With the steadily increasing demand for high-quality translation, the localisation industry is constantly searching for technologies that would increase translator
throughput, with the current focus on the use of high-quality Statistical Machine Translation (SMT) as a supplement to the established Translation Memory (TM)
technology. In this paper we present a novel modular approach that utilises state-of-the-art sub-tree alignment to pick out pre-translated segments from a TM match and seed with them an SMT system to produce a final translation. We show that the presented system can outperform pure SMT when a good TM match is found. It can also be used in a Computer-Aided Translation (CAT) environment to present almost perfect translations to the human user with markup highlighting the segments of the translation that need to be checked manually for correctness