15,761 research outputs found

    A Hybrid Machine Translation Framework for an Improved Translation Workflow

    Get PDF
    Over the past few decades, due to a continuing surge in the amount of content being translated and ever increasing pressure to deliver high quality and high throughput translation, translation industries are focusing their interest on adopting advanced technologies such as machine translation (MT), and automatic post-editing (APE) in their translation workflows. Despite the progress of the technology, the roles of humans and machines essentially remain intact as MT/APE are moving from the peripheries of the translation field closer towards collaborative human-machine based MT/APE in modern translation workflows. Professional translators increasingly become post-editors correcting raw MT/APE output instead of translating from scratch which in turn increases productivity in terms of translation speed. The last decade has seen substantial growth in research and development activities on improving MT; usually concentrating on selected aspects of workflows starting from training data pre-processing techniques to core MT processes to post-editing methods. To date, however, complete MT workflows are less investigated than the core MT processes. In the research presented in this thesis, we investigate avenues towards achieving improved MT workflows. We study how different MT paradigms can be utilized and integrated to best effect. We also investigate how different upstream and downstream component technologies can be hybridized to achieve overall improved MT. Finally we include an investigation into human-machine collaborative MT by taking humans in the loop. In many of (but not all) the experiments presented in this thesis we focus on data scenarios provided by low resource language settings.Aufgrund des stetig ansteigenden Übersetzungsvolumens in den letzten Jahrzehnten und gleichzeitig wachsendem Druck hohe Qualität innerhalb von kürzester Zeit liefern zu müssen sind Übersetzungsdienstleister darauf angewiesen, moderne Technologien wie Maschinelle Übersetzung (MT) und automatisches Post-Editing (APE) in den Übersetzungsworkflow einzubinden. Trotz erheblicher Fortschritte dieser Technologien haben sich die Rollen von Mensch und Maschine kaum verändert. MT/APE ist jedoch nunmehr nicht mehr nur eine Randerscheinung, sondern wird im modernen Übersetzungsworkflow zunehmend in Zusammenarbeit von Mensch und Maschine eingesetzt. Fachübersetzer werden immer mehr zu Post-Editoren und korrigieren den MT/APE-Output, statt wie bisher Übersetzungen komplett neu anzufertigen. So kann die Produktivität bezüglich der Übersetzungsgeschwindigkeit gesteigert werden. Im letzten Jahrzehnt hat sich in den Bereichen Forschung und Entwicklung zur Verbesserung von MT sehr viel getan: Einbindung des vollständigen Übersetzungsworkflows von der Vorbereitung der Trainingsdaten über den eigentlichen MT-Prozess bis hin zu Post-Editing-Methoden. Der vollständige Übersetzungsworkflow wird jedoch aus Datenperspektive weit weniger berücksichtigt als der eigentliche MT-Prozess. In dieser Dissertation werden Wege hin zum idealen oder zumindest verbesserten MT-Workflow untersucht. In den Experimenten wird dabei besondere Aufmertsamfit auf die speziellen Belange von sprachen mit geringen ressourcen gelegt. Es wird untersucht wie unterschiedliche MT-Paradigmen verwendet und optimal integriert werden können. Des Weiteren wird dargestellt wie unterschiedliche vor- und nachgelagerte Technologiekomponenten angepasst werden können, um insgesamt einen besseren MT-Output zu generieren. Abschließend wird gezeigt wie der Mensch in den MT-Workflow intergriert werden kann. Das Ziel dieser Arbeit ist es verschiedene Technologiekomponenten in den MT-Workflow zu integrieren um so einen verbesserten Gesamtworkflow zu schaffen. Hierfür werden hauptsächlich Hybridisierungsansätze verwendet. In dieser Arbeit werden außerdem Möglichkeiten untersucht, Menschen effektiv als Post-Editoren einzubinden

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    GCC-Plugin for Automated Accelerator Generation and Integration on Hybrid FPGA-SoCs

    Full text link
    In recent years, architectures combining a reconfigurable fabric and a general purpose processor on a single chip became increasingly popular. Such hybrid architectures allow extending embedded software with application specific hardware accelerators to improve performance and/or energy efficiency. Aiding system designers and programmers at handling the complexity of the required process of hardware/software (HW/SW) partitioning is an important issue. Current methods are often restricted, either to bare-metal systems, to subsets of mainstream programming languages, or require special coding guidelines, e.g., via annotations. These restrictions still represent a high entry barrier for the wider community of programmers that new hybrid architectures are intended for. In this paper we revisit HW/SW partitioning and present a seamless programming flow for unrestricted, legacy C code. It consists of a retargetable GCC plugin that automatically identifies code sections for hardware acceleration and generates code accordingly. The proposed workflow was evaluated on the Xilinx Zynq platform using unmodified code from an embedded benchmark suite.Comment: Presented at Second International Workshop on FPGAs for Software Programmers (FSP 2015) (arXiv:1508.06320

    Applying digital content management to support localisation

    Get PDF
    The retrieval and presentation of digital content such as that on the World Wide Web (WWW) is a substantial area of research. While recent years have seen huge expansion in the size of web-based archives that can be searched efficiently by commercial search engines, the presentation of potentially relevant content is still limited to ranked document lists represented by simple text snippets or image keyframe surrogates. There is expanding interest in techniques to personalise the presentation of content to improve the richness and effectiveness of the user experience. One of the most significant challenges to achieving this is the increasingly multilingual nature of this data, and the need to provide suitably localised responses to users based on this content. The Digital Content Management (DCM) track of the Centre for Next Generation Localisation (CNGL) is seeking to develop technologies to support advanced personalised access and presentation of information by combining elements from the existing research areas of Adaptive Hypermedia and Information Retrieval. The combination of these technologies is intended to produce significant improvements in the way users access information. We review key features of these technologies and introduce early ideas for how these technologies can support localisation and localised content before concluding with some impressions of future directions in DCM

    Automatic Quality Estimation for ASR System Combination

    Get PDF
    Recognizer Output Voting Error Reduction (ROVER) has been widely used for system combination in automatic speech recognition (ASR). In order to select the most appropriate words to insert at each position in the output transcriptions, some ROVER extensions rely on critical information such as confidence scores and other ASR decoder features. This information, which is not always available, highly depends on the decoding process and sometimes tends to over estimate the real quality of the recognized words. In this paper we propose a novel variant of ROVER that takes advantage of ASR quality estimation (QE) for ranking the transcriptions at "segment level" instead of: i) relying on confidence scores, or ii) feeding ROVER with randomly ordered hypotheses. We first introduce an effective set of features to compensate for the absence of ASR decoder information. Then, we apply QE techniques to perform accurate hypothesis ranking at segment-level before starting the fusion process. The evaluation is carried out on two different tasks, in which we respectively combine hypotheses coming from independent ASR systems and multi-microphone recordings. In both tasks, it is assumed that the ASR decoder information is not available. The proposed approach significantly outperforms standard ROVER and it is competitive with two strong oracles that e xploit prior knowledge about the real quality of the hypotheses to be combined. Compared to standard ROVER, the abs olute WER improvements in the two evaluation scenarios range from 0.5% to 7.3%

    Seeding statistical machine translation with translation memory output through tree-based structural alignment

    Get PDF
    With the steadily increasing demand for high-quality translation, the localisation industry is constantly searching for technologies that would increase translator throughput, with the current focus on the use of high-quality Statistical Machine Translation (SMT) as a supplement to the established Translation Memory (TM) technology. In this paper we present a novel modular approach that utilises state-of-the-art sub-tree alignment to pick out pre-translated segments from a TM match and seed with them an SMT system to produce a final translation. We show that the presented system can outperform pure SMT when a good TM match is found. It can also be used in a Computer-Aided Translation (CAT) environment to present almost perfect translations to the human user with markup highlighting the segments of the translation that need to be checked manually for correctness

    TectoMT – a deep-­linguistic core of the combined Chimera MT system

    Get PDF
    Chimera is a machine translation system that combines the TectoMT deep-linguistic core with phrase-based MT system Moses. For English–Czech pair it also uses the Depfix post-correction system. All the components run on Unix/Linux platform and are open source (available from Perl repository CPAN and the LINDAT/CLARIN repository). The main website is https://ufal.mff.cuni.cz/tectomt. The development is currently supported by the QTLeap 7th FP project (http://qtleap.eu)
    corecore