0.7% 0.8% 0.9% 0.8% 1.6% 0.2% 0.4% 0.4% 0.0% 0.0%

Table 3.8

Average improvement percentage of different models

Indicator ARIMA MLPNN WNN ARIMA-MLPNN ARIMA-WNN MLPNN-ARIMA WNN-ARIMA

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

MAE

MLPNN 38.9% 38.2% 0.0% 0.0% – – – – – – – – – –
WNN 52.9% 54.3% 22.9% 26.1% 0.0% 0.0% – – – – – – – –

ARIMA-MLPNN 61.9% 63.9% 37.6% 41.6% 19.1% 20.9% 0.0% 0.0% 15.4% -9.1% – – – –
ARIMA-WNN 55.0% 67.2% 26.3% 46.9% 4.4% 28.1% -15.4% 9.1% 0.0% 0.0% – – – –

MLPNN-ARIMA 67.8% 68.7% 47.3% 49.4% 31.6% 31.5% 15.5% 13.3% 28.4% 4.7% 0.0% 0.0% – –
WNN-ARIMA 76.9% 83.4% 62.2% 73.1% 50.9% 63.6% 39.3% 54.0% 48.7% 49.4% 28.2% 46.9% 0.0% 0.0%

RMSE

MLPNN 49.3% 46.0% 0.0% 0.0% – – – – – – – – – –
WNN 57.3% 60.4% 15.8% 26.7% 0.0% 0.0% – – – – – – – –

ARIMA-MLPNN 69.7% 68.9% 40.3% 42.5% 29.1% 21.5% 0.0% 0.0% 19.0% -14.2% – – – –
ARIMA-WNN 62.6% 73.3% 26.3% 50.6% 12.5% 32.7% -19.0% 14.2% 0.0% 0.0% -25.9% 6.3% – –

MLPNN-ARIMA 72.3% 71.5% 45.4% 47.3% 35.2% 28.1% 8.6% 8.4% 25.9% -6.3% 0.0% 0.0% – –
WNN-ARIMA 80.9% 85.0% 62.4% 72.2% 55.3% 62.1% 37.0% 51.7% 48.9% 43.7% 31.1% 47.3% 0.0% 0.0%

NSE

MLPNN 19.0% 14.7% 0.0% 0.0% – – – – – – – – – –
WNN 21.8% 17.8% 4.6% 4.0% 0.0% 0.0% – – – – – – – –

ARIMA-MLPNN 24.5% 19.3% 4.6% 4.0% 2.2% 1.8% 0.0% 0.0% 1.0% -0.5% – – – –
ARIMA-WNN 23.3% 19.9% 3.6% 4.6% 1.2% 1.8% -1.0% 0.5% 0.0% 0.0% -1.4% 0.0% – –

MLPNN-ARIMA 25.0% 19.9% 5.0% 4.5% 2.7% 1.8% 0.4% 0.5% 1.4% 0.0% 0.0% 0.0% – –
WNN-ARIMA 26.1% 21.2% 5.9% 5.7% 3.5% 2.9% 1.3% 1.6% 2.3% 1.1% 0.8% 1.1% 0.0% 0.0%
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Table 3.9

Distribution parameters and thresholds for residual of different subsystems
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Table 3.10

False positive and false negative rates of Normal and Logistic distributions

Normal distribution Logistic distribution

Sub-
system

CL = 90% CL = 95% CL = 99% CL = 90% CL = 95% CL = 99%

FP1 FN2 FP FN FP FN FP FN FP FN FP FN

FR 0.0 0.186 0.0 0.194 0.0 0.194 0.023 0.137 0.0 0.160 0.0 0.194
ET 0.027 0.027 0.004 0.05 0.0 0.061 0.122 0.0 0.076 0.004 0.015 0.038
ICP 0.158 0.035 0.062 0.042 0.027 0.054 0.324 0.023 0.259 0.023 0.124 0.035
Avg 0.062 0.083 0.022 0.095 0.009 0.103 0.156 0.053 0.112 0.062 0.046 0.089
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Figure 3.12

Residual distributions for FR, ET, and ICP subsystems
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Figure 3.13

Abnormal behavior detection for FR, ET, and ICP subsystems
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CHAPTER IV

LEVERAGING MULTI-LAYER LONG SHORT TERM MEMORY AUTOENCODER AND

ONE-CLASS SUPPORT VECTOR MACHINE FOR VEHICLE BEHAVIOR MODELING

AND UNHEALTHY STATE DETECTION

4.1 Introduction

Nowadays, vehicles install a variety of complex subsystems that work together to achieve

the desired performance. The failure of these complicated subsystems may result in expensive

maintenance, a short life cycle, or even passenger casualties. Failure in a vehicle subsystem can be

defined as an unexpected event that occurs at a certain timestamp andmay lead to an afterwardworse

event or a series of other unexpected events. Although, failure in the performance of the vehicle

subsystems can be identified early as an abnormal behavior before being detected as a critical issue,

because vehicle performance will begin to degrade once a subsystem failure manifests. In other

words, failures in a vehicle’s components not only represent the abnormal signals but also emphasize

the necessity of deploying maintenance procedures. Indeed, early detection of abnormal behaviors

ensures a sufficient time interval for implementing appropriate countermeasures to prevent extra

losses and sustain the nominal performance of the vehicle. Therefore, the timely monitoring of the

performance of different subsystems is worthy of investigation as it helps to identify the imminent

anomalous behaviors, extend vehicle life cycle, and therefore ensure passengers’ safety. In this
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regard, the need for computer-aided diagnosis is vital to ensure accurate fault detection and system

diagnosis in the complex subsystems of the vehicle [123].

Automated fault detection methods usually rely on the training and analysis of data that are

obtained by various sensors attached to different subsystems of the vehicle. There are numerous

types of sensors (e.g., engine speed sensor, oil temperature sensor, manifold absolute pressure

sensor, etc.) installed into modern vehicles that are arranged to continuously send essential signals

to monitor each subsystem. These sensors collect a massive amount of time series data that can

be used to model and analyze the operational behavior of different functions of the vehicle. In this

research, a multivariate model and anomaly detection method are developed to detect abnormalities

in the operational behavior of different subsystems and identify the unhealthy states of the vehicle.

This model monitors the health status of different subsystems and quickly recognizes the timely

abnormalities or unexpected patterns based on multiple time series data.

Anomaly detection in multivariate time series sequences is one of the challenging problems in

the technology era. Several studies in the literature worked on developing effective solutions for

different real applications such as manufacturing, automotive, financial, etc.

4.2 Related Work

Anomaly detection problems can be categorized in different manners depending on the wide

variety of scenarios and algorithms. One of the most common categorizations is based on the level

of supervision in algorithms including supervised, semi-supervised, and unsupervised algorithms.

Another categorization also exists based on machine learning and deep learning techniques. [32]

conducted a comprehensive review of different anomaly detection algorithms and their limitations.
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In this section, an overview of commonly used anomaly detection techniques for detecting point

anomalies will be provided first. Then, anomaly detection algorithms developed for time series

data will be presented. Finally, anomaly detection algorithms constructed based on deep neural

networks will be discussed.

The k-Nearest Neighbors (k-NN) anomaly detection technique is one of the simplest and

traditional methods for point anomaly detection [158]. This method is computationally intensive,

highly dependent on k value, and may fail if a normal data point has not sufficient neighbors.

Using k-NN, [28] introduced Local Outlier Factor (LOF) method for local density-based anomaly

detection. This method assumes that the neighbors of data points are spherically distributed. In

some applications, data points can be distributed in a linear manner. [179] proposed Connectivity

basedOutlier Factor (COF) to address the linear connection shortcoming of the LOF technique. The

drawback of the COF algorithm is incorrect outlier detection when clusters with different densities

are very close to each other which was resolved in Influenced Outlierness(INFLO) algorithm [85].

Clustering-based algorithms such as Cluster-Based Local Outlier Factor (CBLOF) are also used

for unsupervised outlier detection.

Many semi-supervised and unsupervised types of anomaly detection algorithms are based

on One-Class Support Vector Machine (OCSVM). [10] introduced the unsupervised version of

OCSVM for anomaly detection purposes. This algorithm learns a decision boundary that max-

imizes the separation between the origin and data points. Anomaly data points fall outside the

trained regions. Other developments of such algorithms include studies of [205] and [33]. [79]

proposed a time series anomaly detection model based on the OCSVM algorithm. This technique

defines six meta-features based on univariate and multivariate time series data and deploys the
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OCSVM model on meta-features space for detecting abnormalities. [114] studied the Support

Vector Data Description (SVDD) approach for detecting anomalies in uncertain data.

To characterize time series features, various anomaly detection techniques have been developed

to identify anomalous patterns. Statistical AutoRegressive Moving Average (ARMA) model and

its variations such as ARIMA and VARMAX have been widely leveraged for time series prediction

and anomaly detection [209, 11, 8]. Recently, Long Short Term Memory (LSTM) networks have

emerged as a powerful technique in time series analysis [110, 227, 44]. LSTM networks belong

to the recurrent neural network category that exhibits great performance in handling sequential

data [37]. Different LSTM architectures have been developed to analyze long-term dependencies

and detect abnormalities in multiple applications such as turbofan engines [57, 50], hydraulic

machinery [123], and machine life estimation [204]. [122] proposed stacked LSTM to detect

time series anomalies. In this approach, an error threshold is defined based on the training errors

on normal timestamps. Then, using the given threshold, a set of time series data is marked

as normal or anomalous. [35] proposed a deep Recurrent Neural Network (RNN) model with

LSTM units to predict Electrocardiography (ECG) signals and detect arrhythmia in the human

heart. [89] combined wavelet and Hilbert transform with deep neural network to detect anomalies

in earthquake activity. [97] presented a web traffic anomaly detection model by integrating

Convolutional Neural Network (CNN), LSTM, and deep neural network. [202] integrated LSTM

and Gaussian Bayes model for outlier detection in the Internet of Things (IoT). [189] developed

a multi-layer Bi-Directional LSTM (BD-LSTM) model to identify anomalous events in complex

surveillance scenes of smart cities. [17] proposed an LSTM model for performance anomaly

detection on temporal irregularities in logs. [112] proposed an LSTM model to cooperatively
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predict outputs and identify anomalies in manufacturing processes. [39] studied an anomaly

detection model for recognizing abnormalities in satellite telemetry data based on Bayesian deep

learning without domain knowledge. [31] presented an aircraft track anomaly detection method by

integrating Multidimensional Outlier Descriptor (MOD) and BD-LSTM.

Autoencoders are another type of unsupervised learning technique that leverages neural network

framework to learn the latent patterns of input data. These models are trained to reproduce the

input data as the expected output in which the reproduction errors are used as metrics for detecting

abnormalities. Typically, autoencoder is used for dimension reduction or visualization purposes.

Due to its considerable efficacy in data encoding, it has gained much attraction for anomaly

and novelty detection activities [226, 9, 42]. Integrating autoencoders with LSTM networks as

encoding and decoding units constructs a powerful architecture for learning sequential data and

anomaly detection [122]. An LSTM encoding unit maps the input sequence to a latent vector

representation and then the LSTM decoding unit reproduces the input sequence. [36] proposed

BD-LSTM autoencoder for sequential anomaly detection in cybersecurity data. [231] studied a

variational LSTM autoencoder model for anomaly detection in imbalanced industrial big data.

Leveraging classical central limit theorem, [120] presented an enhanced LSTM autoencoder model

for anomaly detection in unlabelled time series data. [139] proposed an LSTM autoencoder model

for forecasting and anomaly detection in supply chain sale data.

4.3 Proposed ML-LSTMAE framework

In this paper, a Multi-Layer LSTM AutoEncoder (ML-LSTMAE) framework is proposed

to monitor the operational behavior of different subsystems of a vehicle and identify unhealthy
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states by analyzing multivariate time series data. The vehicle system involves multiple functional

subsystems such as engine, transmission, and fuel subsystems that operate individually orwith other

subsystems to satisfy customized requirements. Developing a deep neural network architecture,

the proposed multivariate model learns the normal pattern of each subsystem and attempts to

detect anomalous behaviors timely. The temporal continuity assumption plays a significant role in

modeling the behavior of complicated system [2]. Based on this assumption, time series sequence

will not be expected to change abruptly unless there are abnormalities. Thus, the idea is to identify

abrupt changes that exhibit a lack of continuity. Furthermore, to represent the learned latent patterns

in abstract and identify the abnormal moments of the operating vehicle, a heuristic algorithm is

developed based on Principal Component Analysis (PCA) and OCSVM techniques.

4.3.1 Long Short-Term Memory Network

LSTM is a powerful recurrent neural network for modeling sequential data [75]. Retaining

long-term dependencies in the data sequence, the LSTM network addresses the popular vanishing

gradient problem in vanilla RNNs through multiplicative gated units. Different variations in

LSTM networks have been studied in multiple applications such as time series analysis [91],

speech recognition [213], and natural language processing [137]. An LSTM network consists of

a chain of repeated modules of neural networks, each of them has three control gates: forget gate,

input gate, and output gate. Each gate includes a sigmoid neural network layer and a pointwise

multiplication operation. The sigmoid layer generates a number in the range of [0,1], indicating

the portion of input information that is passed through. Let χ = {xc
t , ∀ t ∈ T , c ∈ C} denotes

the sequence of input vectors and xt ∈ R
C represents a C-dimensional vector of reading for C data
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channels of vehicle at timestamp t. Note that each data channel c ∈ C involves the timely reading

of a subsystem of the vehicle. The LSTM network can work with time series sequence of any of

these data channels and its performance can vary depending on the input data. Given the new input

sequence xt in state t, the LSTM modules operate as following steps:

1. Forget gate: This gate decides what portion of information should be thrown away or kept. The

information consisting of the previous hidden state information and current input data should

be let through a sigmoid function that outputs a number in the interval [0,1] as follows:

ft = σ(WT
x f xt +WT

h f ht−1 + b f ) ∀ t ∈ T (4.1)

where σ is the sigmoid activation function, ht−1 denotes previous output state, and WT
f and b f

represent the weight matrix and bias term of the forget gate.

2. Input gate: Before storing the processed data, the input gate operates to update the cell state. It

passes the previous hidden state and current input into a sigmoid function that determines the

values to be updated by transforming the values to be between 0 and 1. Passing the previous

hidden state and current input vector into the activation function Fc at the same time, the vector

of candidate values C̃t is created. This vector helps to regulate the network by squishing the

values between 1 and -1.

it = σ(WT
xi xt +WT

hiht−1 + bi) ∀ t ∈ T (4.2)

C̃t = Fc(WT
xc xt +WT

hcht−1 + bc) ∀ t ∈ T (4.3)
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whereWT
xi andWT

hi stand for the weight matrices and bi shows the bias term for input gate vector

it . Also, WT
xc andWT

hc represent the weights and bc indicates the bias term for memory cell state

C̃t . Then, using pairwise multiplication �, the cell state vector is updated as follows:

Ct = ft � Ct−1 + it � C̃t ∀ t ∈ T (4.4)

3. Output gate: Finally, this gate determines the next hidden state value as follows:

ot = σ(WT
xoxt +WT

hoht−1 + bo) ∀ t ∈ T (4.5)

ht = ot � Fh(Ct) ∀ t ∈ T (4.6)

where WT
xo and WT

xo represent the weight matrices and bo shows the bias term for the output

gate vector ot . This gate determines the portion of the cell state that should be outputted. Also,

Fh indicates the activation fuction for computing the hidden state ht . The Rectified Linear Unit

(ReLU) activation function is considered for both Fc and Fh operations. Moreover, the training

phase of each LSTM unit is reguarlized by using an L2 (i.e., ridge) regularizer with penalty of

0.001.

Figure 4.1 on the following page represents the general architecture of LSTM network. In this

network, the cell state runs straight down the entire chain and retains the sequential information

which helps LSTM to gain knowledge from sequential timestamps. Various types of LSTM

networks have been studied in the literature. [66] investigated popular types of LSTM networks

and showed that these models are almost the same and only a few models perform more efficiently

than others in some specific problems.
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Figure 4.1

General architecture of LSTM

4.3.2 Autoncoder LSTM

Autoencoder is an unsupervised neural network that aims to minimize the reconstruction errors

between input and output based on observational sequences of data. Learning a proper encoding-

decoding scheme from training data leads to negligible reconstruction errors for predicting test data

with statistically similar characteristics. This network holds advantages in detecting abnormality

when new data with statistically different characteristics are fed into the model. The autoencoder

network fails to appropriately reconstruct the discrepant data which results in a larger reconstruction

error. This large error is the residual that indicates the abnormality. Indeed, the encoder-decoder

scheme learns patterns from normal data sequences and can be used to identify abnormalities in

multivariate time series. That is, it is trained for constructing only normal instances and when an

anomalous sequence is fed, it may not be reconstructed well and results in a higher residual error.

This high residual value has a practical meaning since abnormal data are not always available or it

is impossible to reconstruct all of their variants.
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In an autoencoder scheme, the input layer feeds data into the network, the encoder compresses

data into latent space, and the decoder decompresses the encoded representation of data to the

output. Comparing the encoded-decoded output to the input data, the residual error is propagated

through the network architecture to update the network weights. Different variants of autoencoder

networks have been studied in the literature such as vanilla autoencoder, regularized autoencoder,

convolutional autoencoder, and LSTM autoencoder. The LSTM autoencoder is a recurrent model

whose both encoder and decoder are LSTM networks. LSTM can learn patterns in long sequences

of data that makes it become an adequate tool for multivariate time series forecasting and anomaly

detection. Figure 4.2 on the next page represents the general architecture of the proposed multi-

layer LSTM autoencoder network. The proposed network utilizes two layers of LSTM networks

for encoding the data sequences and two layers of LSTM networks for decoding the encoded

representation of data. Due to the complexity of learning the patterns in multivariate time series,

the proposed architecture helps to develop an appropriate model to make accurate predictions and

abnormal behavior detection in the data sequence of various subsystems of the vehicle.

4.3.3 One-Class Support Vector Machine

OCSVM was initially introduced by [166] for anomaly detection in high dimensional real-

world data. This algorithm attempts to find the minimal subsets in the input space that comprises

a predefined fraction of data. If the input data is mostly normal with a high predefined fraction,

the algorithm reaches a support boundary around dense areas that represent the normal data [76].

Subsequently, any test data places on or inside the estimated boundary are labeled as a normal

point; otherwise, it is labeled as anomalous.
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Figure 4.2

Architecture of proposed ML-LSTMAE

In many cases such as the real-world case study of this research, the distribution of training data

is complicated and not linearly separable from the low-density areas in the input space. To address

this challenge, OCSVM projects the training data {yi, i ∈ N}, where yi ∈ R
C , from the input space

RC into a higher dimensional spaceRC′, where C � C′, by deploying amapping function. The idea

of feature mapping is to make the data linearly separable. A diverse range of mapping functions

from a simple inner product to more sophisticated kernels can be used for various applications.

With this technique, OCSVM determines a hyperplane that separates the projected data from the

origin with the maximum possible margin. Thus, the problem of determining a nonlinear support
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boundary around the dense area in input space RC is shrinking to find a linear boundary in the

feature spaceRC′. The primal quadratic problem for finding the boundary can be defined as follows:

min
ω,ξ,ρ

1
2
‖ω‖2 +

1
ν |N |

∑
i∈N

ξi − ρ (4.7)

s.t. 〈ω · ϕ(yi)〉 ≥ ρ − ξi ∀ i ∈ N (4.8)

ξi ≥ 0 ∀ i ∈ N (4.9)

where ω ∈ RC is a vector perpendicular to the separating hyperplane, ξ = [ξ1, . . . , ξN ] stands for

the vector of slack variables, ρ is a bias term that controls the distance to the origin, and 0 < ν ≤ 1

is an upper bound on the fraction of margin errors and a lower bound on the fraction of support

vectors. The slack variables allow some input data to fall on the origin side of the support boundary.

This relaxation results in a solution with a greater margin from the origin and shrinks the estimated

boundary around the normal data in the input space. The ν parameter adjusts the level of relaxation.

If ν is set closed to 0, it forces ξi → 0, ∀i ∈ N and so vanishes the penalty term
∑

i∈N ξi from

the objective function 4.7. In other words, this forces the algorithm to learn a hyperplane that

separates almost all training data from the origin in the feature space RC′. Conversely, setting the ν

parameters closed to 1 allows more freedom to the algorithm to leave more points in the origin side

of the hyperplane in which almost all training data are classified as anomalies in the final solution.

Since the explicit computation of the mapping function ϕ is extremely intensive, a similarity

matrix is usually used in the OCSVM algorithm to project the data from input space RC to feature

space RC′. Instead, a kernel function k(yi, y j) can be used as an efficient alternative to compute a
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positive-definite matrix K ∈ R|N |×|N |. In this dissertation, the well-known Gaussian kernel (also

called Radial Basis Function(RBF)) is used as follows:

k(yi, y j) = exp(−
‖yi − y j ‖

2

2σ2 ) (4.10)

where σ > 0 shows the bandwidth parameter of the kernel. The distance between two projected

instances yi and y j in the feature space can be defined as follows:

‖ϕ(yi) − ϕ(y j)‖
2 = k(yi, yi) + k(y j, y j) − 2k(yi, y j) =

2

[
1 − exp(−

‖yi − y j ‖
2

2σ2 )

] (4.11)

Equation 4.7 shows a positive proportional relationship between ‖ϕ(yi) − ϕ(y j)‖ and ‖yi − y j ‖.

This implies that the Gaussian kernel preserves the ranking order of the distances between data

points in the input and feature spaces. Using Lagrangian multipliers and the kernel function, [166]

showed that the primal problem 4.7-4.9 can be converted to the following dual problem:

min
αi

1
2

∑
i,j∈N

αiα j k(yi, y j) (4.12)

s.t.
∑
i∈N

αi = 1 ∀ i ∈ N (4.13)

0 ≤ αi ≤
1
νN

∀ i ∈ N (4.14)

Then, using the dual formulation 4.12-4.14, the value of ρ is computed by choosing a random data

point yi residing on the hyperplane as ρ =
∑

j α j k(y j, yi). After the training phase, any unseen data

point y can be predicted using the following formulations:

f (y) = sign(〈ω · ϕ(y) − ρ〉) (4.15)

f (y) = sign(
∑

j

α j k(y j, y) − ρ) (4.16)
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where equations 4.15 and 4.16 formulate the primal and dual based predictions, respectively.

Consequently, a given solution divides the training data into three groups as follows:

1. Support Vectors (SVs): This group shows data points residing on the support boundary with

f (y) = 0.

2. Nonsupport Vectors (NSVs): This group represents data point fall in inside the normal boundary

with f (y) > 0.

3. Anomalies: This group shows data points locating outside the boundary with f (y) < 0.

Then, the proposed approach for multivariate time series forecasting and anomaly deletion are

explained in the next section.

4.3.4 Anomaly Detection with ML-LSTMAE

Multivariate time series comprises a set of sequential data with more than one time-dependent

variable. That means each variable depends not only on its past values but also on the values

of other variables. These dependencies in multivariate time series can be used for modeling the

interdependencies and forecasting the future values. Developing an accurate multivariate model for

time series forecasting is a difficult task in many applications such as sensors data in the operating

vehicle. [195] conducted a comprehensive study on advanced forecasting models for multivariate

time series based on statistical approaches. Recently, with rapid developments of artificial neural

networks, various LSTM networks have been proposed for resolving either difficult or out-of-scope

problems to handle with conventional time series predictive models [174].
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This study develops anLSTM-basedmethod formonitoring the behavior of different subsystems

(e.g., engine, transmission, fuel systems, etc.) of an operating vehicle and alerting unhealthy states.

The proposedmodel involves modeling multivariate time series in an autoencoder architecture with

multi encoding and decoding layers, recognizing abnormal behaviors of different subsystems, and

determining the health status of the vehicle. As mentioned earlier, let xt = {x1
t , x

2
t , . . . , x

C
t }, t =

1, . . . ,T represents the vehicle’s multi-channel data at time t. In the vehicle’s sensors data, each

data channel c ∈ C indicates the time series data collected by a specific sensor such as engine oil

pressure, fuel rate, transmission oil temperature, etc. The proposed multi-layer LSTM network is

trained based on the sequence of observations {x1, . . . ,x|N |} where N denotes the set of observed

data. Initially, individual observations are scaled using a Min-Max scalar as follows:

xc
t,scaled =

xc
t − xc

min

xc
max − xc

min
∀ c ∈ C, t ∈ T (4.17)

where xc
t and xc

t,scaled stand for the original and the scaled values of data channel c ∈ C at timestamp

t ∈ T , respectively. For the sake of simplicity, the scaled observations are denoted by xc
t . Moreover,

xc
min and xc

max denote the maximum and minimum values of data channel c ∈ C. A sliding window

of size m, m < N is used in the training process. That means m consecutive multivariate data

are fed into the LSTMAE model simultaneously. Then, using the sliding window, the proposed

LSTMAE model can read and encode the input sequence Xi = {xt, . . . ,xt−m+1} and regenerate the

output X̂i = {x̂t, . . . , x̂t−m+1}, i = m + 1, . . . , |N |. This process continues until the sliding window

reaches the end of the training data. In this dissertation, each encoding step and decoding step of

the algorithm consists of two stacked layers of LSTM networks. Figure 4.3 on page 145 illustrates

the operations of the proposed ML-LSTMAE model with a sliding window of size m = 2. Let
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λ, τ, and β denote learning rate, number of epochs, and training batch size. Moreover, γ1 and

γ2 represent the number of LSTM units in the first and second encoding layers, and γ3 and γ4

show the number of LSTM units in the decoding layers. In real applications like operating vehicle

data, flagging the unhealthy states correctly is more important than alerting the healthy states

incorrectly. Due to the complexity of modeling multiple time series of different data channels,

the stacked layers in encoding and decoding steps help to achieve more accurate predictions and

decrease the false-negative rate in detecting anomalous behaviors of vehicle subsystems. Using the

Mean Absolute Error (MAE) loss function, the weights of ML-LSMTAE are trained as follows:

L =
|N |∑

i=m+1
ei (4.18)

where the prediction error vector is computed as ei = X̂i − Xi, i = m + 1, . . . , |N |. The Adam

optimization technique with a learning rate of 0.01 is used to train this network. Then, the trained

network predicts the unseen data, and the prediction errors are further analyzed for abnormality

detection. The proposed ML-LSTMAE algorithm is trained only on the normal sequences of data

and then the learned model is used for detecting abnormalities of multivariate time series. In this

scheme, the multi-layer encoding-decodingmodel has only seen the normal data during the training

phase and learned to reconstruct them. Once an abnormal data sequence is fed into this model, it

may not be able to reconstruct it well and results in higher prediction errors. This shows practical

meanings since abnormal data occasionally occur and it is impossible to cover all types of them.

Thus, by evaluating the prediction errors in the time series of various data channels, the abnormal

behaviors of different subsystems are flagged. To achieve the best prediction performance, it is

necessary to optimize the parameters of the proposed model including the learning rate, the number

128



of cells, and the dropout parameters. In some applications, choosing an appropriate sliding window

is also a challenge. The capability of LSTM networks in learning long temporal dependencies

in data makes this algorithm not need to pre-determine the size of the sliding window. In other

words, it can find the optimal look-back data sequence on its own. In this dissertation, a variant of

different sizes is tested for determining the best sliding window in training the proposed model on

multivariate data channels.

Then, the residual errors of predictionsmade by theML-LSTMAEmodel for test data are further

analyzed to detect anomalous states of the vehicle. Several studies in the state of the art assumed

that the test errors follow a Gaussian distribution and then the maximum likelihood estimation

technique was used to estimate the parameters of the distribution [121]. However, assuming the

Gaussian distribution for prediction errors may not be true in some practical applications. To tackle

this challenge, a common machine learning algorithm (i.e., OCSVM) is used in this research that

does not require any specific assumption on data. OCSVM is one of the powerful machine learning

algorithms developed for anomaly detection purposes. Since applying the proposed ML-LSTMAE

algorithm eliminates the dependencies in the multivariate time series data of different channels, the

error vectors ei can be considered as independent values. Then, the OCSVM algorithm can learn

a supporting hyperplane to distinguish the normal and abnormal instances of data. Pseudocode 4

shows the steps of the proposed ML-LSTMAE model for predicting multivariate time series and

the OCSVM model for detecting abnormalities.
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Algorithm 4:ML-LSTMAE model

1 Input : {x1, . . . ,x|N |}, λ, τ, β, m, γl

2 Initialize parameters of ML-LSTMAE

3 for iteration← 1 to β do

4 X̂i = {x̂t, . . . , x̂t−m+1} ← output of

ML-LSTMAE(Xi = {xt, . . . ,xt−m+1}), i = m + 1, . . . , |N |

5 Compute prediction error vector ei = X̂i − Xi, i = m + 1, . . . , |N |

6 Compute loss function L = ‖X̂i − Xi‖

7 Optimize parameters of ML-LSTMAE (i.e., β, γl) based on loss value L by

using backpropagation method with learning rate λ

8 end

9 Optimize parameters of OCSVM based on prediction error vector

ei, i = m + 1, . . . , |N |

10 Predict test data using trained ML-LSTMAE

11 Classify test errors using trained OCSVM

12 Output : The classified data as normal and anomalous

4.4 Operating Vehicle Multiple Channel Time Series Data Wrangling
4.4.1 Data Description and Challenges

This case study investigates the operational data of 101 time series data channels that were

recorded in seconds by different sensors of a specific vehicle between 2013/01/01 and 2014/03/31.

Each data channel represents the performance records of a particular subsystem of the vehicles

such as engine oil pressure, fuel rate, and transmission oil temperature. The challenges of working

with this data include high dimensionality, combined operation status, and missing values. To
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evaluate the efficiency of the proposed ML-LSTMAE model, this data set is divided into a training

set including multivariate time series of different channels between 2013/01/01 and 2013/06/30

and a test set comprises multivariate data channels from 2013/07/01 through 2014/03/31. We also

know that the vehicle was working normally throughout the training set and it started abnormal

behavior in the range of the testing data set a comprehensive maintenance effort has been made on

the vehicle during this range. Thus, this research aims to develop a predictive model on the normal

training data and detect abnormalities in the test data. This approach helps decision makers to

predict the abnormal behavior of the vehicle and apply appropriate maintenance efforts at the right

time that prevents extra losses and extends the vehicle life cycle. The multivariate time series data

of this study are wrangled based on the following steps:

1) All data channels c ∈ C with at least 20% missing values throughout all timestamps are

excluded from the analysis. Thus, 21 data channels such as unsprung mass, roll angels, and relative

speed of front axles are removed from the main data set.

2) All data channels c ∈ C with a constant value or very low standard deviation are excluded

from the analysis. Thus, 53 channels such as vehicle brake dynamic control, clutch switch, and

brake switch are removed.

3) Since the multivariate data are continuously collected, missing values of different data

channels can be recorded. If a missing value is at the beginning or the end of the cycle, it is

replaced by the nearest non-null value; Otherwise, it is imputed using the linear interpolation

method.

4) If there are two duplicate data channels, a channel with a higher percentage of missing values

is removed.
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4.4.2 Channel Data Preparation

Leveraging the preprocessing phase, themissing values of different data channels are addressed.

It also reveals that not all of the data channels are helpful to model the behavior of the vehicle.

Hence, the main data set is modified to include the most useful data channels. This step excludes

data channels that are not only helpful for developing a more accurate model but also increase the

computational complexity of implementing the proposed model. Consequently, 21 time series data

channels are selected as the most effective data channels (e.g., transmission output shaft speed,

engine oil pressure, engine coolant temperature, etc.) to implement the proposed ML-LSTMAE

model for predicting the behavior of the vehicle and detecting the unhealthy states.

The proposedML-LSTMAEmodel is programmed in python 3.7.3 environment on TensorFlow

2.4.1 as backend and Keras as core model development library. The OCSVM algorithm is also

programmed in the python environment to detect abnormalities in the behavior of the vehicle.

Besides, a desktop with 3.6GHz Intel(R) Core(TM) i7 7700 and 64GB of RAM is used as our

computation platform.

4.5 Experimental Results

In this section, the performance of the proposed ML-LSTMAE network combining with the

OCSVM algorithm is evaluated based on a real case study data and the NASA bearing data set. The

NASA data set is available in NASA Prognostics Data Repository1. Initially, the proposed methods

are used to predict the patterns and detect abnormalities in the NASA bearing data. Then, we use

1NASA Bearing Data Set, https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/bearing
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the proposed approaches to forecast the behavior of the operating vehicle and detect unhealthy

states based on a multivariate series of real data channels.

4.5.1 NASA Multivariate Bearing Data

In this data set, the vibration sensor reading were taken on four bearings that ran into failure

under constant load over multiple days. It consists of individual files that represent 1-second

vibration signal snapshots recorded at 10 minutes intervals. Each file involves 20,480 sensor data

points per bearing with a sampling rate of 20 kHz. It is assumed that the bearings are mechanically

degraded gradually over time. Then, the reading of different bearings are aggregated by using the

mean absolute value of each 10 minutes vibration records. The aggregated data set is divided into

a training set and a test set. Figure 4.4 on page 145 represents the training data set that includes

sensor reading with the normal condition while Figure 4.5 on page 146 shows the test set that

contains the abnormal reading that lead to the bearing failure. Furthermore, 5% of the training

set is considered as a validation set during the training phase. The objective is to identify the

anomalous behaviors in the bearing test set by using data in the training set. In other words, the

training data are fed to train the ML-LSTMAE network, then the trained model is used to detect the

abnormalities in the test set. Table 4.1 on the next page represents the optimal parameters of the

trained ML-LSTMAE network. In this training, the learning rate, number of epochs, and training

batch size are considered as λ = 0.01, τ = 100, and β = 10, respectively. Moreover,

Figure 4.6 on page 146 represents a comparison between the MEA loss function of the ML-

LSTMAE model on the training and validation data sets.
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Table 4.1

Optimal configuration of ML-LSTMAE for NASA bearing data set

Layer Output Shape Number of Parameters

Input (None, 1, 4) 0
LSTM 1 (None, 1, 20) 2000
LSTM 2 (None, 5) 520
Repeat Vector (None, 1, 5) 0
LSTM 3 (None, 1, 5) 220
LSTM 4 (None, 1, 20) 2080
Output (None, 1, 4) 84

This plot indicates a significant decrease in both training and validation errors after 100 epochs.

Table 4.2 on the next page shows the prognostic performance of the proposed model for all four

bearings in the training set. This table also confirms the superior performance of the proposed

ML-LSTMAE network in learning the latent normal behaviors in the four bearings of the NASA

data set with low deviations between the bearing reading and predicted values.

The proposed model learns the normal behaviors of different bearings such that a significant

deviation from this model is considered abnormal behavior. Then, utilizing the trained model, the

behaviors of four bearings are predicted in the test data sequences. Given the prediction errors

vector in test data ei = X̂i − Xi, i = m + 1, . . . , |N |, the absolute value of residuals are used to

construct the support boundary that determines the normal behavior or abnormal behavior of the

system. Figure 4.7 on page 147 illustrates the distribution of the training residuals.

Using the absolute value of the training residuals generated by the proposed ML-LSTMAE,

the OCSVM technique is then used to build the support boundary. Training the OCSVM model

with an RBF kernel and a variant of parameters, the optimal hyper-parameters ν = 0.001 and
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Table 4.2

Prognostic performance of proposed model for training bearings

Bearing MAE SSE RMSE

Bearing 1 0.115 8.799 0.14
Bearing 2 0.071 3.905 0.0937
Bearing 3 0.051 2.024 0.067
Bearing 4 0.0095 0.085 0.014
Average 0.0618 3.703 0.0789

γ = 5 are considered to construct the support boundary that correctly classifies more than 0.99%

of the training instances. Using the training support boundary, the prediction error vectors ei

for the testing phase are classified to recognize the abnormal behaviors of the bearing system.

Leveraging the PCA method, the classification output of the OCSVM algorithm are reduced into

a two-dimensional coordinate plane in Figure 4.8 on page 148.

As shown in Figure 4.8 on page 148, the characteristics extracted from the abnormal data tend

to be in a group different than the attributes extracted from the normal data. This fact confirms the

efficiency of the proposedML-LSTMAE network in properly learning the essential parameters and

format rules of the input data to reconstruct it. Consequently, the OCSVM algorithm can correctly

classify the normal and abnormal behaviors of the bearing system.

Furthermore, Figure 4.9 on page 148 and Figure 4.10 on page 149 represent the anomaly

behaviors (i.e., red points) of bearing 1 and bearing 4 which are detected by the proposed approach

in the test time series data. For instance, there are some unusual high values in bearing 1 reading

between 2004/16/02 and 2004/19/02 and in bearing 4 reading between 2004/17/02 and 2004/18/02,

and in 2004/19/02. As shown in these figures, the ML-LSTMAE predicted the values of these
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bearings which are highly deviated from their actual observations. Subsequently, the OCSVM

algorithm flagged these timestamps as abnormal points.

Comparison metrics True Positive (TP), True Negative (TN), False Positive (FP), and False

Negative (FN) are used to evaluate the accuracy of the proposedML-LSTMAE for different bearings

time series. Note that the TP and TN represent the number of anomalies and normal instances that

are correctly diagnosed by the OCSVM algorithm. The FP stands for the number of instances that

are not correctly detected, and FN shows the incorrectly determined normal events. Using these

metrics, the Precision (PR) and Recall (RE) measure the accuracy and the completeness of the

results, respectively. Finally, F-score checks the balance between Precision and Recall measures.

PR =
TP

TP + FP
(4.19)

RE =
TP

TP + FN
(4.20)

AC =
TP + T N

TP + FP + T N + FN
(4.21)

F − score = 2 ×
PR × RE
PR + RE

(4.22)

Table 4.3 on the next page represents the obtained results for analyzing the performance of the

proposed LSTM-based predictionmodel andOCSVMclassification algorithm. As this table shows,

the proposed LSTM autoencoder method has considerable performance in reconstructing the input

data that leads to accurate abnormality detection in the behavior of the bearing system. Indeed,

leveraging the OCSVM algorithm results in anomaly detection with 0.98% accuracy and an F-score

of 0.98%. These results verify the efficiency of the proposed ML-LSTMAE network combining

with the OCSVM algorithm to flag the abnormal behavior of different bearings sequences in the

NASA bearing data set.
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Table 4.3

Performance analysis of the proposed anomaly detection method

Data TP TN FP FN PR RE AC F-score

NASA Bearing 451 82 5 5 0.989 0.989 0.982 0.989

4.5.2 Operating Vehicle Multiple Channel Time Series Data

In this section, the proposed ML-LSTMAE integrating with OCSVM algorithms are used to

learn the normal patterns in the multivariate time series of an operating vehicle and recognize the

unhealthy states of the vehicles. The characteristics of this multivariate data set are described in

section 4.4.1. These time series data recorded by the sensors on different subsystems of the vehicle

are often complex, nonlinear, period-dependent, and inter-correlated. It is also difficult to visually

measure the health status of the operating vehicle based on multiple time series data of different

subsystems. Therefore, developing a multivariate time series model is necessary to analyze these

complex data streams appropriately. For instance, Figure 4.11 on page 149 and Figure 4.12 on

page 150 represent sample training streams of the Transmission Output Shaft Speed (TOSS) and

Transmission Gear Value (TGV) subsystems, respectively. As it is shown, high variations in the

time series data of these subsystems require a multivariate model that is able to learn these sensitive

trends.

Dividing the data streams into training and test data sets, 5% of the training set is used to validate

the performance of ML-LSTMAE during the training procedure. The optimal configuration of

the ML-LSTMAE for training on the multivariate data channels of the vehicle is presented in
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Table 4.4

Optimal configuration of ML-LSTMAE for operating vehicle

Layer Output Shape Number of Parameters

Input (None, 1, 21) 0
LSTM 1 (None, 1, 96) 45312
LSTM 2 (None, 36) 19152
Repeat Vector (None, 1, 36) 0
LSTM 3 (None, 1, 36) 10512
LSTM 4 (None, 1, 96) 51072
Output (None, 1, 21) 2037

Table 4.4. Moreover, the learning rate, number of epochs, and batch size during the training phase

are considered as λ = 0.001, τ = 300, and β = 100, respectively.

Figure 4.13 on page 150 compares the decrements of the lost function of the proposed model

on the training and validation data sets. As this figure shows, both training and validation errors

are reasonably decreased after 300 epochs.

Table 4.5 on the following page represents the prognostic performance of the ML-LSTMAE

for learning the normal behaviors in the data channels of different subsystems of the vehicle.

As this table shows, the proposed model can learn the latent pattern in the training data set

with low error metrics. Then, the OCSVM algorithm is trained on the residual errors of predicting

the training data with the proposed ML-LSTMAE network. This algorithm constructs a support

boundary that can be used for distinguishing the healthy and unhealthy states of the operating

vehicle in test data streams. Thus, the trained model is used to predict the behavior of the vehicle in

the test data. That is, the prediction errors of the ML-LSTMAE model on the test data are further

analyzed by the constructed boundary in the training phase to identify the unhealthy states of the
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Table 4.5

Prognostic performance of ML-LSTMAE in learning normal data of different subsystems

Data channel MAE SSE RMSE

Engine Torque 0.0027 12.84 0.0044
Engine Load 0.0012 5.65 0.0029
Engine Speed 0.0017 9.89 0.0038
TOSS 0.0021 13.12 0.0060
TGV 0.0074 10.83 0.0128
Injection Control Pressure 0.0022 14.72 0.0047
Engine Coolant Temperature 0.0027 13.73 0.0045
Booster Pressure 0.0009 11.80 0.0042

vehicle. The test data includes the time series records of various data channels before and after

implementing themaintenance requirements. For instance, Figure 4.14 on page 151 and Figure 4.15

on page 151 respectively show the sample test data before implementing the maintenance efforts for

TOSS and TGV data channels, which exhibit abnormal behaviors with different ranges of values

compared with the same training samples. Furthermore, Figure 4.16 on page 152 and Figure 4.17

on page 152 illustrate the sample test streams after deploying the maintenance efforts for these data

channels. These figures represent the normal behaviors of the vehicle’s subsystems similar to the

corresponding sample training data.

The OCSVM algorithm is trained on the absolute values of the training errors for 21 data

channels. This technique constructs a support boundary by using an RBF kernel function and the

optimal hyper-parameters ν = 0.002 and γ = 20. Similar to the NASA bearing data case, the

developing support boundary in the vehicle multivariate time series classifies more than 99% of

the training instances correctly. Then, to identify the unhealthy states of the vehicle, the trained

OCSVM algorithm is used to classify the test instances as healthy and unhealthy points. In other
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words, the absolute values of the prediction errors in the test data are analyzed to identify the

abnormalities. Hence, any timestamp with a test error that falls inside the constructed boundary is

labeled as a normal point in which the vehicle was operating under a healthy state. Conversely, any

timestampwith test residual falls outside the support boundary is labeled as an abnormal timestamp

where the vehicle operated under an unhealthy state.

To illustrate the performance of the proposed method for detecting the unhealthy states of the

vehicle, the PCA technique extracted the principal components of multivariate time series errors

in the test set. Figure 4.18 on page 153 represents the variance ratio explained by the principal

components.

Since the first two principal components explain 90% of the variance in the test errors, we can

choose these two components to express the multivariate test errors in terms of these two new vari-

ables. Leveraging this transformation, the classification outputs of the OCSVM algorithm can be

presented by these two principal components. Figure 4.19 on page 154 shows the healthy/unhealthy

classifications of the vehicle’s behavior in a two-dimensional coordinate plane.

In this figure, the RBF kernel is shown by the red circle that surrounds the normal range of

the residual errors. Indeed, this kernel is trained to cover more than 99% percent of the training

errors. The gray points show the prediction errors obtained in the training phase and the dark-gray

points with a black edge represent the normal test errors. These two sets of errors fall inside the

support boundary and thus indicate the healthy state of the operating vehicle. The red points are

the test errors that fall outside the boundary and reveals the unhealthy states of the vehicle. Clearly,

the test errors with unhealthy states are categorized in a different group comparing to the training

errors and test errors with healthy states. Similar to the NASA bearing data set, this fact verifies the
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efficiency of the proposed ML-LSTMAE network to learn the essential pattern in the input data.

As a result, applying the subsequent OCSVM algorithm can differentiate the healthy and unhealthy

states of the vehicle’s operations adequately.

Figure 4.20 on page 154 and Figure 4.21 on page 155 show the comparison between the

samples of real values and predictions of ML-LSTMAE for time series data channels of TOSS

and TGV subsystems. Additionally, the unhealthy states of these data channels are flagged by the

red points. Obviously, the proposed prediction model catches the normal changing trends in these

data channels. But, there are some abnormal behaviors in these subsystems before implementing

the maintenance efforts that lead to unhealthy states of the vehicle. That is due to the fact that

the ML-LSTMAE network was trained on a normal multivariate data channels set. When new

data with statistically different characteristics are fed into the model, the proposed model fails to

reconstruct them properly. This results in a large prediction error that indicates the presence of

abnormality..

Moreover, Figure 4.22 on page 155 and Figure 4.23 on page 156 represent the predictions

and actual observations for the sample TOSS and TGV test data channels after implementing the

required maintenance efforts. As these figures confirm, after deploying the necessary maintenance,

these subsystems returned to normal behavior with statistical characteristics analogous to the

training time series. Therefore, no unhealthy states are reported on these slots of the test TOSS

and TGV data channels.

These results verify the accuracy of the proposed approach in modeling the behaviors of

different subsystems of the operating vehicle. Consequently, the abnormal behaviors are early

predicted as unhealthy states of the vehicle long time before detecting them as critical operational
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issues. It helps to be aware of imminent failures before arising and allows appropriate time intervals

to implement the best countermeasures which avoid extra losses.

4.6 Summary and limitation

This study presents aMulti-Layer LSTMAutoencoder (ML-LSTMAE)model for predicting the

behavior of themultivariate time series data recorded bymultiple sensors on different subsystems of

the operating vehicle. Leveraging the One-Class Support VectorMachine (OCSVM) algorithm and

Principal Component Analysis (PCA), an anomaly detection technique is developed for determining

the healthy and unhealthy states of the vehicle. The nonlinear complexity of the latent patterns in

the time series data of various subsystems challenges the tasks of behavior prediction and unhealthy

states detection based on multivariate records. Developing a deep neural network architecture, the

proposed approach learns the normal patterns in data channels of different subsystems and timely

recognizes the unhealthy states of the vehicle. This study develops an LSTM based network to

model the long-term dependencies in time series sequences of different subsystems. Moreover,

an autoencoder scheme is combined with the proposed multi-layer LSTM network to minimize

the reconstruction error between the input and output data sequences. This structure becomes

advantageous in detecting unhealthy states of the vehicle when a new record with statistically

different characteristics is fed into the model. Finally, the absolute values of training errors are

used to construct a support boundary by the OCSVM algorithm to differentiate the healthy and

unhealthy states of the vehicle.

To validate the efficiency of the proposed prediction model and anomaly detection algorithm,

we applied two data sets: operating vehicle data set and NASA bearing data set. The operating
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vehicle data set includes 15 months time series records with 101 data channels, and the NASA

bearing data set includes a large number of 20,110,378 observations for 4 bearing time series

sequences. Compared with operating vehicle data set, NASA bearing data set is cleaner and more

organized, which will be more obvious to show the performance of the proposed approach. Both

results verify the performance of the proposed prediction and anomaly detection methods. Training

the proposed prediction method on the operating vehicle train data set leads to an MAE value of

0.0008. The trained support boundary on the training errors of this data set surrounds 0.99% of the

training instances. Using the learned boundary the test data of the operating vehicle are labeled as

healthy and unhealthy states adequately. The obtained results represent that the proposed approach

was able to successfully alert the unhealthy states of the vehicle before implementing the required

maintenance. It helps to be aware of the imminent failures before detecting them as critical issues.

NASA bearing data set confirms the performance of the proposed approach. Results show that the

proposed ML-LSTMAE model fitted well to the training data of the NASA bearing data set with

an MAE value of 0.061. Besides, training the OCSVM algorithm on the training errors of this

data set classifies the 0.99% of the training instances correctly. That is, the developed OCSVM

technique learned the normal patterns in the training data appropriately. Applying the trained

support boundary on the NASA test data results in 0.98% accuracy for detecting the anomalous

behaviors of the bearing system.

Themanagerial insights of the proposed prediction and anomaly detectionmodels are presented

as follows. Firstly, the proposed ML-LSTMAE network is able to predict the behavior of each

individual subsystem of the vehicle which results in achieving a better understating of the vehicle’s

operating status. Consequently, it enables decision makers to provide more accurate recommen-
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dations regarding either predictive or preventive maintenance plans of the vehicle. Moreover,

the proposed OCSVM-based anomaly detection framework triggers timely alerts for warning the

imminent failures to the system that helps to mitigate the vehicle’s operating risk and avoid extra

costs. Additionally, the proposed approach of integrating the ML-LSTMAE prediction network

and OCSVM anomaly detection algorithm will provide a general multivariate time series analysis

mechanism that can be applied to any field with abnormal forecasting and detection need.

Despite the novel contributions of this study to the state of the art, there are some other research

opportunities that deserve further analysis. First of all, the LSTM unit of the proposed prediction

model can be further improved by deploying convolutional operations that accelerate the learning

process by rapid extraction of meaningful information from the input data. Next, transfer learning

can be leveraged to address the time-varying challenges latent in the time series sequences of

different subsystems. Finally, evaluating the performance of other modeling approaches such

as Bidirectional Encoder Representations from Transformers (BERT) for predicting the behavior

of the operating vehicle and detecting anomalies is worthy of investigation. Future studies will

consider these limitations and broaden the scope of this research.
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Figure 4.3

Operational scheme of the proposed ML-LSTMAE with sliding window of size 2

Figure 4.4

NASA bearings multivariate time series training data
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Figure 4.5

NASA bearings multivariate time series test data

Figure 4.6

NASA bearing data set: training and validation loss plots
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Figure 4.7

Distribution of errors in training data set
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Figure 4.8

Normal/abnormal illustration of bearings test data

Figure 4.9

NASA Bearing 1: test data, predictions, and anomalies
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Figure 4.10

NASA Bearing 4: test data, predictions, and anomalies

Figure 4.11

Sample TOSS training data
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Figure 4.12

Sample TGV training data

Figure 4.13

Operating vehicle data set: training and validation loss plots

150



Figure 4.14

Sample TOSS test data before maintenance

Figure 4.15

Sample TGV test data before maintenance
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Figure 4.16

Sample TOSS test data after maintenance

Figure 4.17

Sample TGV test data after maintenance
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Figure 4.18

Explained variance ratio by PCA in operating vehicle test errors
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Figure 4.19

Healthy/unhealthy illustration of operating vehicle test data

Figure 4.20

Sample TOSS test data prediction/anomaly before maintenance
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Figure 4.21

Sample TGV test data prediction/anomaly before maintenance

Figure 4.22

Sample TOSS test data prediction after maintenance
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Figure 4.23

Sample TGV test data prediction after maintenance
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CHAPTER V

CONCLUSION AND FUTURE RESEARCH

5.1 Chapter Structure

This chapter accomplishes the disseration by outlining the research summary and pointing the

future research directions.

5.2 Research Summary

With the growing complexity of modern vehicles system, monitoring the behaviors of different

subsystems of the vehicles becomes vital for decision makers to ensure the safety of the passengers,

controlling the maintenance costs, and retaining the vehicle’s life cycle. Nowadays, the modern

vehicles comprise a variety of complex subsystems that are working together or individually to

achieve an expected product. These complex components may cause faults and breakdowns in

the vehicle that result in expensive maintenance costs, short life cycle of the vehicle, or even

passengers casualty. Fault in the vehicle subsystems can be defined as an unexpected event that

occurs at a certain timestamp and may lead to a worse event or even a series of other unexpected

events. Therefore, it is highly significant to be aware of the imminent failures in the performance of

various subsystems of the vehicle to make the best possible countermeasure to avoid extra losses.

Faults in the performance of the subsystems can be identified early as abnormal behavior a

long time before emerging as critical issues. That is due to the fact that the vehicle performance
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begins degrading once a subsystem failure manifests. In fact, multiple occurrences of failures in

the performance of the vehicle’s components not only signal abnormality but also emphasize the

necessity of deploying an appropriate maintenance. Thus, early detection of abnormal behaviors in

the subsystems of the operating vehicle ensures a sufficient time interval to implement the required

countermeasures that prevent extra losses, sustain the operating performance of the vehicle, and

retain the passengers safety.

This dissertation in multivariate time series forecasting was accompanied by the fields of deep

learning and statistical learning of big data; specially, operating vehicle’s behavior prediction and

unhealthy states detection are now a challenging problem in the modern vehicle with complex sub-

systems. This dissertation proposes novel single and multivariate models for effectively addressing

the major drawbacks in predicting the behavior of operating vehicle and detecting unhealthy states

as demonstrated here:

• Behavior prediction and abnormality detection in individual data channels using statistical (i.e.,
Auto Regressive Integrated Moving Average) and deep learning (i.e., Wavelet Neural Network)
methods.

• Comparative study of series hybrid approaches to model and predict the vehicle operating states
using single variate time series data channels

• Multivariate time series model for predicting vehicle behavior and detecting unhealthy states by
integrating Long Short Term Memory (LSTM), Autoencoder scheme, and One-Class Support
Vector Machine (OCSVM)

5.3 Future Research

The proposed dissertation developed novel contributions to monitor the operational behavior

of operating vehicle using statistical and deep learning approaches. Besides, there are some future

research revenues listed as follows:
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1. Convolutional LSTM network for prediction and anomaly detection in vehicle’s multi-

channel time series sequences.

The objective of this study is to accelerate the learning process in the multi-channel data sequences

using convolutional operations. To accomplish this goal, the proposed multi-layer LSTM autoen-

coder model can be improved by equipping the network weights with convolutional filters. These

filters fasten the training phase by rapid extraction of meaningful information from the input data

sequences.

2. Transfer learning to address the time-varying challenges in the time series sequences of

different subsystems.

Next, transfer learning can be leveraged to address the time-varying challenges latent in the time

series sequences of different subsystems of the operating vehicle. It will be helpful when the

sufficient amount of training and testing data coming from the same distribution are not available.

It also can be useful to share the learning knowledge obtained from modeling the operational

behaviors of different subsystems of the vehicle of this research to model and predict the behavior

of the other vehicles of the same family.

3. Evaluating the performance of Bidirectional EncoderRepresentations fromTransformers

(BERT) for prediction and anomaly detection in the vehicle multi-channel operational

data.

BERT is a machine learning technique for bidirectional training of transformers that was developed

by Google in 2018 for Natural Language Processing (NLP) [52]. This technique pre-trains a deep
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bidirectional model from data by jointly conditioning on both left and right context in all layers.

The results showed that the bidirectionally training in the BERT model leads to a deeper sense of

data comparing to the single-direction model. Due to the complexity of analyzing the multivariate

time series of the operating vehicle, the applicability of the BERT technique for modeling and

predicting the multivariate sequential data of the operating vehicle is worthy of investigation.
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