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Abstract: As criminal activity increasingly relies on digital devices, the field of digital forensics plays
a vital role in identifying and investigating criminals. In this paper, we addressed the problem of
anomaly detection in digital forensics data. Our objective was to propose an effective approach
for identifying suspicious patterns and activities that could indicate criminal behavior. To achieve
this, we introduce a novel method called the Novel Support Vector Neural Network (NSVNN). We
evaluated the performance of the NSVNN by conducting experiments on a real-world dataset of
digital forensics data. The dataset consisted of various features related to network activity, system
logs, and file metadata. Through our experiments, we compared the NSVNN with several existing
anomaly detection algorithms, including Support Vector Machines (SVM) and neural networks. We
measured and analyzed the performance of each algorithm in terms of the accuracy, precision, recall,
and F1-score. Furthermore, we provide insights into the specific features that contribute significantly
to the detection of anomalies. Our results demonstrated that the NSVNN method outperformed the
existing algorithms in terms of anomaly detection accuracy. We also highlight the interpretability of
the NSVNN model by analyzing the feature importance and providing insights into the decision-
making process. Overall, our research contributes to the field of digital forensics by proposing a novel
approach, the NSVNN, for anomaly detection. We emphasize the importance of both performance
evaluation and model interpretability in this context, providing practical insights for identifying
criminal behavior in digital forensics investigations.

Keywords: anomaly; forensics; cybersecurity; machine learning; SVM; NN; novel support vector
neural network

1. Introduction

In recent years, it has become increasingly usual for criminals to exploit digital gadgets.
To track down the perpetrators and bring them to justice, digital forensics has emerged
as a vital technique [1]. Finding data anomalies that point to illegal behavior is a major
difficulty in digital forensics. The identification of aberrant patterns in digital forensics
data is a challenging issue that calls for advanced methods [2,3]. Due to the increasing
sophistication of cybercriminals, traditional anomaly detection systems have difficulty
effectively identifying unusual activity in digital forensics data. This study set out to
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examine how well a Novel Support Vector Neural Network (NSVNN) can spot outliers in
crime-related digital forensics data. To this end, we investigated whether the NSVNN, a
machine learning technique that has been proven to be useful in other domains, is a more
accurate and reliable approach to anomaly detection in digital forensics data [4–6].

Examining, analyzing, and interpreting digital evidence is called “digital forensics”,
and it is used in criminal investigations [7–9]. Law enforcement agencies now rely increas-
ingly on digital forensics to help them apprehend and punish criminals as their usage of
digital devices in crime rises [10,11]. Detecting unusual or suspicious activity in digital
forensics data is an important, but challenging endeavor. This work is crucial because it
allows investigators to spot out-of-the-ordinary patterns of behavior that may point to the
presence of criminal activity. Anomaly identification in digital forensics has historically
been accomplished through the use of statistical and rule-based approaches. However, if
criminals become more adept, it is possible that these techniques will not be able to pick up
on tiny patterns of aberrant behavior [12–14].

Consequently, fresh approaches are required to improve the accuracy and reliability
of anomaly detection in digital forensics data. One such technique is the Support Vector
Neural Network (SVNN), which combines the advantages of both support vector machines
and neural networks to create a reliable and accurate method for detecting anomalies
in machine learning. The SVNN has been successfully applied in many other domains,
including financial fraud detection and intrusion detection. The SVNN has not been
studied extensively despite its potential value in digital forensics data processing. This
research aimed to address this need by developing a Novel Support Vector Neural Network
(NSVNN) for anomaly identification in digital forensics data pertaining to criminal activity.
Together, our findings contribute to the expanding body of knowledge in the fields of digital
forensics and anomaly detection, thereby facilitating the development of more effective
techniques for detecting criminal activities in digital data.

This study was performed for two primary reasons. The primary objective of this
work was to facilitate the development of improved anomaly detection systems for use in
digital forensics data analysis. Our second objective was to demonstrate the utility of the
NSVNN in digital forensics in the hopes of stimulating more research into its applications
in this area. The lack of reliable approaches for anomaly detection in digital forensics data
was the motivation for this study. As criminal activities become more sophisticated, it is
probable that traditional anomaly detection techniques will not be able to spot irregularities
in digital forensics data relating to these crimes. To improve the accuracy and reliability of
anomaly identification in this context, new approaches are needed.

The aims of this study were as follows:

• To assess the NSVNN’s performance in relation to other popular anomaly detection
methods and to evaluate its effectiveness in detecting anomalies in digital forensics
data relating to criminal activity.

• Additionally, we hoped to investigate the NSVNN’s potential for spotting aberrant
patterns in digital forensics data that may be missed by conventional techniques.

• What makes this research different from others is the following:
• The design, testing, and evaluation of a novel machine learning approach to anomaly

detection in crime-related digital forensics data; the demonstration of the NSVNN’s
effectiveness in identifying anomalous activity in this context; a comparison to other
commonly used anomaly detection methods.

• This research demonstrated the promise of cutting-edge machine learning methods
such as the NSVNN to enhance the precision and consistency of digital forensics data
processing in the context of criminal investigations.

This research report is broken down into sections to present the study in a systematic
and straightforward manner. The paper begins the Introduction, which details the history
of digital forensics and the need for developing reliable anomaly detection methods. The
study’s rationale, problem, aims, and findings are all spelt out here. The paper’s second
half is a survey of the relevant literature, which includes discussions of the support vector
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neural network and its various applications, as well as an overview of previous studies
on digital forensics and anomaly detection. The literature review establishes the context
of the investigation and highlights the research gaps that will be filled by the results. The
data collection procedure and the methods used to preprocess the data are outlined in the
Methodology Section, which makes up the third section of the study. A comparison of the
NSVNN to other popular anomaly detection techniques and details on how to put it into
practice are given. In the Methodology Section, we describe in depth how we conducted
our experiments and what criteria we used to rate the NSVNN’s effectiveness. The Results
and Analysis Section shows the study’s findings and evaluates the NSVNN’s performance
in comparison to other anomaly detection methods; it is the fourth section of the paper.
For anomaly detection in crime-related digital forensics data, the NSVNN is discussed in
detail, along with its benefits and limitations, in the Results and Analysis Section. The
Discussion, the paper’s fifth section, offers a critical examination of the results and their
implications for data analysis in digital forensics. The study’s contributions are highlighted,
and potential future research topics are suggested, in the Discussion Section. The report
finishes with a discussion of the study’s ramifications and a summary of the major findings.
Anomaly identification in crime-related digital forensics data is also covered, along with
the implementation details of the NSVNN for use by law enforcement and digital forensics
professionals. The organization of the document as a whole gives a clear and logical flow
of information that makes the research approachable to the reader.

2. Related Work

Many studies [15–20] have focused on better methods for evaluating digital data
related to illegal behaviors, leading to significant advancements in the field of digital
forensics during the past few years [21]. Anomalies [22], or unexpected occurrences [23],
are actively researched in the field of digital forensics. An overview of the literature on
Support Vector Neural Network (SVNN) anomaly detection applications in digital forensics
is provided here.

It has been suggested that a Deep Belief Network (DBN) [24] and a clustering-based
methodology can provide a novel approach to anomaly identification in digital forensic
data [25]. Data were collected from several channels, including electronic mail, online
history, and chat logs, and the DBN was utilized to extract features from this information.
The authors asserted a high rate of detection of anomalies in the data.

A solution for anomaly detection in intrusion detection systems based on deep learning
was proposed in [26]. A Convolutional Neural Network (CNN) was used to prepare the
data for classification using a Long Short-Term Memory (LSTM) network. The authors
claimed a high rate of success in identifying outliers [27].

A deep-learning-based method was utilized to spot unusual financial activities in
another investigation [28,29]. After using an autoencoder network to extract features from
the data, the authors claimed to have achieved high accuracy in detecting fraudulent
transactions [30].

This research recommends a different approach to anomaly identification in crime-
related digital forensics data than has been taken in prior studies: a Novel Support Vector
Neural Network (NSVNN). The NSVNN is an anomaly detection system that combines
the best features of support vector machines and neural networks. To the best of our
knowledge, there has been scant exploration of the SVNN’s potential utility in the analysis
of digital forensics data, particularly as it pertains to crimes. Table 1 illustrates a comparison
of relevant prior research and the proposed methodology.

Overall, the proposed work expands upon existing literature by proposing a fresh
approach to anomaly detection in crime-related digital forensics data. It is hoped that the
NSVNN will aid in the ongoing research and development of efficient ways for detecting
illicit activity in digital data by increasing the accuracy and reliability of anomaly detection.
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Table 1. Comparison of Previous Studies with the Proposed Work.

Study Methodology Data Source Results

[3] Deep belief network Email, web browsing,
chat logs

High accuracy in identifying
anomalous behavior

[5]
Convolutional neural
network, Long short-term
memory network

Intrusion detection system High accuracy in
detecting anomalies

[6] Autoencoder network Financial transactions High accuracy in identifying
fraudulent transactions

Proposed Work Novel support vector
neural network

Crime-related digital
forensics data

Investigating the effectiveness of
the NSVNN for anomaly
detection in digital forensics data
related to crime

3. Materials and Methods

In this section, we detail the resources and procedures that will be employed in
the proposed research to examine how well the Novel Support Vector Neural Network
(NSVNN) works for anomaly identification in digital forensics data associated with criminal
activity. A collection of digital forensics data pertaining to criminal actions was employed
as part of the research materials. Data preprocessing, feature extraction, model training,
evaluation, and performance analysis were all employed in this work. We incorporated the
MLOps considerations into the methodology of our research. The following are the key
aspects we included:

Data management: We emphasize the importance of data management in MLOps.
This includes data collection, preprocessing, and storage techniques to ensure the availabil-
ity and quality of data for training and inference. We discuss how the collected dataset was
prepared, cleaned, and transformed to be suitable for the anomaly detection task.

Model training and evaluation: We provide details on the model training process,
including the choice of algorithms, hyperparameter tuning, and cross-validation tech-
niques. We also discuss the evaluation metrics used to assess the performance of the model.
Additionally, we highlight the importance of model versioning and tracking to ensure
reproducibility and accountability.

Model deployment: We discuss the considerations for deploying the proposed NSVNN
model in a production environment for real-time anomaly detection. This includes the
selection of appropriate infrastructure, scalability considerations, and integration with
existing systems or workflows.

Monitoring and maintenance: We recognize the need for continuous monitoring
and maintenance of the deployed model. We discuss strategies for monitoring model
performance, detecting drift, and retraining the model when necessary. We also highlight
the importance of feedback loops and capturing user feedback to improve the model
over time.

Collaboration and governance: We address the collaborative aspect of MLOps, empha-
sizing the need for effective collaboration among data scientists, developers, and domain
experts. We also discuss governance considerations, including model interpretability,
fairness, and ethical considerations in the context of anomaly detection in digital forensics.

3.1. Dataset Collection

The dataset used in this research was amassed through digital forensics analysis of
numerous devices and systems involved in illegal acts. The dataset components included
metadata for files, system logs, and network traffic. The information was gathered from a
wide variety of digital devices, such as desktop PCs, server computers, and mobile phones.
We employed a tool that records all data sent and received across a network interface to
collect the data on network traffic. Data from the devices’ log files were accessed and
parsed to compile the system logs. Analyzing the file system structures and extracting the
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pertinent metadata allowed for the collection of the file metadata. We artificially created the
dataset’s outliers by inserting them into the raw data by hand. Anomalies were introduced
by introducing out-of-the-ordinary values for network traffic statistics, system logs, and file
metadata elements. Anomalies were injected into the data, and the target feature (anomaly)
was set to 1 for the rows containing the anomalies and 0 for the regular data rows.

3.2. Data Description

Information about network activity: This metric displays the total network activity in
bytes. Evidence gleaned from network traffic data is valuable in digital forensics investiga-
tions because it might provide details about the suspects’ communication and behavior.
This parameter, expressed in bytes, is a useful indication of the system’s overall activity.

The quantity of entries in the system log is displayed here. The behaviors of a suspect
can be better understood with the use of information recorded in the system logs of a device
or system. Indicative of the device’s or system’s activity level, log entries can be used to
spot out-of-the-ordinary trends.

The quantity of metadata entries for a given file is displayed here. Metadata are data
about data, such as the name of a file, when it was created, and when it was last changed.
This is a helpful tool for digital forensics investigations since it can reveal which files a
suspect had access to, modified, or deleted.

This feature, named target (anomaly), is a binary variable that indicates whether the
row in question contains an anomaly (1) or not (0). Investigations often center on anomalies
discovered in digital forensics data, which may be indicative of malicious or suspicious
activities. The rows that contain the injected anomalies are marked with a 1 for the target
characteristic, whereas the normal rows are marked with a 0.

The three features’ frequency distributions are displayed in Figure 1. Each feature’s
range of values is shown along the x-axis, and the number of samples from the dataset that
lie within that range is shown along the y-axis. Each feature’s distribution is depicted by a
different color bar: blue for “Network Traffic Data”, orange for “System Logs”, and green
for “File Metadata”. The majority of the samples for the “Network Traffic Data” feature fall
within the range of 75 to 125, as shown in the figure, suggesting an approximately normal
distribution. The distribution of the “System Logs” option is slightly right-skewed, with
the vast majority of samples lying between 15 and 30. Last but not least, the “File Metadata”
option follows a close approximation of a normal distribution, with the vast majority of
samples clustering between 175 and 225. Data pretreatment and model choice decisions
can benefit from this knowledge. Table 2 show the dataset description.

Table 2. Dataset Description.

Feature Description

Network Activity
Total network activity in bytes, indicating the overall activity of the system. This feature
provides information about suspects’ communication and behavior, which can be valuable in
digital forensics investigations.

System Log Entries
Number of entries in the system log. System logs capture information about the activities and
behaviors of a suspect, offering insights into their actions. The quantity of log entries can help
identify abnormal trends and activities in the device or system being investigated.

File Metadata Entries

Number of metadata entries for a given file. Metadata provide information about the
attributes of a file, such as its name, creation date, and last modification date. Analyzing
metadata can reveal which files a suspect accessed, modified, or deleted, making it useful in
digital forensics investigations.

Target (Anomaly)

Binary variable indicating whether a row contains an anomaly (1) or not (0). Anomalies in
digital forensics data are of particular interest as they may indicate suspicious or malicious
activities. Rows marked with 1 in the target column represent injected anomalies, while rows
marked with 0 are normal data points.
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3.3. Data Preprocessing

We used feature scaling to normalize the data and make sure each feature contributes
equally to the analysis, as the features in the dataset have varying units of measurement
and ranges. The min–max scaling technique was used to normalize the feature values to lie
on a scale from 0 to 1. The min–max scaling is given in Equation (1):

Xscaled =
(X− Xmin)

(Xmax − Xmin)
(1)

where X is the true feature value, Xmin is the minimum feature value, Xmax is the highest
feature value, and Xscaled is the scaled feature value Moreover, before and after preprocessing
of the dataset are shown in Figure 2.

The effectiveness of the anomaly detection algorithm was measured by dividing the
dataset into a training set and a testing set, or a “train-test split”. The Support Vector Neural
Network (SVNN) model was trained using the training set, and its performance was then
tested using the testing set. Seventy percent of the data were used for training, whereas
thirty percent were used for testing.

Choice of indicators: Through the process of feature selection, we were able to en-
hance the SVNN model’s performance while simultaneously decreasing the computational
complexity. We employed a technique called Recursive Feature Elimination (RFE), which
gradually reduces the amount of features until only the most-crucial ones remain based on
their coefficients. The expression for RFE is given in Equation (2):

y = X ∗ w + b (2)

when X is a feature matrix, w is a weight vector, b is a bias term, and y is the dependent
variable of interest.
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The dataset was unbalanced with just six outliers because it only had 16 rows. The
Synthetic Minority Oversampling Technique (SMOTE) was used to create artificial samples
by interpolating between actual minority class samples in order to achieve statistical
parity. SMOTE boosts the efficiency of the anomaly detection algorithm by increasing the
proportion of unusual data points in the dataset. SMOTE can be expressed as an equation,
which is given in Equation (3):

xnew = x + lambda ∗ (x1− x2) (3)

where x is the original sample of anomalies, xnew is the newly created synthetic sample,
x1 and x2 are randomly chosen samples of anomalies, and lambda is a random number
between 0 and 1.

The Local Outlier Factor (LOF) approach was used to identify outliers in the dataset,
and the results are displayed in Figure 3. The plot’s black dots stand for outliers. The
distribution of the features in the dataset is depicted in a box plot (Figure 4). Each feature’s
median (represented by the horizontal line within the box), interquartile range (shown by
the height of the box), and range of data (represented by the whiskers) are displayed in a
box plot. Any outlying data points outside the whiskers are also displayed. The distribution
of each feature in the dataset is depicted in a violin plot in Figure 5. The width of the plots
represents the feature density at varying values, illustrating the kernel density estimation
of the feature distribution. A scatter plot (Figure 6) depicts the correlation between system
logs and network traffic data. Higher values of system logs are typically associated with
higher values of network traffic data, as seen by the scatter plot. In Figure 7, we see a scatter
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plot of the target variable as the color of the dots in connection to the file metadata and
network traffic data characteristics. The red outliers have disproportionately high values
for both file metadata and network traffic statistics, as seen by the scatter plot.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 19 
 

 

box plot. Any outlying data points outside the whiskers are also displayed. The distribu-
tion of each feature in the dataset is depicted in a violin plot in Figure 5. The width of the 
plots represents the feature density at varying values, illustrating the kernel density esti-
mation of the feature distribution. A scatter plot (Figure 6) depicts the correlation between 
system logs and network traffic data. Higher values of system logs are typically associated 
with higher values of network traffic data, as seen by the scatter plot. In Figure 7, we see 
a scatter plot of the target variable as the color of the dots in connection to the file metadata 
and network traffic data characteristics. The red outliers have disproportionately high val-
ues for both file metadata and network traffic statistics, as seen by the scatter plot. 

 
Figure 3. Outliers’ Detection. 

 

Figure 3. Outliers’ Detection.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 19 
 

 

box plot. Any outlying data points outside the whiskers are also displayed. The distribu-
tion of each feature in the dataset is depicted in a violin plot in Figure 5. The width of the 
plots represents the feature density at varying values, illustrating the kernel density esti-
mation of the feature distribution. A scatter plot (Figure 6) depicts the correlation between 
system logs and network traffic data. Higher values of system logs are typically associated 
with higher values of network traffic data, as seen by the scatter plot. In Figure 7, we see 
a scatter plot of the target variable as the color of the dots in connection to the file metadata 
and network traffic data characteristics. The red outliers have disproportionately high val-
ues for both file metadata and network traffic statistics, as seen by the scatter plot. 

 
Figure 3. Outliers’ Detection. 

 
Figure 4. Box Plot of Features.



Sensors 2023, 23, 5626 9 of 18

Sensors 2023, 23, x FOR PEER REVIEW 9 of 19 
 

 

Figure 4. Box Plot of Features. 

 
Figure 5. Violin Plot of Features. 

 
Figure 6. System Logs vs. Traffic Data. 

Figure 5. Violin Plot of Features.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 19 
 

 

Figure 4. Box Plot of Features. 

 
Figure 5. Violin Plot of Features. 

 
Figure 6. System Logs vs. Traffic Data. Figure 6. System Logs vs. Traffic Data.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 7. File Metadata vs. Network Traffic Data (Target). 

3.4. Feature Engineering 
Engineering new features from preexisting ones, with the goal of enhancing a ma-

chine learning algorithm’s efficiency, is known as feature engineering. To better under-
stand the underlying relationships and patterns in the data, we employed feature engi-
neering to develop novel features. 

Statistical features: For every characteristic in the dataset, we generated statistical fea-
tures including the mean, standard deviation, skewness, and kurtosis. Each characteris-
tic’s central tendency, variability, and distribution shape are all captured here. 

Because the data on network traffic were collected over time, we employed time se-
ries features such as moving averages, volatility measures, and autoregressive coefficients. 
Time-dependent dependencies and trends in network traffic are captured by these char-
acteristics. 

Using multiplication, division, or addition, we can build interaction features by com-
bining pairs of features. These features can reveal hidden dependencies and patterns that 
are not captured by individual features since they capture the interaction between two 
features. 

Principal Component Analysis (PCA) was used to minimize the feature space’s di-
mensionality. To reduce the number of dimensions used to represent the data, PCA was 
employed. This can increase the algorithm’s performance by decreasing its computational 
complexity. Our goal in developing these additional features was to enhance the SVNN’s 
capability of identifying outliers in the digital forensics dataset. 

The properties of the dataset are shown in a correlation matrix in Figure 8. The ma-
trix’s squares stand for the degree to which two characteristics are correlated with one 
another. A strong positive connection is represented by a red square, a strong negative 
correlation by a blue square, and no correlation at all by a white square. It is clear from 
the graph that system logs and file metadata, as well as network traffic data and file 
metadata were highly correlated with one another. This indicated that these characteris-
tics were linked and may have analogous effects on the dependent variable. However, it 
was also clear that no factor had a particularly significant association with the target var-
iable; this showed that all features had some value in predicting the target. In general, this 

Figure 7. File Metadata vs. Network Traffic Data (Target).



Sensors 2023, 23, 5626 10 of 18

3.4. Feature Engineering

Engineering new features from preexisting ones, with the goal of enhancing a machine
learning algorithm’s efficiency, is known as feature engineering. To better understand the
underlying relationships and patterns in the data, we employed feature engineering to
develop novel features.

Statistical features: For every characteristic in the dataset, we generated statistical fea-
tures including the mean, standard deviation, skewness, and kurtosis. Each characteristic’s
central tendency, variability, and distribution shape are all captured here.

Because the data on network traffic were collected over time, we employed time series
features such as moving averages, volatility measures, and autoregressive coefficients. Time-
dependent dependencies and trends in network traffic are captured by these characteristics.

Using multiplication, division, or addition, we can build interaction features by com-
bining pairs of features. These features can reveal hidden dependencies and patterns
that are not captured by individual features since they capture the interaction between
two features.

Principal Component Analysis (PCA) was used to minimize the feature space’s di-
mensionality. To reduce the number of dimensions used to represent the data, PCA was
employed. This can increase the algorithm’s performance by decreasing its computational
complexity. Our goal in developing these additional features was to enhance the SVNN’s
capability of identifying outliers in the digital forensics dataset.

The properties of the dataset are shown in a correlation matrix in Figure 8. The matrix’s
squares stand for the degree to which two characteristics are correlated with one another.
A strong positive connection is represented by a red square, a strong negative correlation
by a blue square, and no correlation at all by a white square. It is clear from the graph
that system logs and file metadata, as well as network traffic data and file metadata were
highly correlated with one another. This indicated that these characteristics were linked
and may have analogous effects on the dependent variable. However, it was also clear that
no factor had a particularly significant association with the target variable; this showed
that all features had some value in predicting the target. In general, this graph can be
helpful in feature selection or engineering by highlighting any significant relationships
between features.
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3.5. Support Vector Neural Network

The Support Vector Neural Network (SVNN) combines the best features of SVMs and
NNs into a single model. SVNNs excel at modelling complex and non-linear relationships
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between input characteristics and the target variable, making them ideal for application in
anomaly detection tasks.

To spot outliers in data, the SVNN employs a Support Vector Machine (SVM) as a
binary classifier and a Neural Network (NN) to train the non-linear mappings between the
input features and the SVM decision function. The SVM’s output serves as the NN’s goal
variable during training, while the input features serve as the NN’s input. The likelihood
that the input data are abnormal is represented by the NN’s output, which is the SVNN’s
final output.

Here is the pseudocode and mathematical formulas for the SVNN:

Phase of training:

(a) Input: Training dataset X = {x1, x2, . . . , xn}, where each xi is a d-dimensional input
feature vector, and y = {y1, y2, . . . , yn}, where each yi is the target variable (0 for
normal data and 1 for anomalies);

Output:

(b) Parameters for the trained SVNN model, such as the SVM decision function f(x) and
the NN weights and biases w and b.

Algorithm:

(a) Train an SVM using the training data X and target variable y;
(b) SVM output should be calculated for each training example. zi = f(xi);
(c) Create an NN model with X as the training data and z as the SVM’s output;
(d) For each training example, calculate the SVNN’s final output. The formula for pi is:

NN(xi);
(e) Provide the f(x), w, and b parameters of the trained SVNN model.

Testing phase:

(a) Input: test dataset Xtest = {x1, x2, . . . , xm}, where each xi is a d-dimensional input
feature vector;

(b) Output: predicted anomaly scores for each test example;
(c) Algorithm:

1. Compute the output of the SVM for each test example: zi = f (xi);
2. Compute the final SVNN output for each test example: pi = NN(xi);
3. Return the anomaly scores for each test example: si = 1− pi.

The input features and the target variable were used to train the SVM in the training
phase. Then, the SVM’s calculated output for each training example became the NN’s
target variable. The input features were used to generate the SVNN’s final output, and the
NN’s trained model parameters were returned.

To arrive at the final SVNN output, the SVM output was calculated for each test
sample and fed into the NN as the input during the testing phase. By removing 1 from the
final SVNN result, we obtained the anomaly scores.

Due to its ability to represent non-linear correlations between input features and the
target variable and to process high-dimensional data with a large number of features, the
SVNN is a robust model for anomaly identification.

The decision boundary generated by the SVNN on the dataset is visualized in Figure 9.
The decision boundary is represented by the color shading: dark blue indicates areas where
the model predicts the target variable to be 0 (non-anomalous), and light blue indicates
areas where the model predicts the target variable to be 1 (anomalous). The SVNN is a type
of neural network that uses Support Vector Machines (SVMs) as activation functions. It
is commonly used in anomaly detection applications due to its efficacy as a classification
technique. Most of the anomalous data points are located in the light blue region, while
most of the non-anomalous data points are located in the dark blue zone, demonstrating
that the SVNN has learned to differentiate the two classes (anomalous and non-anomalous)
quite successfully. Some non-anomalous data points fall within the light blue zone, while
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some anomalous data points fall within the dark blue range, indicating that the model
might be further refined.
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3.6. Performance Metrics

Metrics for measuring how well a machine learning model predicts the target variable
are known as performance metrics. Some typical measures of performance in anomaly
detection are as follows:

The Confusion Matrix A model’s accuracy and precision can be summarized in a table
called a confusion matrix. The four values that make up this statistic are True Positive (TP),
False Positive (FP), True Negative (TN), and False Negative (FN). The confusion matrix
can be used to calculate many other metrics, including the accuracy, precision, recall, and
F1-score.

Accuracy is measured as the fraction of correct predictions made. It is a measure of
the overall efficiency of the model.

The term “precision” is used to describe the proportion of accurate diagnoses made. It
is a measure of the model’s predictive accuracy.

By dividing the number of right predictions by the sum of the correct and incorrect
predictions, we obtain the recall rate. It is a metric for how well the model can find all
true positives.

The F1-score is the arithmetic mean of the recall and accuracy scores. It is an indicator
of how well one can balance accuracy and memory.

Here are the formulas for these efficiency measures:
The number of cases that were properly labelled as outliers, sometimes known as

“true positives” (TPs). The number of incidents mistakenly labelled as anomalies; also
known as False Positives (FPs). The number of cases that were accurately labelled as
non-anomalies; also known as “true negatives” (TNs). The number of cases mistakenly
labelled as non-anomalies is the number of false negatives (FNs).

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(4)

Precision = TP
TP

(TP + FP)
(5)

Recall =
TP

(TP + FN)
(6)

F1-score = 2 ∗ (precision ∗ recall)
(precision + recall)

(7)
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Python frameworks such as scikit-learn and TensorFlow can be used to calculate these
efficiency measures. Using these measurements, we can assess the support vector neural
network model’s ability to spot outliers in the digital forensics dataset.

4. Results

Our research into the novel support vector neural network’s use for spotting anomalies
in digital forensics data is summarized here. First, we present the experimental setup and
how the parameters were chosen, and then, we show how well the model performed on
both the preprocessed and raw datasets. Using a variety of performance indicators, we
also evaluated how well our proposed model performed compared to other state-of-the-art
anomaly detection algorithms. We conclude with a discussion of the findings and an
emphasis on our work’s contributions.

4.1. Performance of SVNN

An outstanding 99.87% accuracy was attained by the SVNN model, suggesting that it
was able to successfully spot outliers in the digital forensics data. In addition, the model’s
F1-score, recall, and accuracy were all 0.998, meaning it accurately identified 99.9% of the
outliers while producing only 0.1% of false positives.

These findings in Table 3 illustrated the potential of the SVNN model to be employed in
practical applications for forensic investigations and demonstrated its strong performance
for anomaly detection in digital forensics data. However, it is important to keep in mind
that the quality of the data preparation and feature engineering stages can affect the
performance of the model. As a result, more research is needed to explore the SVNN
model’s generalizability and potential constraints in a number of contexts.

Table 3. Performance of SVNN.

Metric Score

Accuracy 99.87%
Precision 0.998
Recall 0.999
F1-Score 0.998

4.2. Performance of KNN

The KNN model’s accuracy was 81%, whereas the SVNN’s model accuracy was 95%.
In addition to an F1-score of 0.851, the model achieved a recall of 0.875, a precision of
0.829, and an accuracy of 0.829. These results demonstrated that the KNN model accurately
detected many of the outliers, albeit producing numerous false positives.

The results in Table 4 showed that the KNN model was subpar for anomaly detection
in digital forensics data, particularly where false positives are of concern. However, the
high recall of the model showed that it may be able to detect the great majority of outliers.
More research is needed to see if the KNN model is helpful for anomaly detection in digital
forensics data.

Table 4. Performance of KNN.

Metric Score

Accuracy 81%
Precision 0.829
Recall 0.875
F1-Score 0.851
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4.3. Performance of SVM

The SVM model, with an accuracy of 85%, was superior to the KNN model, but inferior
to the SVNN model. There was an F1-score of 0.878, a 0.89 recall, and a 0.86 precision for
the model. These results suggested that the SVM model was able to detect a significant
fraction of outliers while minimizing the number of false positives. Table 5 illustrates the
performance of SVM.

Table 5. Performance of SVM.

Metric Score

Accuracy 85%
Precision 0.867
Recall 0.89
F1-Score 0.878

The results of the assessments suggested that the SVM model is a useful tool for
finding abnormalities in digital forensics data. Although its performance lagged behind
that of the SVNN model, it was generally superior. Additional research may be needed to
determine if the SVM model is suitable for a particular application or set of data.

4.4. Performance of DT

With an accuracy of 88%, the DT model outperformed the KNN and SVM models
while falling short of the SVNN model. A 0.876 precision score, a 0.881 recall score, and a
0.878 F1-score were also generated by the model. These findings implied that the DT model
successfully detected many outliers while reducing the number of false positives. Table 6
illustrates the performance of DT.

Table 6. Performance of DT.

Metric Score

Accuracy 88%
Precision 0.876
Recall 0.881
F1-Score 0.878

According to the evaluations of its performance, the DT model showed promise as
a tool for spotting anomalies in digital forensics data. Its results were not quite as good
as those of the SVNN model, but they were still above average in most cases. It may be
necessary to conduct more research to ascertain whether or not the DT model is the optimal
choice for a certain set of circumstances or categories of data.

4.5. Performance of RF

The RF model outperformed the KNN and SVM models, but fell short of the SVNN
model in terms of accuracy, at 90%. In addition to an F1-score of 0.891, the model achieved
a precision score of 0.892. These findings implied that the RF model successfully detected
many abnormalities while reducing the number of false positives.

The findings of the performance evaluation of the RF model suggested that it could
be a valuable resource for spotting anomalies in digital forensics data. Its results were not
quite as good as those of the SVNN model, but they were still above average in most cases.
Depending on the application and data at hand, additional research may be required to
establish if the RF model is the optimal choice. Table 7 illustrates the performance of RF.
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Table 7. Performance of RF.

Metric Score

Accuracy 90%
Precision 0.892
Recall 0.891
F1-Score 0.891

4.6. Comparison

Here, we evaluate the effectiveness of the study’s several models side by side. The
parameters of accuracy, precision, recall, and the F1-score were used to make the com-
parison. The results showed that the SVNN model had the highest accuracy (99.87%)
compared to the other models. The next-best was the KNN model with an 81% accuracy,
then the SVM, DT, and RF models with an 85%, 88%, and 90% accuracy, respectively. The
SVNN model also excelled in all other metrics, including the precision, recall, and F1-score.
When compared to other models, the KNN model performed the worst. The SVNN model
outperformed the other models in this study when it came to identifying abnormalities in
digital forensics data, while the KNN model performed the worst.

The confusion matrices for all models using a sample size of 0.3 are displayed in
Figure 10. Each row in the confusion matrix represents a true label, and each column
in the matrix represents a prediction made by the model. The percentages of correct
predictions and incorrect predictions for each model are all displayed here. The diagonal
components represent the right answers, whereas the non-diagonal components reflect the
wrong answers. The SVNN model outperformed the others on this dataset, as evidenced
by its low rate of false positives and false negatives. The confusion matrices for a test
size of 0.2 are displayed in Figure 11 for each model. The true negatives, false positives,
false negatives, and true positives for each model are laid up for inspection, just like in
Figure 10. However, due to variations in the test size, the proportion of accurate predictions
made by each model may vary. A histogram of the models’ accuracy scores is shown in
Figure 12. Accuracy is plotted along the x-axis and frequency along the y-axis. The SVNN
model outperformed the other four models (RF, DT, SVM, and KNN) in terms of accuracy.
The results of each model are displayed graphically in this image for easy comparison.
Accuracy was calculated for each model and plotted as a line in Figure 13. The x-axis
shows the different models, while the y-axis shows how well they performed. The SVNN
model outperformed the other four models (RF, DT, SVM, and KNN) in terms of accuracy.
This chart shows a more in-depth comparison of the models’ performances, making the
disparity in the accuracy scores more apparent.
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5. Conclusions

In this study, we analyzed a dataset that included a binary target variable indicating
the existence or absence of an anomaly and three attributes pertaining to network traffic,
system logs, and file metadata. We tested the accuracy, precision, recall, and F1-score of
five different machine learning models that we trained on this dataset. These models were
the KNN, SVM, DT, RF, and SVNN. According to the findings, the SVNN achieved the
highest accuracy (99.87%) compared to the other methods (RF, 90%), DT, 88%, SVM, 85%,
and KNN, 81%). According to the confusion matrices, the SVNN was the most-accurate
in spotting both anomalies and non-anomalies because it had the highest true positives
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and true negatives. The false positive rate for the KNN was the greatest, meaning that it
was the most-likely to mistakenly label normal data points as anomalous. The accuracy
advantages of the SVNN over the other models were further highlighted by the histograms
and curve graphs. The accuracy vs. models graph demonstrated how each model fared
separately in terms of accuracy, while the accuracy comparison graph revealed how the
SVNN clearly outperformed the other models by a large margin. The SVNN appeared to
be the best model for spotting outliers in this dataset. It is possible that these findings will
not apply across datasets; therefore, more research and experimentation may be required
to find the best model for a given problem.
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