412 research outputs found

    Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems

    Get PDF
    The transition to 100% renewable energy in the future is one of the most important ways of achieving "carbon peaking and carbon neutrality" and of reducing the adverse effects of climate change. In this process, the safe, stable and economical operation of renewable energy generation systems, represented by hydro-, wind and solar power, is particularly important, and has naturally become a key concern for researchers and engineers. Therefore, this book focuses on the fundamental and applied research on the modeling, control, monitoring and diagnosis of renewable energy generation systems, especially hydropower energy systems, and aims to provide some theoretical reference for researchers, power generation departments or government agencies

    Condition-based maintenance in hydroelectric plants: A systematic literature review

    Get PDF
    Industrial maintenance has become an essential strategic factor for profit and productivity in industrial systems. In the modern industrial context, condition-based maintenance guides the interventions and repairs according to the machine’s health status, calculated from monitoring variables and using statistical and computational techniques. Although several literature reviews address condition-based maintenance, no study discusses the application of these techniques in the hydroelectric sector, a fundamental source of renewable energy. We conducted a systematic literature review of articles published in the area of condition-based maintenance in the last 10 years. This was followed by quantitative and thematic analyses of the most relevant categories that compose the phases of condition-based maintenance. We identified a research trend in the application of machine learning techniques, both in the diagnosis and the prognosis of the generating unit’s assets, being vibration the most frequently discussed monitoring variable. Finally, there is a vast field to be explored regarding the application of statistical models to estimate the useful life, and hybrid models based on physical models and specialists’ knowledge, of turbine-generators

    Numerical and Experimental Investigation of Performance for Very-Low-Head Micro and Pico Kaplan Hydro-Turbines with Rim-Driven Generators

    Get PDF
    Renewable energy plays a significant role in new power generation worldwide, and hydropower is contributing to 86% of renewable electricity production within all other renewable energy resources. Simultaneously, hydropower shares 83% of U.S. renewable energy capacity and accounts for 77% of actual renewable electricity generation. However, most of the installed hydropower consists of large plants. Much potential hydro generation remains untapped, particularly at lower power and head levels. There is a substantial opportunity worldwide and across the U.S. in specific to add new hydropower generating capabilities at low-head sites such as non-powered dams, canals, and conduits with a water height of less than 30 meters, especially, where the potential of solar and wind is not available. As stated by the U.S. Department of Energy, there is an estimated potential hydropower capacity of 12,000 MW of the existed 80,000 unpowered dams with at least 3 feet of water head available. In this research, investigation of power-efficient micro and pico Kaplan hydro turbines at very-low-head with rim-driven generators to be studied and evaluated, specifically, at heads of less than 3 meters (10 ft). Optimization of performance and design for a 3D-printed conventional -with shaft- 7.6 cm (3-inch) Kaplan turbine to be carried out based on an experimental setup in the Hydro Turbines Laboratory of the University of Wisconsin-Milwaukee in addition to the utilization of Computational Fluid Dynamics (CFD). Then a shaftless rim-driven generator-based turbine (RDT) to be introduced and optimized. Such a new hydro turbine perception will increase the efficiency (of power generation) of hydro turbines in general, and the efficiency of low-head turbines in specific. The design optimization includes; the number of the blades for the turbine’s rotor (runner) and stator, the blade wrap-angle of the rotor, intake and draft tubes angles, lengths and shapes, and the guide vanes. The performance in terms of the power output and the efficiency is evaluated for the conventional turbine by utilizing CFD and by testing a 3D-printed model of the turbine in a custom-built experimental setup at different water heads (from 2.0 m to 2.6 m) and different rotational speeds (0 – 4000 rpm). The CFD setup is based on 3D transient turbulent featuring the Large Eddy Simulation (LES) model, and STAR-CCM+ is the CFD software. In addition, the high-performance computing (HPC) cluster of the University of Wisconsin-Milwaukee is used for solving the complex CFD simulations. To evaluate the advantage of the RDT over the conventional turbines, the rim-driven shaftless turbine is introduced in this research at the same boundary conditions. The RDT is not expected only to increase the efficiency of hydro turbines. It will also contribute saving the environment by allowing debris or fish to pass through the central area of the turbine, especially in the case of run-a-river hydro turbines applications. Furthermore, some applications of the RDT are presented in this study. The utilization of RDT in wastewater treatment plants (WWTPs) is one example where WWTPs usually have low or very-low head between the discharge point of the plant and the water body where the treated water is supposed to be disposed. At the same time, a significant continuous water flow rate is available all over the year for feasible hydro turbine installations. Such utilization will improve the energy efficiency of WWTPs

    Planning and Operation of Hybrid Renewable Energy Systems

    Get PDF

    Cuban energy system development – Technological challenges and possibilities

    Get PDF
    This eBook is a unique scientific journey to the changing frontiers of energy transition in Cuba focusing on technological challenges of the Cuban energy transition. The focus of this milestone publication is on technological aspects of energy transition in Cuba. Green energy transition with renewable energy sources requires the ability to identify opportunities across industries and services and apply the right technologies and tools to achieve more sustainable energy production systems. The eBook is covering a large diversity of Caribbean country´s experiences of new green technological solutions and applications. It includes various technology assessments of energy systems and technological foresight analyses with a special focus on Cuba

    Micro hydropower in water distribution systems

    Get PDF
    Considering various applications of Pump as Turbine (PAT) as an effective source of reducing the equipment cost in small hydropower plants as well as the selecting process of appropriate location and suitable machinery are the main concerns of this study. Vary range of PAT settings criteria has been propound by taking into account the State-of-the-Art researches. The purpose of this study is to establish the effectiveness of pump as turbine, considering all the possible obstacles such as producer’s market interests, accessibility of technical information and mechanical limitation. Cutting-edge scientific researches concerning PAT have been proposed by implementation of various approaches. The most challenging criteria of PAT, which is selecting the appropriate machinery, has been investigated subsequently. A comparative methodology to model the effectiveness of PATs, both numerical and experimental, has been developed based on the efficiency. The mechanical reliability of the hydropower devices in situ, prototype and numerical investigation have been reviewed. These results have been obtained through measurements and optimization of the simulated system by means of characteristic methods against the established PAT system in many different case studies. Water Distribution Networks (WDNs) allow to obtain a widespread and globally significant amount of produced energy by exploiting the head drop due to the network pressure control strategy for leak reductions. Replacing PAT in water distribution networks regarding to all the possible obstacles, will reduce the final cost and will improve the expected efficiencies, as much as the reduction of environmental impacts. This study definitively answers the question whether PAT is an effective alternative in WDNs. The comparative approach also aims for a better understanding of the impact of PAT on the transition to renewable energy systems

    CFD Modelling and Simulation of Water Turbines

    Get PDF
    The design and development of water turbines requires accurate methods for performance prediction. Numerical methods and modelling are becoming increasingly important tools to achieve better designs and more efficient turbines, reducing the time required in physical model testing. This book is focused on applying numerical simulations and models for water turbines to predict tool their performance. In this Special Issue, the different contributions of this book are classified into three state-of-the-art Topics: discussing the modelling of pump-turbines, the simulation of horizontal and vertical axis turbines for hydrokinetic applications and the modelling of hydropower plants. All the contributions to this book demonstrate the importance of the modelling and simulation of water turbines for hydropower energy. This new generation of models and simulations will play a major role in the global energy transition and energy crisis, and, of course, in the mitigation of climate change

    Green Energy Technology

    Get PDF
    This book, entitled “The Green Energy Technology”, covers technologies, products, equipment, and devices, as well as energy services, based on software and data protected by patents and/or trademarks. The recent trends underline the principles of a circular economy such as sustainable product design, extending the product’s lifecycle, reusability, and recycling. These are highly related to climate change and environmental impact, and limited natural resources require scientific research and novel technical solutions. This book will serve as a collection of the latest scientific and technological approaches to “green”—i.e., environmentally friendly and sustainable—technologies. While the focus is on energy and bioenergy, it also covers "green" solutions in all aspects of industrial engineering. Green Energy Technology addresses researchers, advanced students, technical consultants and decision-makers in industries and politics. This book is a comprehensive overview and in-depth technical research paper addressing recent progress in Green Energy Technology. We hope that readers will enjoy reading this book

    Advances in Theoretical and Computational Energy Optimization Processes

    Get PDF
    The paradigm in the design of all human activity that requires energy for its development must change from the past. We must change the processes of product manufacturing and functional services. This is necessary in order to mitigate the ecological footprint of man on the Earth, which cannot be considered as a resource with infinite capacities. To do this, every single process must be analyzed and modified, with the aim of decarbonising each production sector. This collection of articles has been assembled to provide ideas and new broad-spectrum contributions for these purposes

    Renewable Energies for Sustainable Development

    Get PDF
    In the current scenario in which climate change dominates our lives and in which we all need to combat and drastically reduce the emission of greenhouse gases, renewable energies play key roles as present and future energy sources. Renewable energies vary across a wide range, and therefore, there are related studies for each type of energy. This Special Issue is composed of studies integrating the latest research innovations and knowledge focused on all types of renewable energy: onshore and offshore wind, photovoltaic, solar, biomass, geothermal, waves, tides, hydro, etc. Authors were invited submit review and research papers focused on energy resource estimation, all types of TRL converters, civil infrastructure, electrical connection, environmental studies, licensing and development of facilities, construction, operation and maintenance, mechanical and structural analysis, new materials for these facilities, etc. Analyses of a combination of several renewable energies as well as storage systems to progress the development of these sustainable energies were welcomed
    • …
    corecore