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“A scientist in his laboratory is not a mere technician: he is also a child confronting

natural phenomena that impress him as though they were fairy tales ....”

Marie Curie





Abstract
A Hybrid Machine Translation Framework for an Improved Translation

Workflow

by Santanu Pal

Doctor of Philosophy

Computerlinguistik, Sprachwissenschaft und Sprachtechnologie

Universität des Saarlandes

Over the past few decades, due to a continuing surge in the amount of content being

translated and ever increasing pressure to deliver high quality and high throughput trans-

lation, translation industries are focusing their interest on adopting advanced technologies

such as machine translation (MT), and automatic post-editing (APE) in their translation

workflows. Despite the progress of the technology, the roles of humans and machines

essentially remain intact as MT/APE are moving from the peripheries of the translation

field closer towards collaborative human-machine based MT/APE in modern transla-

tion workflows. Professional translators increasingly become post-editors correcting raw

MT/APE output instead of translating from scratch which in turn increases productivity

in terms of translation speed. The last decade has seen substantial growth in research

and development activities on improving MT; usually concentrating on selected aspects

of workflows starting from training data pre-processing techniques to core MT processes

to post-editing methods. To date, however, complete MT workflows are less investigated

than the core MT processes. In the research presented in this thesis, we investigate av-

enues towards achieving improved MT workflows. We study how different MT paradigms

can be utilized and integrated to best effect. We also investigate how different upstream

and downstream component technologies can be hybridized to achieve overall improved

MT. Finally we include an investigation into human-machine collaborative MT by taking

humans in the loop. In many of (but not all) the experiments presented in this thesis we

focus on data scenarios provided by low resource language settings.

https://www.uni-saarland.de/fachrichtung/lst/start.html
http://www.uni-saarland.de
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(Zusammenfassung)

Aufgrund des stetig ansteigenden Übersetzungsvolumens in den letzten Jahrzehnten und

gleichzeitig wachsendem Druck hohe Qualität innerhalb von kürzester Zeit liefern zu

müssen sind Übersetzungsdienstleister darauf angewiesen, moderne Technologien wie

Maschinelle Übersetzung (MT) und automatisches Post-Editing (APE) in den Überset-

zungsworkflow einzubinden. Trotz erheblicher Fortschritte dieser Technologien haben

sich die Rollen von Mensch und Maschine kaum verändert. MT/APE ist jedoch nunmehr

nicht mehr nur eine Randerscheinung, sondern wird im modernen Übersetzungsworkflow

zunehmend in Zusammenarbeit von Mensch und Maschine eingesetzt. Fachübersetzer

werden immer mehr zu Post-Editoren und korrigieren den MT/APE-Output, statt wie

bisher Übersetzungen komplett neu anzufertigen. So kann die Produktivität bezüglich

der Übersetzungsgeschwindigkeit gesteigert werden. Im letzten Jahrzehnt hat sich in den

Bereichen Forschung und Entwicklung zur Verbesserung von MT sehr viel getan: Ein-

bindung des vollständigen Übersetzungsworkflows von der Vorbereitung der Trainings-

daten über den eigentlichen MT-Prozess bis hin zu Post-Editing-Methoden. Der voll-

ständige Übersetzungsworkflow wird jedoch aus Datenperspektive weit weniger berück-

sichtigt als der eigentliche MT-Prozess. In dieser Dissertation werden Wege hin zum

idealen oder zumindest verbesserten MT-Workflow untersucht. In den Experimenten

wird dabei besondere Aufmertsamfit auf die speziellen Belange von sprachen mit gerin-

gen ressourcen gelegt. Es wird untersucht wie unterschiedliche MT-Paradigmen verwendet

und optimal integriert werden können. Des Weiteren wird dargestellt wie unterschiedliche

vor- und nachgelagerte Technologiekomponenten angepasst werden können, um insgesamt

einen besseren MT-Output zu generieren. Abschließend wird gezeigt wie der Mensch in

den MT-Workflow intergriert werden kann. Das Ziel dieser Arbeit ist es verschiedene

Technologiekomponenten in den MT-Workflow zu integrieren um so einen verbesserten

Gesamtworkflow zu schaffen. Hierfür werden hauptsächlich Hybridisierungsansätze ver-

wendet. In dieser Arbeit werden außerdem Möglichkeiten untersucht, Menschen effek-

tiv als Post-Editoren einzubinden. Die hierbei gewonnenen Übersetzungsprozessdaten



German Summary

werden automatisch gesammelt und stehen für künftige Forschung zur Verfügung (z.B.

zur Unterstützung von inkrementellen Updates einzelner Workflow- und Post-Editing-

Komponenten). Das Hauptziel dieser Dissertation ist es, die echten Bedürfnisse und

Probleme der Anwender von Übersetzungstechnologie - einschließlich von professionellen

übersetzern - zu erfassen. Es soll ein kollaborativer Rahmen für hybride maschinelle

Übersetzung geschaffen werden, der den Übersetzungsworkflow verbessert und den Post-

Editing-Effort für den Übersetzer reduziert. Auf dieser Grundlage soll die Funktionalität

von Übersetzungssystemen in Hinblick auf die Anforderungen der Anwender optimiert

werden, statt die Anwender dazu zu zwingen, ihre Arbeitsweise an die Technologie anzu-

passen. Des Weiteren untersucht diese Arbeit ob und wie bestehende Technologien wie

neuronale MT (NMT), statistische MT (SMT), beispielbasierte MT (Example Based MT,

EBMT) und Translation- Memory-Systeme (TM) die Anforderungen der Anwender un-

terstützen können.

Hierfür wird der in der arbeit verfolgte Ansatz auf zwei Arten beschrieben. Normalerweise

werden verschiedene Technologiekomponenten im Übersetzungsworkflow kombiniert; im

ersten Teil dieser Arbeit liegt der Schwerpunkt auf den (i) Komponenten, im zweiten Teil

auf den (ii) Workflows. Im ersten Teil dieser Arbeit liegt der Schwerpunkt insbesondere

auf Design und Implementierung von leistungsstarken und benutzerfreundlichen Tech-

nologiekomponenten (beschrieben in Kapitel 3, Kapitel 4 und Kapitel 5). In diesem Teil

werden diverse Hybridisierungsansätze angewandt. Im zweiten Teil der Arbeit liegt der

Schwerpunkt auf der Identifizierung optimierter Workflows durch die Kombination ver-

schiedener Technologiekomponenten. Hier wird eine Plug&Play-Methodologie angewen-

det, bei der der Optimierungsgrad in Bezug auf besseren Übersetzungsoutput gemessen

wird. Des Weiteren wird in diesem Teil der Arbeit auch der Mensch in den Über-

setzungsprozess zur Bewertung der Übersetzungsqualität sowie zur langfristigen schrit-

tweisen Verbesserung der Technologiekomponenten durch Feedback eingebunden. Zusät-

zlich werden gleichzeitig wertvolle Ressourcen für Übersetzungsprozessforschung geschaf-

fen (vgl. Kapitel 6). In Kapitel 6 liegt der Fokus auf Technologien der die Sammlung

von Ressourcen für den vorgeschlagenen Rahmen zur schrittweisen Verbesserung von

MT/APE-Komponenten für der Workflow sowie für die Übersetzungsprozessforschung

viii
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unterstützen. Nachdem Ressourcen in beträchtlichem Umfang durch den kollabora-

tiven Rahmen für hybride human-maschinelle Übersetzung geschaffen wurden, soll diese

Forschungsarbeit künftig durch die Einbeziehung weiterer Komponenten fortgeführt wer-

den. APE stellt jedoch auch eine beträchtliche Verbesserung unseres übersetzungsrahmen

dar.

MT ist per Definition ein computergestützter Prozess, der Text einer menschlichen

Sprache in eine andere umwandelt. Dies geschieht entweder voll- oder halbautomatisch

(dies ist der Fall bei von Menschen unterstützen MT, bei der der Mensch in den Überset-

zungsprozess eingebunden wird). In den letzten Jahren wurden verschiedene Ansätze zur

MT untersucht, z.B. regelbasierte, beispielbasierte, wissensbasierte, statistische und neu-

ronale Ansätze. Hinsichtlich weitreichender Entwicklungen und Anwendungen war SMT

und insbesondere phrasenbasierte SMT (phrase-based SMT, PB-SMT) aus all diesen An-

sätzen bis vor kurzem weitgehende dominierend1. Die Qualität von PB-SMT hängt sehr

stark von vorgelagerten Prozessen wie Wordalignment und Bewertung von Phrasenpaaren

ab. Beides kann durch die Verwendung großer satzalignierter Parallelkorpora erreicht wer-

den. Jedoch kann die Verfügbarkeit von Daten eine Herausforderung sein. PB-SMT für

Sprachpaare mit knappen Datenressourcen liefert schlechtere Übersetzungsqualität, da

nicht genügend Trainingsdaten aus Parallelkorpora verfübar sind. Hieraus resultiert die

erste Forschungsfrage (RQ).

RQ1: Wie kann MT für Sprachen mit geringen Ressourcen verbessert werden?

In Kapitel 3 wird eine mögliche Lösung für das Problem der Datenknappheit dargestellt.

In diesem Kapitel wird eine Methodologie zur Extraktion paralleler Textfragmente aus

vergleichbaren Korpora beschrieben, die als zusätzliche Trainingsdaten in der SMT für

das Sprachenpaar Englisch-Bengali genutzt werden können. Für dieses Sprachenpaar

stehen nur geringe Ressourcen zur Verfügung. Zur Extraktion von Paralleltexten aus

vergleichbaren Korpora wird im Rahmen dieser Arbeit Textual Entailment Techniken

(TE) angewendet. Der wichtigste Teil dieser Forschung, der in diesem Kapitel vorgestellt

wird, wurde auch in (Pal et al., 2014b, 2015b) veröffentlicht.
1WMT 2016 war die erste große Shared Task, bei der NMT besser abschnitt als SMT-basierte Ansätze.

Diese Entwicklung wird in Kapitel 5 zu neuronaler APE betrachtet.

ix
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Um bereits bestehende zweisprachige Daten bestens zu nutzen, ist außerdem die Daten-

vorverarbeitung entscheidend. Wie schon erwähnt, baut SMT sehr stark auf gute Qualität

von Wort- und Phrasenalignment als Darstellung von Übersetzungswissen durch SMT-

Systemen aus einem bilingualen Korpus. Eine der Kernkomponenten der SMT ist das

statistische Wortalignment, oft basierend auf IBM-Modellen (Brown et al., 1993). Diese

IBM-Modelle können jedoch schlecht mit komplexen Ausdrücken (z.B. Multi-Word Ex-

pressions (MWE), Named Entities (NE)) umgehen, da diese Modelle viele-zu-viele Align-

ments nicht ohne weiteres abdecken können. Des Weiteren ist unterschiedliche Wortstel-

lung in verschiedenen Sprachen ein bekanntes Phänomen und stellt für MT (insbesondere

SMT) eine besondere Herausforderung dar. Hieraus resultiert die zweite Forschungsfrage:

RQ2: Wie kann SMT bereits bestehende Trainingsdaten besser nutzen?

In Kapitel 4 wird das Problem der Alignierung von vielen-zu-vielen Ausdrücken behan-

delt und beschrieben wie mit unterschiedlicher Wortstellung in weit entfernten Sprach-

paaren effizient umgegangen werden kann. Es wird außerdem eine Hybridmethode zur

Kombination verschiedener Wordalignments unterschiedlicher Wordaligners vorgestellt.

Diese Methode wird anschließend in den Rahmen eines hybriden Multienginesystems zur

Verbesserung der MT-Performance eingebunden.

In Kapitel 4 sollen Modellfehler reduziert werden (z.B. weist das Modell nicht den höch-

sten Score dem besten Übersetzungskandidaten zu). Dies geschieht durch (i) die systema-

tische Kombination verschiedener MT-Komponenten, (ii) die Kombination verschiedener

Systeme und (iii) die Neubewertung des Outputs verschiedener MT-Systeme. Hieraus

resultiert die dritte Forschungsfrage:

RQ3: Wie könnte eine verbesserte hybride MT-Implementierung aussehen?

In Kapitel 4 und (Pal et al., 2014c) wird ein hybrides SMT-System beschrieben, mit

dem die Baseline-SMT-Performance verbessert wird. Dies erfolgt durch die Einbindung

zusätzlicher Wissensquellen wie beispielsweise extrahierter zweisprachige Named Enti-

ties, Translation Memories und Phasenpaare, die durch beispielbasierte Methoden und

x
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Standard-SMT-Ressourcen gewonnen wurden. Die Performance verschiedener hybrider

Systeme und auch Ergebnisse einer Systemkombination basierend auf einem Confusion

Network, bei dem die beste Performance jedes einzelnen Systems in der Multi-Engine

Pipeline kombiniert wird, werden beschrieben. Wichtige Teile der in diesem Kapitel

vorgestellten Forschungsarbeit wurden in (Pal et al., 2014c,a, 2015a, 2016a) publiziert.

MT-Systeme haben das Fernziel vollautomatisch eine Übersetzung zu generieren, die ohne

Nachbearbeitung veröffentlicht werden kann. Bestehende MT-Systeme erreichen dieses

Qualitätsziel jedoch meist nicht, so dass der rohe MT-Output von Menschen post-editiert

werden muss (vgl. Abbildung 1). Zur Verbesserung der Übersetzungsqualität ohne eine

Veränderung des ursprünglichen MT-Systems selbst kann ein zusätzliches Plug-in-Modul

zur Nachbearbeitung verwendet werden. Dies kann beispielsweise ein nachgelagertes

monolinguales MT-System wie ein automatisches Post-Editing-System (APE) sein, dass

auf Output des eigentlichen MT-Systems und den vom Menschen durchgeführten Kor-

rekturen trainiert wurde (cf. Abbildung 2). So kann eine vernünftigere und machbare

Lösung erreicht werden, ohne das gesamte eigentliche MT-System zu erneuern. Somit

kann eine vierte Forschungsfrage gestellt und untersucht werden:

RQ4: Wie kann ein effektives automatisches Post-Editing-System erstellt werden, dass

die Übersetzungsqualität des eigentlichen MT-Systems verbessert?

Figure 1: Post-editing on MT; Sip: source texts, Tmt: corresponding MT output texts
and Tpe: the human post-edited version of Tmt.

Der Vorteil von APE liegt in seiner Anpassungsfähigkeit an jegliche black-box MT-Engine;

d.h. sind post-editierte Daten verfügbar, so ist kein inkrementelles oder volles Training

des eigentlichen MT-Systems, das bei der Sammlung der Post-Editing-Daten verwen-

det wurde, notwendig. APE setzt Verfügbarkeit der Quelltexte voraus (Sip), sowie den

xi
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Figure 2: Automatic Post-editing; here “99K” means Sip may be or may not be included
in the APE system between Sip_Tmt–Tpe. Our APE system currently uses only Tmt–Tpe.

entsprechenden MT-Output der Texte (Tmt) und die vom Menschen post-editierte Version

(Tpe) of Tmt. APE-Systeme können als MT-Systeme zwischen Sip_Tmt und Tpe modelliert

werden. Statistische APE-Systeme (SAPE) oder neuronale APE-Systeme (NNAPE) kön-

nen auch ohne Sip gebaut werden. Hierfür werden genügend “monolinguale” Paralleltexte

der Zielsprache Tmt–Tpe verwendet. APE-Tasks konzentrieren sich gewöhnlich auf sys-

tematische Fehler des MT-Systems – meist Lexik- oder Wortstellungsfehler sowie falsches

Löschen oder Hinzufügen eines Wortes. Hieraus resultiert die fünfte Forschungsfrage.

RQ5: In wie weit ist ein APE-System in der Lage, den letztlichen Post-Editing-Effort

zu verringern und die Produktivität zu steigern?

Zur Beantwortung von Forschungsfragen RQ4 und RQ5 wird in Kapitel 5 und (Pal et al.,

2016c) ein APE-System auf Grundlage von neuronalen Netzen zur Verbesserung des ro-

hen MT-Outputs vorgestellt. Das neuronale APE-Modell (NNAPE) basiert auf einem

bidirektionalen rekurrenten neuronalen Netz (RNN) und besteht aus einem Encoder, der

MT-Output in einen Vektor mit festgelegter Länge kodiert. Ein Decoder nutzt den Vektor

zur Erstellung der post-editierten Übersetzung (PE).

In Kapitel 5 werden zudem zwei Stränge der MT-Forschung kombiniert: MT basiert

auf APE (statistsch (Pal et al., 2016f) und neuronalen Netzen (Pal et al., 2016c)) sowie

Multi-Engines (Systemkombinationen) (Pal et al., 2016b). APE-Systeme nutzen ein

nachgelagertes MT-System, das auf Zielsprachenseite durch die Korrekturen des Human-

Post-Editors lernt und verbessern so den Output des eigentlichen MT-Systems. Dies ist

eigentlich eine sequentielle MT-Systemarchitektur. Gleichzeitig gibt es außerdem sehr

xii
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viel Literatur zu parallelen MT-Systemkombinationen, bei denen der gleiche Input in ver-

schiedene Engines gegeben wird. Der beste Output wird dann ausgewählt oder es werden

kleinere Teile verschiedener Outputs kombiniert um einen besseren Übersetzungsoutput

zu erhalten. In einem Experiment werden sequentielle und parallele Systemkombinatio-

nen integriert und somit eine signifikante Produktivitätssteigerung bezüglich Post-Editing

durch professionelle Übersetzer erreicht. Wichtige Teile der in diesem Kapitel vorgestell-

ten Forschungsarbeit wurden in (Pal et al., 2015c, 2016b,c,f) publiziert.

Die Übersetzungen von MT/APE-Systemen müssen oft noch durch menschliche Über-

setzer korrigiert werden, so dass sie veröffentlicht werden können. Fallstudien (O’Brien

et al., 2009; TAUS Report, 2010) zeigen, dass der Einsatz einer MT/APE-Engine für alle

Seiten bezüglich Kosten- und Zeiteinsparnis von Nutzen sein kann: für Kunden, Über-

setzer und Language Service Providers (LSP). Das Gesamtbild bleibt jedoch weiterhin

gemischt: MT/APE ist einerseits oft günstig und einfach anwendbar; andererseits ist die

Übersetzungsqualität oft nicht zufriedenstellend. Einige professionelle Übersetzer über-

setzen lieber von Grund auf selbst. Somit stellt sich die folgende Forschungsfrage:

RQ6: Wie können bestehende MT-Workflows bei der Arbeit des Menschen mit

CAT-Tools optimiert werden?

In Kapitel 6 wird ein neues webbasiertes Post-Editing Tool vorgestellt: CATaLog Online

wurde mit einigen neuen Features verbessert. Das Tool kann als reines CAT-Tool genauso

verwendet werden wie für das Post-Editing von TM-Segmenten oder von MT-Output. Das

Tool erfasst umfassende Informationen im Aktivitätslog, eine Funktion, die die meisten

CAT-Tools nicht bieten. Das Tool ist für die Übersetzungsprozessforschung ausgelegt

und bietet die folgenden Vorteile: (i) farblich markierte TM-Übersetzungsvorschläge

(die markierte Quelle TM sowie das entsprechende Zielfragment werden auf der sel-

ben Oberfläche angezeigt), (ii) eine Vielzahl an Editinglogs, (iii) Alignment von Quelle,

TM/MT/APE-Output mit dem Ergebnis von humanem PE, (iv) eine verbesserte TM-

ähnlichkeitsmessung und Suche (Pal et al., 2016e) und (v) die zusätzliche Übersetzung-

soption APE. Wichtige Teile der in diesem Kapitel vorgestellten Forschungsarbeit wurden

in (Nayek et al., 2015; Nayak et al., 2016; Pal et al., 2016e,d) publiziert.

xiii
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Chapter 1

Introduction

The work presented in this thesis aims at improving and integrating different compo-

nent technologies of Machine Translation (MT) in an ideal or at least improved workflow

based on hybridization approaches. The thesis also investigates effective ways of involv-

ing humans as post-editors and supporting this by automatically collecting translation

process data for future research (e.g., to support incremental updates of individual work-

flow and post-editing components). The main aim of the research presented in this thesis

is to examine real-life needs and problems which confront translation technology users,

including professional translators, and provide a collaborative hybrid machine translation

framework towards an improved translation workflow, and reduce post-editing effort of

the translators. Based on this, the translation system functionality should be optimized

in terms of user requirements rather than forcing the users to change how they work with

the technology. The research also investigates whether and how combinations of exist-

ing technologies such as Neural MT (NMT), Statistical MT (SMT), Example Based MT

(EBMT) and Translation Memory (TM) systems can be used and integrated to support

the users’ requirements. Throughout, in this thesis has a special focus on the data settings

provided by low resource languages.

In order to achieve our objective, we describe our approach in two complementary ways.

Technology components are usually combined into translation workflows; part of our

research will therefore concentrate on the (i) components, while the other part of our

research will focus on (ii) workflows. Specifically, in the first part of our research, we

focus on the design and implementation of component technologies (described in Chapter

1
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3, Chapter 4 and Chapter 5) that are effective and user friendly. Here we make extensive

use of hybridization approaches. In the second part of our research, we concentrate

on identifying better workflows based on a combination of different components of the

component technologies in the workflow using a plug and play methodology, where better

is initially measured in terms of translation output quality. Furthermore, our work also

involves humans in the translation process for the purpose of assessing translation quality

and as a long term goal for providing activity-log based feedback to incrementally enhance

the different components of the component technology on the one hand and simultaneously

generating valuable resources for translation process research on the other hand (cf.,

Chapter 6).

By definition, MT is a computer based process which transforms text in one human lan-

guage text into another in either a fully automatic or a semi-automatic (human assisted

MT, i.e., involving a human in the translation process) manner. Many approaches to MT

have been explored, for instance rule-based, example-based, knowledge-based, statistical

and neural approaches to MT. Out of these, in terms of large-scale evaluations and use,

SMT in particular phrase-based SMT (PB-SMT) has until recently been the most suc-

cessful MT paradigm1. The quality of PB-SMT mainly relies on good quality upstream

word alignment as well as good phrase pair estimation, both of which can be achieved by

using large amounts of sentence aligned parallel corpora. However, data scarcity can be a

challenge and PB-SMT for low resource language pairs usually produces inferior quality

translations due to insufficient amounts of parallel training data. This leads us to our

first research question (RQ).

RQ1: How can MT for low resource languages be improved?

Comparable corpora provide a possible solution to this data scarcity problem to some

extent. Comparable documents are not strictly parallel. Comparable corpora consist of

bilingual documents. However these documents are not sentence by sentence translations;

but they are on the same topic and convey similar information and hence it is likely that

there exists some sentential or sub-sentential level of parallelism. Recently, comparable

corpora are being considered as a valuable resource for acquiring parallel data, which can

play an important role in improving the quality of SMT (Smith et al., 2010). The parallel

1WMT 2016 has been the first large scale shared task in which NMT has outperformed SMT based
approaches and we reflect these developments in our research presented in Chapter 5 on neural APE.
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segments extracted from comparable corpora are typically added to an existing training

corpus as additional training material which is expected to improve performance of SMT

systems, specifically for low-resource language pairs (e.g. English–Bengali). However,

large fully parallel fragments of text are rarely found in comparable document pairs. The

bigger the size of the fragment, the less probable it is that its parallel version will be

found in the target. Nevertheless, there is always a chance of obtaining parallel phrases,

tokens or even sentences in comparable documents. The challenge is to discover those

parallel fragments which can be useful in increasing SMT performance. In Chapter 3,

we describe a methodology for extracting English–Bengali parallel text fragments from

comparable corpora. To extract parallel text from comparable corpora, in our research we

apply textual entailment (TE) and then utilize the additional training data in SMT. In

Pal et al. (2015b) we show that the additional training data extracted from comparable

corpora provides significant improvements of 3.06 absolute points and 32.97% relative over

the baseline PB-SMT system as measured by BLEU (Papineni et al., 2002) for English–

Bengali translations.

Furthermore, to obtain optimal benefits from the existing bilingual data, data preprocess-

ing plays a crucial role. As mentioned earlier, SMT relies heavily on the quality of word

alignment and phrase alignment which essentially represent the translation knowledge

acquired by an SMT system from a bilingual corpus. One of the core components of SMT

is statistical word alignment which is often based on IBM models (Brown et al., 1993).

These IBM Models do not work well with complex expressions (e.g., multi-word expres-

sions (MWEs), Named Entities (NEs)), due to their inability to handle many-to-many

alignments. The IBM Models only allow one-to-many alignments from source language

to target language (Koehn et al., 2003; Marcu, 2001)2. In another well-known statisti-

cal word alignment approach, Hidden Markov Models (HMM: Vogel et al. (1996)), the

alignment probabilities depend on the alignment position of the previous word. HMM

alignment does not explicitly consider many-to-many alignments either. Furthermore,

reordering is a well-known cross-lingual phenomena which poses a significant challenge in

MT (especially in SMT). This leads us to the second research question:

RQ2: How can SMT better profit from the existing training data?

2Alignment in both directions (i.e., alignment symmetrization) are used to partially address this
problem.
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In Chapter 4, we address this many-to-many alignment problem indirectly. Our objective

focuses on how to best handle the NEs and MWEs in SMT. In our research, MWEs,

NEs and compound verbs are automatically identified on both sides of the parallel cor-

pus. Then, source and target language NEs are aligned using a statistical transliteration

method. We rely on these automatically aligned NEs and treat them as translation ex-

amples. We modify the parallel corpus by converting the MWEs into single tokens and

adding the aligned NEs to the parallel corpus in a bid to improve the word alignment,

and hence the phrase alignment, quality. This preprocessing results in improved MT

quality in terms of automatic MT evaluation as we show in Pal et al. (2013b) for English–

Bengali, Tan and Pal (2014) for English–Hindi, and Pal et al. (2015a) for English–German.

Chapter 4 also presents how reordering between distant language pairs can be handled

efficiently in phrase-based SMT. The problem of reordering between distant languages

has been approached with prior reordering of the source text at chunk level to simulate

the target language ordering (Pal et al., 2014a). In this chapter, we report experiments

on prior reordering of the source chunks following the target word order suggested by

word alignment. We reorder the test set using a monolingual MT trained on source and

reordered source. Our approach of prior reordering of the source chunks is compared with

pre-ordering of source words based on word alignments (Holmqvist et al., 2012) and the

traditional approach of prior source reordering based on language-pair specific reordering

rules. The effects of these reordering approaches is studied on an English–Bengali trans-

lation task, a language pair with substantially different word order. Our experimental

results show that in our data setting word alignment based reordering of the source chunks

is more effective than the other reordering approaches and that it produces statistically

significant improvements over the baseline system on BLEU (Pal et al., 2014a). Manual

inspection confirms significant improvements in terms of word alignments.

Over the last 10-15 years, MT has made considerable progress, in large part due to re-

search and development in statistical and hybrid (and recently neural) approaches to

MT. In many cases, MT services provide a convenient support not only for professional

translators but also for general users. Free online MT engines and commercial engines

are available, such as Google Translator3, Systran4, Microsoft Bing translator5, etc. Fur-

thermore, commercial as well as free version of translation support tools (well-known as
3https://translate.google.com/
4http://www.systransoft.com/
5https://www.bing.com/translator
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Computer Aided Translation – CAT tools) are also available such as MateCat6, Cas-

maCat7, Trados8 Translation tools and are widely used in the translation industry. The

core component of the vast majority of CAT tools are translation memories (TM). TMs

work under the assumption that previously translated segments can serve as good models

for new translations, especially when translating technical or domain specific texts, where

some amount of repetition exists. Translators input new texts to be translated into the

CAT tool and these texts are divided into shorter segments. The TM engine then checks

whether there are segments (and their translation) in the memory which are similar to

those from the input text. Every time the software finds a similar segment in the memory,

the tool shows it together with its translation to the translator as a suitable suggestion

usually through a graphical interface. In this scenario, translators work as post-editors by

adapting retrieved segments suggested by the CAT tool or in case no suitable segments

are found translating new segments from scratch. This process is done iteratively and

every post-edited segment or new translation increases the size of the translation memory

making it more useful for future translations.

TM systems store source and target language translation pairs for effectively reusing the

previous translations originally created by human translators. Conceptually, EBMT is

closely related to TM. The difference between the two approaches is that EBMT extracts

translations of fragments of an input sentence to be translated from the translation model

and combines fragments to produce translations for a segment in question whereas TMs

are not translation systems as such but rather act like search engines which provide closely

matching translation pairs for a complete segment to effectively reduce the translation

workload of translators.

Despite continued and significant progress, fully automatic MT is often not yet able to

always provide desirable performance in terms of output quality. Each approach to MT has

its own method of acquiring and using translation knowledge from the parallel bilingual

translation examples, along with its own advantages and disadvantages. The knowledge

representation processes in both EBMT and SMT use very different techniques in order

to extract translation knowledge. SMT phrases are n–grams (i.e., contiguous sequence

of words), rather than grammatical phrases (as in a grammatical theory such as noun

6https://www.matecat.com/
7http://www.casmacat.eu/
8http://www.translationzone.com/products/trados-studio/ etc.

5

https://www.matecat.com/
http://www.casmacat.eu/
http://www.translationzone.com/products/trados-studio/
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phrases (NPs), prepositional phrases (PPs) or Verb phrases (VPs)) as in EBMT. Many

researchers have investigated combinations of different MT approaches (Hybrid MT) to

achieve better performance. The decoding task for SMT models is an NP-hard (Knight,

1999) problem with exponential complexity of the search space which implies that a

decoder can only perform a non-exhaustive search (using heuristic search methods) to

find the best possible translation for a given input. This may lead to a number of system

errors such as – model error: the model fails to assign the highest score to the best

translation candidate, search error: the search process fails to find the best translation

hypothesis in the search space and induction error: when the optimal translation is

absent in the search space owing to various pruning strategies (Fancellu and Webber,

2015). Our research aims to reduce the model error (i) by systemically combining various

MT components, (ii) by combining different systems and (iii) by re-ranking different MT

systems’ outputs. This leads to our third research question.

RQ3: What could improved hybrid implementations of MT be like?

Our Hybrid MT system described in Chapter 4 and in (Pal et al., 2014c) improves over

the baseline SMT performance by incorporating additional knowledge sources such as

the extracted bilingual named entities, translation memories, and phrase pairs induced

from example-based methods together with the standard SMT resources. We report

performance on different hybrid systems as well as results of a confusion network based

system combination that combines the best performance of each individual system within

a multi-engine pipeline. Our best system (Pal et al., 2014c) achieved an overall BLEU

score of 24.61 averaged over all language pairs and all domains in the shared task on SMT

in Indian languages which encompassed translating from five languages (Bengali, English,

Marathi, Tamil and Telugu) into Hindi in three different domains (Health, Tourism and

General).

We also performed a similar experiment on English–German (Pal et al., 2015a) using

the WMT-20159 news-2015 test set, where our confusion-network-based system combi-

nation model outperforms all our individual MT systems. Our hybrid system achieved

an improvement of 5.9 absolute BLEU points i.e., a 35.3% relative improvement over the

English–German baseline PB-SMT system.

9http://www.statmt.org/wmt15/translation-task.html
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In Chapter 4, we also present a similar hybrid technique which combines different word

alignment methods and integrates them into a forest-to-string based SMT (FSBSMT)

system (Pal et al., 2016a). We show that hybrid word alignment integrated into various

experimental settings of FSBSMT provides considerable improvements over state-of-the-

art Hierarchical Phrase based SMT (HPBSMT). The research also demonstrates that

additional integration of Named Entities (NEs), their translations and Example Based

Machine Translation (EBMT) phrases (all extracted from the bilingual parallel training

data) into the system brings about further improvements over the hybrid FSBSMT system.

Our best system achieves 78.5% relative (9.84 BLEU points absolute) improvement over

the baseline HPBSMT on an English–Bengali data set.

The ultimate goal of MT systems is to provide fully automatic publishable quality trans-

lations. However, existing MT systems often fail to deliver publishable quality transla-

tion output requiring human post-editing of raw MT output. To achieve translations of

sufficient quality, translations often need to be corrected or post-edited by human trans-

lators (cf. Figure 1.1). Nonetheless, translations produced by MT systems have improved

substantially and consistently over the last two decades. Translations produced by MT

systems are now widely used in the translation and localization industry. To enhance

the quality of translation without changing the original MT system itself, an additional

plug-in automatic post-processing module, e.g. a second stage monolingual MT system

such as an automatic post-editing (APE) system trained on previous output of the first-

stage MT system and its human corrections (PEs/HPEs), can be introduced (cf. Figure

1.2). This may lead to a more reasonable and feasible solution compared to rebuilding

the entire existing first-stage MT system. This motivated us to pose and explore for our

fourth research question.

RQ4: How can we build an effective automatic post-editing system which can improve the

translation quality of the first-stage MT system?

Figure 1.1: Post-editing on MT; Sip: source texts, Tmt: corresponding MT output
texts and Tpe: the human post-edited version of Tmt.
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Figure 1.2: Automatic Post-editing; here “99K” means Sip may be or may not be
included in the APE system between Sip_Tmt–Tpe. Our APE system currently uses only

Tmt–Tpe.

The term “Post-Editing” (PE) is defined as the corrections performed by humans over

the translations produced by an MT system (Veale and Way, 1997). It is often under-

stood as the process of improving a translation provided by an MT system with the

minimum amount of manual effort (TAUS Report, 2010). While MT is often not perfect,

post-editing MT output can yield productivity gains as it may require less effort than

translating the same input manually from scratch. MT outputs are often post-edited by

professional translators and the use of MT has become an important part of the trans-

lation workflow. A number of studies confirm that post-editing MT output can improve

translators’ performance in terms of productivity and it may positively impact on trans-

lation quality and consistency (Guerberof, 2009; Plitt and Masselot, 2010; Zampieri and

Vela, 2014). The wide use of MT in modern translation workflows in the localization

industry, in turn, has resulted in substantial quantities of human PE data (MT output

and its human correction) which can be used to develop APE systems. APE (Knight and

Chander, 1994) has been proposed as an automatic method for improving raw MT output,

before (as it may not be a perfect) performing final human post-editing on it (cf. Figure

1.2). The approach is based on automatic corrections of errors made by the MT system.

The automatic corrections of errors are learned from the human-corrected output of a first

stage MT system possibly resulting in a productivity increase in the translation process.

The advantage of APE relies on its capability to adapt to any black-box MT engine; i.e.,

upon availability of post-edited data, no incremental training or full re-training of the

first stage MT system is required to improve the overall translation quality of the first

stage MT system that was involved in the post-editing data collection. APE assumes the

availability of source texts (Sip), corresponding MT output texts (Tmt) and the human

post-edited version (Tpe) of Tmt, and APE systems can be modelled as an MT system

8
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between Sip_Tmt and Tpe. However, statistical APE (SAPE) or neural APE (NNAPE)

systems can also be built without the availability of Sip using only sufficient amounts

of target side “mono-lingual” parallel Tmt–Tpe text within the SMT framework. Usually

APE tasks focus on systematic errors made by MT systems – the most frequent ones often

being incorrect lexical choices, incorrect word ordering, and incorrect insertion or deletion

of a word. This leads to our fifth research question.

RQ5: To what extent is an APE system able to reduce final post-editing effort in terms

of increasing productivity?

To find answers to research questions RQ4 and RQ5, in Chapter 5 and (Pal et al., 2016c),

we present a neural network based APE system to improve raw MT output quality. Our

neural model of APE (NNAPE) is based on a bidirectional recurrent neural network

(RNN) model and consists of an encoder that encodes an MT output into a fixed-length

vector from which a decoder provides a post-edited (PE) translation. APE translations

produced by NNAPE show statistically significant improvements of 3.96, 2.68 and 1.35

BLEU points absolute over the original English–Italian MT, phrase-based APE and hi-

erarchical APE outputs, respectively. Furthermore, human evaluation shows that the

NNAPE generated PE translations are much better than the original MT output.

In Chapter 5, we also investigate an APE method to improve the translation quality pro-

duced by an English–German SMT system (Pal et al., 2016f). We present an APE system

based on the Operation Sequence Model (OSM) combined with a PB-SMT system. The

system is trained on “monolingual” data consisting of MT output texts (TLmt) produced

by a black-box MT system and their corresponding human post-edited version (TLpe).

Our system achieves 64.10 BLEU (1.99 absolute points and 3.2% relative improvement

in BLEU over raw MT output) and 24.14 TER (0.66 absolute points and 0.25% relative

improvement in TER over raw MT output) on the official WMT 201610 APE test set.

Furthermore, in Chapter 5, we combine two strands of MT research: APE and multi-

engine (system combination) MT (Pal et al., 2016b). APE systems learn a target-

language-side second stage MT system from the data produced by human corrected output

of a first stage MT system, to effectively improve the output of the first stage MT in what

is essentially a sequential MT system combination architecture. At the same time, there

is a rich research literature on parallel MT system combination where the same input is
10http://www.statmt.org/wmt16/ape-task.html
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fed to multiple engines and the best output is selected or smaller sections of the various

outputs are combined to obtain an improved translation output. In this chapter we show

that parallel system combination in the APE stage of a sequential MT-APE combination

yields substantial translation improvements both in terms of automatic evaluation metrics

as well as in terms of productivity improvements measured in a post-editing experiment.

In addition, we also show that system combination on the level of APE alignments yields

further improvements. Overall our APE system yields statistically significant improve-

ments of 5.9% relative BLEU over a strong baseline (English–Italian Google MT) and

21.76% significant productivity increase in a human post-editing experiment with profes-

sional translators.

The translations provided by MT/APE systems often need to be corrected by human

translators to make them publishable. In the localization and translation industry, CAT

tools are widely used by professional translators in their regular work practice. CAT

tools are computer software that facilitates translators’ work in terms of ease of use,

faster project delivery and saving translators’ time and cost due to (partial) automation.

However, translation tools are progressively changing due to technological advances. Au-

tomatic translations or translation suggestions produced by these tools may not always be

correct. Because of this and partly due to the fear of job loss due to progressive automa-

tion, translation tools are not always well accepted by processional human translators

in traditional translation workflows. This is a well-known problem for the translation

industry (TAUS Report, 2010; TAUS/CNGL Report, 2010).

Case studies (O’Brien et al., 2009; TAUS Report, 2010) have shown that the deployment

of an MT/APE engine can be beneficial to all sides, including clients, translators and

language service providers (LSP) in terms of cost and time saving. However, the overall

picture remains mixed: on the one hand, often MT/APE is cheap and easy to use, while

on the other hand, in many cases, the quality of translation is not always satisfactory:

sometimes professional translators prefer to translate from scratch. This leads us to

investigate the following research question.

RQ6: How can human interaction with CAT tools be optimized in existing MT workflows?

Schematically the research and the research questions presented in this thesis can be

represented as in Figure 1.3.
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For the purposes of this thesis, we divide workflows into three general sections: “upstream

MT”, “core MT” and “downstream MT”. Upstream MT addresses data preprocessing and

extraction, core MT addresses hybrid approaches to MT while downstream MT addresses

PE, APE and CAT tools with the human in the loop. The research question addressed

in this thesis address all 3 stages of this generic workflow (Figure 1.3).

1.1 Publications Resulting from the Research Presented in

this Thesis

1.1.1 Chapter 3

• Santanu Pal, Partha Pakray and Sudip Kumar Naskar. 2014. Automatic Build-

ing and Using Parallel Resources for SMT from Comparable Corpora, In Hybrid

Approaches to Translation (HyTra-2014) Workshop in 14th Conference of the Eu-

ropean Chapter of the Association for Computational Linguistics (EACL 2014),

Gothenburg, Sweden, pages 26–30, April 2014.

Contributions: We present an automatic approach to extracting parallel fragments

from comparable corpora for enriching MT training data for low resource language

pairs. First author paper. The technological contributions offered in this work is

the application of textual entailment (TE) method in MT research. The TE system

was developed by Dr. Partha Pakray, a co-author. I developed the core idea of

using TE for extracting parallel fragment from comparable corpora.

• Santanu Pal, Partha Pakray, Alexander Gelbukh, Josef van Genabith. 2015. Min-

ing Parallel Resources from Comparable Corpora to improve performance of Ma-

chine Translation, Computational Linguistics and Intelligent Text Processing Lec-

ture Notes in Computer Science Volume 9041, 2015, pages 534–544, April 14-20,

2015, Cairo, Egypt.

Contributions: This is an extension of the (Pal et al., 2014b) above; however, in

this case we applied an advanced TE system. First author paper. In this paper, I

used a novel TE method and distributional semantics for text similarity. I applied

template-based phrase extraction and a TE based monolingual clustering technique

to align parallel phrases from comparable sentence pairs. I developed the core idea of
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Figure 1.3: Schematic design of the research and the research questions presented in
this thesis.
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using TE and distributional semantic text similarity for extracting parallel fragment

from comparable corpora.

1.1.2 Chapter 4

• Santanu Pal, Sudip Kumar Naskar and Sivaji Bandyopadhyay. 2014. Word Alignment-

Based Reordering of Source Chunks in PB-SMT. Published in the Proceedings of

the Ninth International Conference on Language Resources and Evaluation (LREC),

Reykjavik, Iceland, pages 3565–3571.

Contributions: First author paper. In this paper, I show how reordering between

distant language pairs can be handled efficiently in PB-SMT. I addressed the prob-

lem of reordering between distant languages with prior reordering of the source text

at chunk level to simulate the target language ordering. Prior reordering of the

source chunks was performed in this work by following the target word order sug-

gested by word alignment. I developed the main idea and performed the central

experiments of the work projected in the paper.

• Liling Tan and Santanu Pal. 2014. Manawi: using multi-word expressions and

named entities to improve machine translation. In Proceedings of Ninth Workshop

on Statistical Machine Translation. WMT 2014. Baltimore, USA, pages 201–206.

Contributions: This paper describes the English–Hindi MT system submitted to

the 2014 WMT translation task. I contributed in alignment of multiwords and

named entities and applied this prior alignment to the PB-SMT framework. I de-

veloped the core idea of using pseudo-alignment of NEs and MWE as an additional

training corpus in PB-SMT framework.

• Santanu Pal, Ankit Srivastava, Sandipan Dandapat, Josef van Genabith, Qun Liu

and Andy Way. 2014. USAAR-DCU Hybrid Machine Translation System for ICON

2014. In Proceedings of the 11th International Conference on Natural Language

Processing, ICON-2014, Goa, India.

Contributions: First author paper. This paper presents the USAAR-DCU MT

system submitted to the NLP Tools Contest in ICON 2014. I developed the core

13
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idea of using an effective preprocessing method and applying explicitly aligned bilin-

gual terminology, i.e., named entities, to the PB-SMT pipeline and finally devel-

oped a simple but effective hybridization technique for using multiple knowledge

sources. All the experiments were carried out and research contributions were made

by myself; all other co-authors guided me during my secondments in Dublin City

University.

• Santanu Pal, Sudip Kumar Naskar, Josef van Genabith. 2015. UdS-Sant: English–

German Hybrid Machine Translation System. In the Proceedings of the EMNLP

2015 Tenth Workshop on Statistical Machine Translation (WMT 2015), Lisbon,

Portugal, pages 152–157.

Contributions: First author paper. In this paper, I develop an English–German

Hybrid MT system submitted to the Translation Task organized in WMT 2015. I

incorporated additional knowledge such as extracted bilingual named entities and

bilingual phrase pairs induced from example-based methods into PB-SMT. I devel-

oped the core idea and performed the central experiments of the work projected in

the paper.

• Santanu Pal and Sudip Kumar Naskar. 2016. Hybrid Word Alignment. In “Hybrid

Approaches to Machine Translation”. Springer International Publishing Switzer-

land. M.R. Costa-jussà et al. (eds.), Hybrid Approaches to Machine Translation,

Theory and Applications of Natural Language Processing.

Contributions: First author paper. In this paper, I present a hybrid word align-

ment model for PB-SMT. This provides most informative alignment links which

are offered by both unsupervised and semi-supervised word alignment models. I

proposed an algorithm where two unsupervised word alignment models, namely

GIZA++ and Berkeley aligner, and a rule based word alignment technique are com-

bined together. The core part of the experiment and the research methodology

have been designed by me. Jointly with my co-author we made substantial contri-

butions to conception and design, and/or acquisition of data, and/or analysis and

interpretation of data, and experimental outcomes.
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• Santanu Pal, Sudip Kumar Naskar, Josef Van Genabith. 2016. Forest to String

Based Statistical Machine Translation with Hybrid Word Alignments. Computa-

tional Linguistics and Intelligent Text Processing Lecture Notes in Computer Sci-

ence, 2016, CICLING-2016. Konya, Turkey.

Contributions: First author paper. In this paper, I show how hybrid word align-

ment integrated into various experimental settings of Forest to String based SMT

can provide considerable improvement over state-of-the-art Hierarchical Phrase based

SMT. The research also demonstrates that additional integration of NEs, their trans-

lations and EBMT phrases into the Forest to String Based SMT system provides

considerable performance improvements.

1.1.3 Chapter 5

• Santanu Pal, Mihaela Vela, Sudip Kumar Naskar, Josef van Genabith. 2015. USAAR-

SAPE: An English–Spanish Statistical Automatic Post-Editing System. In the Pro-

ceedings of the EMNLP 2015 Tenth Workshop on Statistical Machine Translation

(WMT 2015), Lisbon, Portugal, pages 216–221.

Contributions: First author paper. I developed an APE system submitted to the

APE Task organized in WMT 2015. I designed three basic components: corpus

preprocessing, hybrid word alignment and a PBSMT system integrated with the

hybrid word alignment. The hybrid word alignment consists of a combination of

multiple word alignments into a single word alignment table. The PB-SMT based

APE system was trained on Spanish MT output and the corresponding manually

post-edited output. I developed the core idea and performed the central experiments

of the work presented in the paper.

• Santanu Pal. 2015. Statistical Automatic Post Editing. In The Proceedings of the

EXPERT Scientific and Technological workshop.

Contributions: Solo author paper. In this paper, I built a hierarchical phrase

based APE system that can automatically handle and estimate word insertion error

(by considering one-to-many alignment links between MT–PE aligned data), word

deletion error (by considering many-to-one alignment links between MT–PE aligned

data), lexical error (by estimating lexical weighting during model estimation) and
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word ordering error (using a hierarchical model facilitates word ordering since it

uses synchronous context free grammar (SCFG) based hierarchical phrases).

• Santanu Pal, Marcos Zampieri, and Josef van Genabith. 2016. Usaar: An Operation

Sequential Model for Automatic Statistical Post-editing. In Proceedings of the First

Conference on Machine Translation. WMT 2016. Association for Computational

Linguistics, pages 759–763.

Contributions: First author paper. In this paper, I developed an English–German

APE system which is based on Operation Sequence Model combined with PB-SMT

system. The system is trained on monolingual settings between MT outputs pro-

duced by a black-box MT system and their corresponding post-edited version.

• Santanu Pal, Sudip Kumar Naskar, Mihaela Vela and Josef van Genabith. 2016.

A Neural Network based Approach to Automatic Post-Editing. In the Proceedings

of the The 54th Annual Meeting of the Association for Computational Linguistics

(ACL 2016), Berlin, Germany, pages 281–286.

Contributions: First author paper. My contribution in this work is designing

the core components, introducing deep neural networks into automatic post-editing

pipeline and setting up and carrying out experiments. I collaborated with the in-

dustry partner (Translated SRL, Rome, Italy) of the EXPERT project and used

their data and translators for the APE experiments. My co-author Dr. Mihaela

Vela helped complete the human evaluation.

• Santanu Pal, Sudip Kumar Naskar and Josef van Genabith. Multi-Engine and

Multi-Alignment Automatic Post-Editing and its Impact on Translation Productiv-

ity. In the 26th International Conference on Computational Linguistics (COLING

2016), Osaka, Japan, pages 2559–2570.

Contributions: First author paper. I developed the core idea, designed the core

components, introduced alignment combination and multi-engine system combina-

tion into the automatic post-editing pipeline, conducted automatic evaluation and

human evaluation, applying the model in an industrial setup.
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1.1.4 Chapter 6

• Tapas Nayek, Sudip Kumar Naskar, Santanu Pal, Marcos Zampieri, Mihaela Vela

and Josef van Genabith. CATaLog: New Approaches to TM and Post Editing Inter-

faces. In the Proceedings of the 1st Workshop on Natural Language Processing for

Translation Memories (NLP4TM), collocated with RANLP 2015, Hissar, Bulgaria,

pages 36–42.

Contributions: In this paper we proposed a novel retrieval technique and post-

editing interface for TMs. One of the novel features of CATaLog is a color coding

scheme that is based on the similarity between an input segment and the retrieved

TM segments, which helps the translators to identify portions of the sentence which

are most likely to require post-editing thus demanding minimal effort and increasing

productivity. I developed the ideas on color-coding between input text and TM

segments (both for source and target).

• Santanu Pal, Marcos Zampieri, Mihaela Vela, Tapas Nayak and Sudip Kumar

Naskar, Josef van Genabith. 2016. CATaLog Online: Porting a Post-editing Tool

to the Web. In the Proceedings of the 10th International Conference on Language

Resources and Evaluation (LREC 2016), pages 599–604.

Contributions: First author paper. I developed a free-ware software (CATaLog

online) that can be used through a web browser. CATaLog online is the web version

of CATaLog with faster TM retrieval and provides a novel and user-friendly online

CAT environment to post-editors and translators to reduce post-editing time and

effort. It collects post-editing logs which are a fundamental source of information

for translation process research. CATaLog online remotely monitors and records

user activities generating a wide range of logs. It also provides on-demand MT

output that automatically learns from post-editor feedback. The tool provides a

complete set of log information currently not available in most commercial CAT

tools. Other co-authors helped to reproduce some modules from the CATaLog desk-

top version and also shared their expertise and knowledge about state-of-the-art

CAT technology.
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• Tapas Nayek, Santanu Pal, Sudip Kumar Naskar, Sivaji Bandyopadhyay and Josef

van Genabith. 2016. Beyond Translation Memories: Generating Translation Sug-

gestions based on Parsing and POS Tagging. In the Proceedings of the 2nd Work-

shop on Natural Language Processing for Translation Memories (NLP4TM 2016),

Portoroz, Slovenia, Pages.

Contributions: Traditionally, TMs do not generate any translation. In this paper

we introduced an important functionality in TM, that of proposing a new transla-

tion. This improves HCI issues with TM since this new functionality generates a

new translation based on the translation template chosen by the user. I developed

the core idea on syntactic matching in TM – a step beyond traditional TM, and

helped the first-author with implementation.

• Santanu Pal, Sudip Kumar Naskar, Marcos Zampieri, Tapas Nayak and Josef van

Genabith. CATaLog Online: A Web-based CAT Tool for Distributed Translation

with Data Capture for APE and Translation Process Research. In the 26th Inter-

national Conference on Computational Linguistics (COLING 2016), Osaka, Japan,

pages 98–102.

Contributions: First author paper. In a bid to reduce post-editing time and effort,

improve the post-editing experience and capture data for incremental MT/APE

and translation process research, I upgraded CATaLog Online (Pal et al., 2016e) to

facilitate distributed translation where teams of translators can work simultaneously

on different sections of the same text. I also incorporated user activity logging and

automatic live word alignment recording features in the online version of the CAT

tool. Others co-authors helped with design issues and debugged the Demo version

of the tool to find various implementation bugs during quality testing.
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Chapter 2

Literature Survey

This chapter provides an overview of previous general basic research related to the research

presented in this thesis. Later chapters will review further specific literature relevant to

the specific topic of the local chapter in question (see related research sections in Chapter

3, 4, 5 and 6).

2.1 Introduction

The following sections present an overview of research in Machine Translation (MT),

Post-Editing (PE), Automatic PE (APE) and interactive translation workflow as an in-

creasingly central practice in the translation field that is relevant to our research presented

in the thesis. Section 2.2 describes general approaches to MT. Section 2.3 and 2.4 report

recent progress directly related to the MT research we carried out on hybrid MT systems.

Section 2.5 reviews relevant research on APE to improve over a first-stage MT system.

Finally, Section 2.6 reviews research on translation workflows including human-machine

interactive MT systems.

2.2 Machine Translation

MT is an Artificial Intelligence (AI) problem. Conventionally, MT is a computer appli-

cation which automatically translates texts from one natural language to another.
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Architectures of early knowledge-based or rule-based MT systems can be roughly orga-

nized into the three classes – Direct, Transfer and Interlingua. They differ on their depth

of analysis. The deeper the analysis, the less transfer is needed. The direct approach is the

most primitive form of transfer, consisting of word-to-word replacements. The transfer

approach consists of three stages: analysis, transfer and synthesis. The interlingual ap-

proach has the most “degenerate” form of transfer, i.e., the transfer mapping is essentially

non-existent.

In direct MT systems, the source language (SL) words or phrases are directly replaced

by target language (TL) words or phrases by means of a bilingual dictionary look-up

(Hutchins, 1995). The translations provided by the simplest possible direct MT systems

follow the same word order as that provided by the SL. In general, however, TL strings do

not follow the same word order that occurs in SL strings. In order to improve translation

quality, a direct MT system has to do some local syntactic and morphological analysis

before the bilingual dictionary look-up. Translation may need to execute local reordering

according to local syntactic analysis. Applying limited syntactic information in a direct

MT system increases the readability of the translated text to some extent, but does

not always follow a general linguistic theory or a global syntactic analysis necessary for

producing good translations. The direct MT system architecture mainly relies on well-

developed dictionaries, morphological analysis, and text processing software to produce

reasonable translations of the source text into a series of words and phrases in the target

language translation. Using a direct MT system, often only simple source sentences can

be translated well. A problem in the direct architecture is often the selection of the target

language words for the source language words (lexical ambiguity). Direct MT systems

often fail to provide a good solution to the lexical selection problem as they are only able

to consider a limited local context. As a result, Direct MT systems often produce poor

translations, especially if such systems are used to translate between “distant” languages.

The interlingual approach attempts to develop a language independent representation of

the source language text that is meant to capture all the linguistic information necessary

to generate the appropriate target language translation (Hutchins, 1995). There are many

theoretical advantages of an interlingual approach, especially when one thinks of multilin-

gual systems translating between many language pairs. The interlingua approach consists

of only two phases: analysis and generation. During analysis, the SL text is converted to
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an interlingual representation. In the generation phase, the TL text is generated from this

interlingual representation. The interlingual approach to MT generally uses an abstract

system of semantic relations to represent events and states of affairs including participant

relations, spatial relations and temporal relations. Interlingual representations need to be

very rich and tend to be extremely knowledge intensive. One of the theoretical benefits of

such a system is that the meaning representation should be language agnostic and there-

fore (relatively) uniform across multiple source languages, so that in principle it should

take fewer components to add a new language in a multilingual system. In particular, no

language pair specific transfer component should be required. However, often, the style

and emphasis of the original text are lost in the interlingual approach because interlingual

representations are highly generic and independent of the particulars of the linguistics of

the source and target text. However, and in addition, in practice, it is extremely difficult

to create a full blown abstract yet detailed enough “language-independent” representation

for human languages, parse the source sentence into such a representation, and from it

generate the target sentence (Dorr et al., 2006).

By contrast, the syntactic or semantic transfer approach produces a translation in three

different phases: (a) analysis of the input into a SL syntactic or semantic representation,

(b) transfer of that representation into corresponding TL structure, and (c) synthesis of

the translation output from that structure. This architecture is specialized for a particular

pair of languages, and the transfer component converts a source representation into a

corresponding target representation. The biggest disadvantage of this approach is that a

large set of language-pair specific transfer rules must be constructed for each SL/TL pair.

Furthermore, the analysis, transfer and synthesis phases follow each other in sequence;

therefore, propagation of errors in each stage can lower translation quality.

With regard to the acquisition of the required knowledge, MT paradigms can be broadly

divided into two categories – Rule Based MT (RBMT, knowledge-based MT) and Corpus

Based MT (CBMT, data-driven MT). Traditional RBMT relies on hand-built linguistic

rules and bilingual dictionaries for each language pair1. This requires extensive linguistic

and programming skills and is time consuming and expensive to scale. On the other hand,

CBMT uses bilingual and target monolingual corpora to (semi-) automatically acquire

1If suitably annotated data are available, RBMT system can also be learned from data.

21



Chapter 2. Literature Survey

the required translation knowledge. Recently, corpus-based MT has delivered increas-

ingly higher quality translations. There are many approaches that have been proposed

in the last few decades such as Example-based Machine Translation (for an overview see

e.g., (Carl and Way, 2003)), Statistical Machine Translation (Brown et al., 1993; Koehn,

2010) and Neural Machine Translation (Sutskever et al., 2014; Cho et al., 2014a,b; Bah-

danau et al., 2015; Luong et al., 2015a,b; Sennrich et al., 2016a).

Out of these, in terms of large-scale evaluations, until recently SMT has been the most suc-

cessful and efficient MT paradigm (Koehn, 2010)2. The quality of SMT depends on good

quality word alignment as well as good phrase pair estimation, both of which can often

be achieved by using large amounts of sentence-aligned parallel corpora. However, SMT

for low-resource or distant language pairs usually produces inferior quality translation.

2.2.1 Example Based Machine Translation

EBMT was first introduced by Nagao (1984). According to Nagao (1984), EBMT learns

and translates like a human i.e., in order to translate new sentence, a human has the

tendency to make use of translation examples which they have previously encountered.

An EBMT system relies on past translations together with a “divide and conquer” ap-

proach to derive the target output for a given input by using a set of bilingual sentence-

aligned parallel examples which act as bilingual knowledge source to induce translations of

sub-sentential fragments. Traditional EBMT systems perform translation in three steps:

matching, alignment and recombination (Somers, 2003) drawing a parallel with analogous

phases in traditional transfer-based MT systems (analysis, transfer, and generation). Sen-

tence frames are sequentially compared in a matching step. The alignment step is used

to identify which parts of the corresponding translation are to be reused. Recombina-

tion is the final step where aligned basic sentence structures are combined with aligned

sub-sentential translation pairs. Two main approaches to EBMT can be distinguished: (i)

“pure EBMT” (Lepage and Denoual, 2005), where no training or preprocessing stage takes

place and the runtime complexity is considerable, and (ii) “compiled approaches” (Cicekli

and Guvenir, 2001), where training usually consists of compiling units below the sentence

level before runtime.

2However, recently SMT has been challenged by neural approach to MT, see Section 2.4 below.
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2.2.2 Statistical Machine Translation

More than six decades ago, Weaver (1949) expressed the idea of applying statistical meth-

ods to translate a word by taking its context into account. However, researchers aban-

doned this approach due to the complexity involving implementation at that time. Four

decades after the proposal of Weaver (1949), Brown et al. (1993) modelled MT with a

probabilistic model, namely the noisy channel model of translation. The noisy channel

model of translation (Brown et al., 1993) maximizes the probability p(e|f) of generating

a target sentence e = e1...ei...eI given a source sentence f = f1...fj ...fJ . According to the

noisy channel model, the translation task can be viewed as a process of finding the ê that

maximizes the probability of p(e|f) as in Equation 2.1:

ê = argmaxe p(e|f) = argmaxe p(f |e)× p(e) (2.1)

where p(f |e) and p(e) denote the translation model and the target language model, re-

spectively.

2.2.3 Word Based SMT

Word based SMT uses words as their basic translation units and was developed by IBM

(Brown et al., 1993). IBM-1 to IBM-5 as well as HMM based models (Vogel et al.,

1996) estimate word alignment from a large volume of bilingual parallel corpus employing

unsupervised techniques. Once the IBM models are trained, the alignments between

source and target words with maximum probability are extracted. These alignments are

called “Viterbi alignments”. Word based models are the standard starting point for most

state-of-the-art alignment and translation models.

2.2.4 Phrase Based SMT

The basic problem of word-based SMT is that it does not capture neighboring contexts

well, since the translation unit of this model are the individual words. As a result,

word-based models often result in poor lexical selection and they may fail to maintain

phrasal cohesion between the phrases of source and target languages. To overcome these
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limitations, a phrase-based alignment and translation model (Och et al., 1999) was pro-

posed, which extends the basic translation unit from words to phrases. This model is

able to produce alignments which consist of m-to-n non-consecutive word translational

correspondences.

Phrase-level alignment starts by segmenting the source sentence into phrases with arbi-

trary boundaries. Phrase pairs are extracted from the sentence pairs that are consistent

with the refined word alignment matrix (Koehn et al., 2003; Koehn, 2009). The approach

described in (Och, 2002; Koehn et al., 2003) serves as the basis of state-of-the-art phrase-

based SMT model. Instead of the original formulation of the translation problem as a

noisy-channel model, phrase-based SMT employs a log-linear interpolation over a set of

features as described in the next subsection.

2.2.5 Log-linear Model for SMT

The state-of-the-art phrase-based SMT (PB-SMT) model (Koehn et al., 2007) follows

the log-linear model representation (Och, 2002) which can combine together an arbitrary

number of features into a single model. A PB-SMT model usually employs the following

set of features:

• Phrase translation probability and inverse phrase translation probability

• Lexical translation probability and inverse lexical translation probability

• Word penalty and phrase penalty

• Distance-based or lexicalized phrase reordering models

• N-gram language model

Any additional feature that applies to the source and target phrase pairs can be incor-

porated into the log-linear model. Each feature of the log-linear model is associated with

a weight which is usually estimated using minimum error rate training (MERT) (Och,

2003). In log-linear phrase-based SMT, the posterior probability p(e|f) is modeled as a

log-linear combination of features (Och, 2002). This usually consists of M translational

features, and the language model, as in Equation 2.2:
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log p(e|f) =
M∑

m=1

λmhm(f, e, sk1) + λLM log p(e) (2.2)

where sk1 = s1 . . . sk denotes a segmentation of the source and target sentences

respectively into the sequences of phrases (êk1 = ê1 . . . êk ) and (f̂k
1 = f̂1 . . . f̂k )

such that ∀1 ≤ k ≤ K, sk = (ik, bk, jk), êk = eik−1+1...eik , f̂k = fbk ...fjk (we set i0 = 0)

and each feature λm and λLM in Equation 2.2 are estimated using MERT or other tuning

methods (e.g., MIRA (Cherry and Foster, 2012)).

2.2.6 Reordering Model

In the PB-SMT framework, reordering is typically handled by two models: a distortion

model (Brown et al., 1993) and a lexicalized reordering model (Koehn et al., 2005; Galley

and Manning, 2008). IBM models 1 and 2 define the distortion parameters in accordance

with the word positions in the sentence pair instead of actual words at those positions.

Models 4 and 5 replace absolute word positions with the relative word positions. However

all these models are limited to only word movements; they do not consider phrasal move-

ments. Koehn et al. (2005) proposed a relative distortion model in PB-SMT. The model

works in terms of the difference between the current phrase position and the previous

phrase position in the source sentence. Basic PB-SMT models consider word movements

up to a few tokens which could be increased to consider long distance reordering; however,

in practice higher distortion limits often result in degraded performance (Koehn et al.,

2007). Lexicalized reordering is involved in the movement of words which are moved fre-

quently together. It considers three types of reordering – monotone (M), swap (S), and

discontinuous (D) – by considering the orientation of the previous and the next word of

each phrase pair. The orientation is called monotonous if the previous word of the source

is aligned with the previous word of the target. The orientation of swap occurs when

the next word in the source is aligned with the previous word of the target; finally the

orientation is discontinuous if neither of the two above mentioned cases are true. The re-

ordering model is built by estimating the probabilities of the phrase pairs associated with

the given orientation. Generally the orientation probability is estimated by the count of

each orientation type divided by sum of the count of each orientation type.
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2.2.7 Language Model

A language model (LM) estimates the likelihood of appearance of a sequence of words

in a language. In other words, in SMT, the language model probabilistically measures

the linguistic well-formedness of the sentences generated by the MT system. The goal

of a statistical LM is to learn the joint probability function of sequences of words in a

language. In language models, a word-sequence consisting of n words is referred to as an

n-gram. It is impossible to estimate probabilities for large n-grams reliably from data:

even very large corpora do not show all possible combinations. To address this problem,

estimation is based on the Markov assumption that considers only limited context of n−1

previous words. Still, a zero probability is assigned to unseen n-grams. Many smoothing

techniques have been introduced to solve this problem. The idea behind smoothing tech-

niques is that some probability mass is subtracted out (‘discounting’) from seen n-grams

and redistributed to unseen n-grams. SMT researchers usually build language models

with the interpolated modified Kneser-Ney smoothing (Kneser and Ney, 1995) technique.

Interpolation causes the discounted n-gram probability estimates at the specified order

n to be interpolated with lower order estimates. The LM order is usually set to 5-gram

to 7-gram n-gram to capture a reasonable range of contexts on the target side. Due to

the data sparsity issue, n-gram language model probability is difficult to reliably esti-

mate since basic models do not use any information about similarities between words.

To address this issue, some approaches involve word clustering techniques (Yuan, 2006;

Shi et al., 2013) while Bengio et al. (2003) introduced a feed-forward neural probabilistic

LM (NPLM) that operates over distributed representations, real-valued vectors in a high-

dimensional feature space. Neural network architectures for language modeling include

feed-forward (Bengio et al., 2003), recurrent (Mikolov et al., 2010), sum-product (Cheng

et al., 2014) and convolutional (Wang et al., 2015) neural networks.

2.3 Hybrid MT

Each MT approach discussed above has its own advantages and disadvantages. To avoid

the limitations and to muster the strengths of all the aforementioned methods, hybrid

approaches were proposed to combine the best features of all or a selection of methods.
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Much research in MT includes some degree of hybridization based on e.g., incorporating

linguistic knowledge in terms of preprocessing or on purely statistical model combination.

Data preprocessing plays a crucial role in NLP, especially with regard to parsing and MT.

NEs and MWEs in particular pose difficulties in terms of identification and translation.

In parsing, NE and MWE identification is like a chicken and egg problem in the sense that

where should it be best fit in the pipeline – before parsing or after parsing; the question

is whether MWE is a tokenization problem or a parsing problem. Handling MWEs in

SMT deals with two challenging tasks: identification of MWEs and their incorporation

into state-of-the-art SMT. Much research has been carried out on both MWE extraction

and incorporation within SMT, as described below.

A log likelihood ratio based hierarchical reduction algorithm to automatically extract

bilingual MWEs was reported in (Ren et al., 2009). Venkatapathy and Joshi (2006)

reported a discriminative approach to use the compositionality information of verb-based

MWEs in order to improve the word alignment quality. Carpuat and Diab (2010) replaced

the binary feature by a count feature representing the number of MWEs in the source

language phrase in SMT. Pal et al. (2013b) and Tan and Pal (2014) used various statistical

techniques to extract MWEs from bilingual data and used these bilingual MWEs as

additional training material to examine the usefulness of these bilingual MWEs in SMT.

Pal et al. (2013b) observed the highest improvement with an additional feature that

identifies whether or not a bilingual phrase contains bilingual MWE(s). A hybrid approach

to identify MWEs from English–French parallel data was proposed by Bouamor et al.

(2012a), who aligned only many-to-many correspondences and dealt with highly correlated

MWEs. These MWE are then integrated into the MOSES SMT System (Bouamor et al.,

2012b) in three ways: (a) adding the extracted bilingual MWEs as additional parallel

training material, (b) integrating bilingual MWE candidates into the phrase table3, and

(c) adding a new feature indicating whether a phrase in the phrase table is an MWE or

not. One key difference between Bouamor et al. (2012b) and Pal et al. (2013b) is that, Pal

et al. (2013b) considered MWEs as single tokens, which ensures that the phrase extraction

module never gets a chance to mark a phrase boundary inside an MWE and MWEs are

always treated as a whole. MWEs in SMT was also investigated by Lambert and Banchs

(2005) for the Verbmobil corpus. The work related to MWE handling in SMT presented

3Bouamor et al. (2012b) use the Jaccard Index to define the two directions translation probabilities
and set the lexical probabilities to 1.
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in Chapter 4 in this thesis will apply multiword NE and MWE knowledge directly to the

SMT word alignment and phrase extraction step. Additionally, and orthogonally, we also

investigate how EBMT phrases can provide further improvement in SMT.

A major characteristic of state-of-the-art PB-SMT is that phrase pairs are extracted solely

based on the knowledge contained in the word alignment table (plus some additional

heuristics). The extracted phrases in PB-SMT do not respect linguistically motivated

phrase boundaries and may be fragments of linguistically motivated phrases or contain

words from neighboring linguistic phrases. Recent research in SMT has investigated how

to incorporate syntactic knowledge into PB-SMT systems to improve translation quality.

Syntax based SMT systems have provided promising improvements in recent years. Syn-

tax based SMT can be divided into two categories: formal syntax-based systems where

there is no need for using any additional parser with a linguistically motivated grammar

(Chiang, 2005), and linguistically motivated syntax-based systems that use PCFG (Liu

et al., 2006; Huang, 2006; Mi et al., 2008; Mi and Huang, 2008; Zhang et al., 2009), syn-

tactic word dependency (Ding and Palmer, 2005; Quirk et al., 2005; Shen et al., 2008)

or other parsers, e.g., Wu et al. (2011) trained on tree banks. Translation rules can be

extracted from aligned string-to-string (Chiang, 2005), tree-to-tree (Ding and Palmer,

2005) or tree/forest-to-string (Galley et al., 2004; Mi et al., 2008; Wu et al., 2011) data

structures and their corresponding word alignment tables. The approach described in

Chiang (2005) for incorporating syntax4 into PB-SMT targets mainly phrase reordering.

Under this approach, hierarchical phrase translation probabilities are used to handle a

range of reordering phenomena. Marcu et al. (2006) present a similar extension of PB-

SMT with syntactic structure on the target side. Zollmann and Venugopal (2006) extend

the work introduced in Chiang (2005) by augmenting the hierarchical phrase labels with

syntactic categories derived from parsing the target side of the parallel corpus. They asso-

ciate a target parse tree with the corresponding search lattice provided by lexical phrases

on the source sentence and assign a syntactic category to phrases which align directly

with the parse hierarchy. Similar to Chiang (2005), a chart-based parser with a limited

language model was used.

4This approach is formally syntax based and uses synchronous context free grammar, it is not nec-
essarily linguistically syntax-based because it induces a grammar from a parallel text without relying on
any linguistic annotations or assumptions.
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Systems adopting the same (or different) MT framework usually produce different trans-

lations for the same input, due to their differences in training data usage, different prepro-

cessing methods, different alignment strategies and adopting various decoding processes,

etc. It is therefore beneficial to design a combined framework of multiple systems that

combines the output of these MT systems and produces better translations compared to

any single system. MT system combination provides an approach to hybrid MT where

output from different MT engines belonging to same or different MT paradigms are con-

sidered in a bid to either select the best hypothesis from among the candidate hypotheses,

or to build a new hypothesis altogether by combining parts of the candidate hypotheses.

Many MT system combination approaches have been proposed over the years. These can

be roughly grouped into three different categories: (i) hypothesis selection (Rosti et al.,

2007a; Hildebrand and Vogel, 2010), (ii) re-decoding (He and Toutanova, 2009; Devlin

and Matsoukas, 2012), and (iii) confusion network decoding (Matusov et al., 2006; Rosti

et al., 2007b). Further gains can be obtained by the lattice decoding model (Feng et al.,

2009; Du et al., 2010) and the paraphrasing model (Ma and McKeown, 2015). Our own

hybrid architecture is based on a confusion network based system combination. Confusion

Network decoding typically follows four steps:

1. Backbone selection: This method selects a backbone/skeleton from all the candi-

date hypotheses. The backbone defines the word order of the final translation. The

backbone selection strategies generally follow Minimum Bayes Risk (MBR) decoding

(Rosti et al., 2007b; He et al., 2008). Translation edit rate (TER) or modified BLEU

score are often used as the loss function in MBR. The quality of the combination

output depends on which hypothesis is chosen as the selected backbone since the

backbone determines the word order of the final fusion translation.

2. Hypothesis alignment: All words of each hypothesis are aligned against the

backbone. To establish alignment between the hypothesis and the backbone, many

approaches have been proposed: the edit distance alignment algorithm (Bangalore

et al., 2002) which only allows monotonic alignment, a heuristic-based matching

algorithm which allows non-monotonic alignments (Jayaraman and Lavie, 2005),

GIZA++ (Matusov et al., 2006), TER alignment toolkit (Rosti et al., 2007a,b), the

ITG-based method (Karakos et al., 2008), the IHMM-based word alignment method

(He et al., 2008) in which the parameters are estimated indirectly from a variety
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of sources, and the systematic comparisons method (Chen et al., 2009; Rosti et al.,

2012).

3. Confusion network construction: A confusion network is prepared based on hy-

pothesis alignments. Hypothesis alignment algorithms produce many-to-one map-

pings between the hypothesis and backbone. The word alignments need to be nor-

malized to one-to-one word alignments by simply removing duplicate links since the

confusion network is built from one-to-one word alignments. The hypothesis words

need to be reordered according to the backbone word order.

4. Confusion network decoding: This step deals with choosing the best translation

path from the confusion network through a beam-search algorithm with a log-linear

combination of a set of feature functions. The chosen path achieves the highest

confidence in the network. The feature functions include: a language model, word

penalty, weights on word arcs and n-gram posterior probabilities. The total weights

of feature functions are optimized using MERT (Och, 2003).

2.4 Neural MT

SMT has proved to be the most successful and dominant MT approach in large-scale

evaluations until recently. Over the last 3–4 years, a number of researchers proposed the

application of neural networks to learn conditional distributions in MT (Kalchbrenner

and Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014a,b; Bahdanau et al., 2015;

Luong et al., 2015a,b). These approaches use a recurrent neural network architecture

(RNN) with long short term memory (LSTM), typically consisting of two components:

an encoder that encodes source sentences and a decoder which decodes into target sen-

tences. Neural MT (NMT) systems have achieved performance similar to and even better

(WMT 2016) than the state-of-the-art PB-SMT system. The advantages of Neural MT

(NMT) over SMT are its simplicity and smaller storage requirements. Unlike SMT, NMT

has just one overall system to be optimized end-to-end rather than several components

estimated individually which are then put into in a pipeline where the only thing that is

adjusted in a final learning step is the weight with which the component contributes to the

model. NMT also has an advantage in terms of no error propagation between individual

components as in the traditional SMT pipeline. Conceptually, SMT is concerned with the
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statistical similarity between phrases and may ignore linguistic similarities other than the

surface form leading to sparsity issues; NMT able to avoid such problems. NMT directly

models the conditional probability p(t|s) of translating a source sentence, s = s1...sn to

a target sentence, t = t1...tm through an encoder-decoder framework. A potential issue

with this encoder-decoder approach is that the neural network compresses all the neces-

sary information of a source sentence into a fixed-length vector. The fixed-length vector

representation may turn out to be difficult for long sentences in the training corpus. Bah-

danau et al. (2015) introduced an extension of the encoder-decoder model which learns

to align and translate jointly. The model generates a target word after (soft-)searching

for a set of positions in a source sentence where the most relevant information is con-

centrated and finally predicts the target word based on the associated context vectors

of source positions and all the previously generated target words. This method involves

an attention mechanism, a form of random access memory for NMT to cope with long

input sequences. The attention mechanism was further extended by Luong et al. (2015a)

to different scoring functions, used to compare source and target hidden states, as well

as different strategies to place the attention. To train an NMT model, every word in

the source or target vocabulary can be represented by an one-hot vector of length V

where V is the number of top-most frequent words. One-hot vector representations are

further transformed into a sequence of n-dimensional word embedding vectors consisting

of the embedding weights. The embedding weights are learned during training and are

different for the source and the target words. The word embedding vectors are next fed

as input to the two RNNs – one for the source language (an encoder) and the other for

the target language (a decoder). The RNNs use an LSTM (Hochreiter and Schmidhuber,

1997) which is able to retain information over long sequences. The encoder obtains the

feed-forward weights based on the connected hidden units from the previous time-step

RNN to the current time-step RNN block. The decoder is fed through an attention layer,

which guides the translation by paying attention to relevant parts of the source sentence.

Finally, for each target word, the top layer hidden unit of the decoder is transformed into

a score vector of length V and the target word associated with the highest score is selected

as the output translation.
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2.5 Automatic post-editing

Several approaches to automatic post-editing (APE) have been developed, including: sta-

tistical APE over RBMT, statistical APE over SMT and rule-based APE over SMT.

2.5.1 Statistical APE over RBMT

APE over RBMT was first reported by Simard et al. (2007b), where the authors suc-

cessfully improved the translation quality of an RBMT engine using statistical APE. The

statistical APE is based on a PB-SMT system trained in a “monolingual” setting utilizing

the outputs of the RBMT system as the source and the human-provided reference trans-

lations as the target. Simard et al. (2007b) furthermore compared the post-edited RBMT

performance to directly using the PB-SMT system in a bilingual setting. They showed

that the post-edited RBMT translations were much better than the translations produced

by the standalone baseline PB-SMT system. The authors also carried out their exper-

iment using a PB-SMT system instead of RBMT system as the first stage MT system,

however, no improvement in translation quality was observed.

2.5.2 Statistical APE over SMT

Improvements using statistical APE (SAPE) of SMT output were first reported by Oflazer

and Durgar El-Kahlout (2007) on English–Turkish MT. Béchara et al. (2011) report

SAPE of SMT on French–English MT. Both approaches are based on Simard et al.

(2007a,b). Béchara et al. (2011) reported a statistically significant improvement of 0.65

BLEU points (Papineni et al., 2002). They achieved further improvements by adding

source side information into the post-editing system by concatenating some of the trans-

lated words with their source words, eventually reaching an improvement of 2.29 BLEU

points. We will provide more discussion regarding this in Chapter 5.

32



Chapter 2. Literature Survey

2.5.3 Rule-Based APE over SMT

A rule-based APE of SMT output was reported by Rosa et al. (2012). They developed

a rule-based APE tool, called “Depfix”, which is an APE system for English–Czech PB-

SMT outputs, based on linguistic knowledge. The authors analyzed the types of errors

that are typically produced by an SMT system on their data. The tool consists of a set

of rules and a statistical component. The APE tool is able to correct systematic errors

of first-stage SMT. The tool produced improved quality translations in terms of both

automatic and manual evaluations.

2.6 Translation Workflow

2.6.1 Translation Memory

In the localization industry, human translators typically employ translation memory (TM)

systems (Kay, 1997). A basic TM stores segments of translated text as a translation unit

of source and target pairs. When a new sentence is encountered, the TM fetches previously

translated identical or similar sentences using “fuzzy matching” algorithms usually based

on a version of edit distance. The TM algorithm locates translations of stored sentences

similar to the input source sentence to be translated and presents the corresponding

translations as suggestions to the human translator. For matches with less than 100%

similarity, the suggested translation(s) may not be a translation of the new sentence that

needs to be translated and such translation proposals may need to be post-edited by the

human translator.

2.6.2 Beyond Basic TM Functionalities

TM systems are the most popular type of technology widely used in today’s translation

market. The acceptance of these tools is based on the fact that they have the ability

to reduce the translator’s effort, increase their productivity and reduce cost. TMs pro-

vide support to translators by retrieving segments of text that were already translated.

This can be performed by simple string matching and can be improved by using syntac-

tic/semantic information or paraphrasing (Gupta and Orăsan, 2014; Gupta et al., 2015b).
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Due to technological advancement, not only has segment matching become more accu-

rate but developers of these tools have added more features and functions to them as

well as translation-related resources (e.g., term banks and TM repositories). Therefore,

Computer-Aided Translation (CAT) tools often become complex and require considerable

time and effort for the translator to learn and use.

Some features such as terminology extractors, corpora compilation tools, automatic trans-

lation systems and translation-related resources are really beneficial and are already in-

tegrated in some translation software tools (SDL Trados Studio5, LiveDocs in MemoQ6,

MyMemory7, Web-based applications MateCAT8 and Wordfast9 as an add-on to Mi-

crosoft Word through macros etc.). Translators also tend to prefer working with specific

translation software. It would be of interest to find out why translators prefer certain

translation software over others and what their preferences in terms of translation soft-

ware requirements10 are that developers of such translation software should satisfy.

2.6.3 Needs or Problems Encountered by TM Users

According to a survey10 (Zaretskaya et al., 2015a,b) based on the popularity of various

translation technologies, TM systems appear to be the only type of tools that are used

regularly by the majority of professional translators. However, the survey shows that there

are still a considerable number of translators who have never heard of such technologies

at all. One such type of technology, a concordance system, is in fact unknown to the

majority of translators. Tools for compiling or managing corpora are less commonly used

on a regular basis. A possible reason is that some of the technologies are only recently

integrated into CAT tools but translators are completely unaware of them or they believe

that they may not provide satisfactory results or that they are slow. Some technologies

may not be considered appropriate for everyday use (e.g. compiling and managing cor-

pora). With regard to usage of MT services, some users use them, few are planning to

use them in future and some users abandoned MT due to perceived poor quality. In com-

parison to automatic translation, TMs turned out to be much more popular compared

5http://www.sdl.com/products/sdl-trados-studio/
6https://www.memoq.com/
7http://mymemory.translated.net/
8https://www.matecat.com/
9http://www.wordfast.net/

10 EXPERT deliverables 2.1: User Requirement Analysis
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to other translation support systems. However, the survey found that due to continuous

enhancement of the integrated MT systems within CAT, recently many translators are

showing the tendency to use MT systems for their regular practice. As a final observation

the survey established that a majority of the users also feel that terminology management

tools integrated into the translation software are also helpful.

2.6.4 Different types of Interactive MT and Learning from Mistakes

As mentioned earlier, current MT technology is still far from perfect, and in order to

achieve good translations, manual post-editing and interaction with the translation pro-

cess or output is often needed. Interactive MT is a collaborative process where the hu-

man and the computer collaborate to generate the final translation and the paradigm

may work in an iterative manner. Fully interactive MT can be described as an evolu-

tion of MT framework, where human translators check and correct the suggested MT

translation(s) as and while the automatic translation is produced (from left to right for

e.g., European languages). For any human interaction the MT system proposes a new

extension, taking the human correction into account and these steps are repeated until

the entire sentence/document has been correctly translated. A significant number of in-

teractive MT systems have been built over the past decade: TransType (Macklovitch,

2006), CasmaCat11, Lilt12, etc.

In “traditional” professional environments, the translation process typically follows three

stages – translation, editing, and proofreading – to ensure high quality results. CAT tools

are generally used by professional translators to achieve their goal. In the first stage, the

CAT tool provides sentence-level translations for humans to post-edit by using real-time

MT systems or a TM. There is a surge in demand for human quality translation that

continues to exceed the capacity of the language services industry. To enable human

translators to work more efficiently and to provide better assistance for accelerating their

work, new technologies are developed which typically follow the translation workflow

(i.e., translation, editing, and proofreading). The translation workflow is often supported

by sophisticated workflow management software for language service providers (LSPs)

to allow better distributed work among teams of translators, outsourcing documents to

11http://www.casmacat.eu/
12https://lilt.com/
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freelance translators, etc. The translation editing software within the translation workflow

provides automatic suggestions from TM, terminology banks, bilingual dictionaries and

recently from MT and APE.

Ideally, the integrated translation system in CAT tools should be able to learn from

the corrections provided by human translators and should avoid making similar mistakes

repeatedly. Every time a human translator corrects the translation system output, new

bilingual sentence/segment pairs are produced.

Adapting incremental SMT from the newly generated data in CAT environments, Nepveu

et al. (2004) experimented with adaptive language and translation models in the context of

an interactive CAT environment. They used cache-based grammars and language models

that incorporate incrementally translated data. This approach led to improvements in

translator productivity (Bertoldi et al., 2013). Levenberg et al. (2010) incorporated post-

edited bilingual data into on-demand grammar extraction and introduced suffix array

data structures that can be dynamically updated.

In Chapter 6 we present a new web-based post-editing tool, called CATaLog Online, en-

hanced with a number of new features. This tool can be used as a generic CAT tool

as well as for post-editing TM segments or MT output. The tool captures and provides

a complete set of activity log information currently not available in most CAT tools.

This tool is also convenient for translation process research. The tool offers the following

advantages: (i) color-coded TM translation suggestions (highlighted TM source and cor-

responding target fragments are shown in the same interface), (ii) a wide range of editing

logs, (iii) alignment between source, TM/MT/APE output and the results of human PE,

(iv) an improved TM similarity measure and search technique (Pal et al., 2016e), and (v)

additional translation options from APE.

2.7 Conclusions

This chapter presents a literature review of research relevant to the research presented

in the thesis. In the following chapters, we present our own research and show (i) how

parallel text fragments can be extracted from comparable corpora which can be added to

the bilingual training corpus as additional training material to improve the performance
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of SMT systems for low-resource language pairs, (ii) the optimal use of existing parallel

resources and an improved hybridization method for MT, (iii) different approaches to

APE over a first stage MT system, and finally (iv) how human interaction with CAT

tools can be optimized in existing MT workflows.
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Chapter 3

Mining Parallel Resources from

Comparable Corpora

Statistical Machine Translation (SMT) is based on a probabilistic model which is learned

from sentence-aligned parallel corpora where each sentence in the source is paired with

its translation in the target. Due to the fact that parallel corpora remain a scarce re-

source for many language pairs (e.g., English–Indian languages) and are often restricted

to certain domains, comparable corpora can to some extent provide a possible solution to

this data scarcity problem for corpus-based approaches to MT. Many studies and appli-

cations in both linguistic and language engineering communities use comparable corpora

as resources, and these can play an important role in improving the quality of MT (Smith

et al., 2010). Extracting parallel text fragments, paraphrases or sentences from compara-

ble corpora is particularly useful for SMT (Gupta et al., 2013).

In general, comparable documents are not strictly parallel: a comparable corpus consists

of documents in two languages, but these are not sentence-by-sentence translations of each

other; rather the documents are about the same topic. While the sentences of comparable

corpora usually are not (exact) translations, parallel documents convey information on

the same topic or event and hence there should exist some sentential or sub-sentential

level of parallelism.

Previous studies on comparable corpora mainly focused on: (i) parallel data extraction in

the form of bilingual lexicon extraction (BLE) (Fung and McKeown, 1997; Pirkola et al.,
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2001; Rapp, 1995), parallel fragment extraction (Quirk et al., 2007) and parallel sentence

extraction (Munteanu and Marcu, 2005), (ii) Translation model improvement (Daumé and

Jagarlamudi, 2011; Klementiev et al., 2012) and (iii) Language model adaptation (Zhao

et al., 2004). The main focus of this chapter is to exploit comparable corpora to address

the scarcity of parallel data for less resourced languages. We propose novel approaches

to extract parallel fragments from comparable corpora by applying a textual entailment

(TE) method and a template based approach.

This chapter addresses RQ1: How can MT for low resource languages be improved? We

extract parallel segments from comparable corpora. The extracted parallel segments are

typically added to the training corpus as additional training material that is expected to

improve the performance of SMT systems, specifically for low-resource language pairs.

The core part of the research presented in this chapter has been previously published in

(Pal et al., 2014b, 2015b).

Figure 3.1 schematically represents the research presented and the research questions

addressed in this Chapter.

3.1 Introduction

In this chapter, we describe a methodology for extracting English–Bengali parallel re-

sources from comparable corpora using TE and template based phrase extraction. We

collected a document-aligned comparable corpus of English–Bengali document pairs from

Wikipedia1. Wikipedia is a large collection of documents in many different languages.

We first collect an English document from Wikipedia and then follow the inter-language

link to find the corresponding document in the Bengali Wikipedia. To extract parallel

fragments, we perform three steps. In the first step, we cluster the source side of the bilin-

gual comparable corpus into several small groups using TE and a distributional semantic

textual similarity method (Mitchell and Lapata, 2010; Grefenstette and Sadrzadeh, 2011;

Socher et al., 2012; Agirre et al., 2014; Bentivogli et al., 2016). In the second step, we pro-

duce cross-lingual linked clusters of comparable segments for each comparable document

using a probabilistic bilingual lexicon. The bilingual lexicon is prepared from a bilingual

1https://www.wikipedia.org/
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Figure 3.1: Schematic design of the research and the research questions presented in
this Chapter.
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English–Bengali parallel corpus in the tourism domain using a statistical word alignment

tool – GIZA++ (Och and Ney, 2003a). In the final step, we use a template-based phrase

extraction method (Cicekli and Güvenir, 2001) between each of the aligned groups of

comparable segments. The template-based extracted phrases are finally aligned using a

baseline phrase-based SMT (PB-SMT) system, which was trained on the English–Bengali

tourism parallel corpus.

Typically, there are two approaches that are applied for grouping documents according

to their (text) similarity: TE and semantic textual similarity (STS) (Agirre et al., 2014).

Given two pieces of text – a text (T) and a hypothesis (H), T is said to entail H if H can

be inferred from T (Dagan and Glickman, 2004). The task of TE is to decide whether the

meaning of H can be inferred from the meaning of T. For example, let T be: “Eyeing the

huge market potential, currently led by Google, Yahoo took over search company Overture

Services Inc last year.”, and H: “Yahoo bought Overture”. For this particular T–H pair, T

entails H. STS measures the degree of semantic equivalence between two sentences. This

task can be applied in many areas, such as Information Extraction, Question Answering,

Summarization, and Information Retrieval, for indexing semantically similar phrases or

sentences. STS is related to TE, but differs from TE in that TE is unidirectional while

STS is bidirectional. E.g., the two sentences “Yahoo took over search company Overture

last year.” and “Yahoo acquired Overture. ” are highly semantically similar; however,

while the first sentence entails the second, it is not true the other way round since the

first sentence carries some additional (here temporal) information not contained in the

second sentence.

Calculating textual similarity between T and H can be tackled by various techniques at

lexical, syntactic, and semantic levels (Šarić et al., 2012; Osman et al., 2012). Lexical

techniques are based on word overlap metrics, n-gram matching, or comparing the de-

pendency relations of the two texts. Moreover, some important lexical relationships (e.g.,

synonyms, hypernyms) can also be applied to measure textual similarities. Other meth-

ods, such as syntactic techniques are based on syntactic or dependency trees matching.

In addition to STS, another semantic similarity technique was applied based on relations

comparison (e.g., logical inference and Semantic Role Labeling).

In distributional semantics approaches (Blei et al., 2003a), similarities between T and H

can be computed by measuring their collocation and distributional properties on large
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amounts of data in an unsupervised way (Chaney and Blei, 2012) or by using the Gen-

sim framework (Rehurek and Sojka, 2010), in which semantic relationships of words and

phrases are computed using the word2vec2 (Mikolov et al., 2013a) model. Our approach

uses Gensim3 (Řehůřek and Sojka, 2010) to measure distributional semantic similarity.

Gensim is a free open source Python library designed to automatically extract seman-

tic topics from documents in an efficient way. Gensim is designed to process raw plain

text data (e.g., a corpus). Several popular algorithms such as Latent Semantic Analysis

(LSA) (Deerwester et al., 1990), Latent Dirichlet Allocation (LDA) (Blei et al., 2003b)

and Random Projections are implemented in Gensim. These algorithms discover seman-

tic structure of documents by examining statistical co-occurrence patterns of the words

within a training corpus. LSA and LDA are topic modeling techniques, however LDA

is a fully generative model. LSA is also considered as a statistical, corpus-based text

comparison method that uses a weighted term-document matrix that is created from a

large collection of documents. LSA consists of four steps: (i) preparing a term-document

matrix, (ii) a transformation (e.g., tf-idf, log-entropy), (iii) dimensionality reduction us-

ing Singular Value Decomposition (SVD) and (iv) retrieval using cosine similarity. LDA

assumes that a document is a mixture of latent topics. In contrast to LSA, LDA uses a

probabilistic background instead of SVD. In our work, we use a pre-trained Gensim model

(cf. Section 3.3) for measuring semantic text similarity.

The rest of the chapter is structured as follows: Section 3.2 discusses previous work

relevant to this chapter. Section 3.3 describes the TE system used for our research.

Section 3.5 describes comparable text extraction from comparable corpora and Section 3.6

shows how to identify parallel segments from these comparable segments. Section 3.7 and

Section 3.8 present the dataset used for our experiments and the baseline experimental

setup, respectively. Section 3.9 describes our experiments and presents the evaluation

results. Section 3.10 summarizes the outcomes of this research.

3.2 Related Work

Comparable corpora have recently received attention in many research areas in NLP,

especially in machine translation. In NLP, there are several applications of comparable
2https://code.google.com/p/word2vec/
3https://radimrehurek.com/gensim/
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corpora such as the development of bilingual lexicons or terminology databases (Chiao

and Zweigenbaum, 2002; Fung and Cheung, 2004), in cross-language information re-

search (Grefenstette, 1998; Chen and Nie, 2000) and in MT (Munteanu and Marcu, 2005;

Eisele and Xu, 2010).

Extraction of parallel resources from comparable corpora plays a significant role in MT

research. Many approaches have been proposed so far which focus on extracting word

or phrase translations from comparable corpora (Fung and McKeown, 1997; Fung and

Yee, 1998; Rapp, 1999; Chiao and Zweigenbaum, 2002; Doddington, 2002; Giampiccolo

et al., 2007; Saralegui et al., 2008; Gupta et al., 2013). In a majority of these cases, a

“seed expressions” list is required to build the context vectors of the words in both the

languages. A bilingual dictionary can be used as a “seed word expressions” list. However,

most of the strategies follow a standard method such as finding the target words that

have the most similar distributions with a given source word based on the context vector

similarity measure. Gamallo Otero (2007) prepared a bilingual list of words by using

the bilingual correlation method to form a parallel corpus. Instead of a bilingual list, a

multilingual thesaurus could also be used for this purpose (Doddington, 2002). Our work

shows that comparable corpora containing Wikipedia articles could prove to be beneficial

for existing MT systems.

The main objective of the work presented in this chapter is to investigate whether TE

can be beneficial to extract parallel text fragments from comparable corpora and whether

these parallel text fragments can improve MT system performance. To the best of our

knowledge the work presented in this chapter is the first work on the use of textual entail-

ment for parallel segment extraction from comparable corpora. To achieve our goal, we

developed a TE system TESim System (cf. Section 3.3) which clusters a large comparable

document set into smaller groups that accelerate the rest of the processes in the pipeline to

extract parallel segments from comparable corpora. Instead of comparing the entire set,

the comparison between source–target alignment (cf. Section 3.5.3) and template-based

phrase extraction (cf. Section 3.6.1) are performed within the clusters.
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3.3 The TESim System

Our Textual Similarity (TESim) system architecture is shown in Figure 3.3. A detailed

description can be found in Pakray (2013). The TESim system contains Semantic Tex-

tual Similarity (STS) and TE modules. STS measures the degree of semantic equivalence

between two sentences. Our STS model follows monolingual STS approaches. Recently

distributed representations of words such as word2vec (Mikolov et al., 2013a) have per-

formed particularly well in STS tasks. word2vec provides state-of-the-art performance in

several types of similarity and analogy tasks (Mikolov et al., 2013b; Pennington et al.,

2014) and also delivers significant efficiency in training. Word2vec is a computationally

efficient predictive model for learning word embeddings from raw text. The word2vec

model can be used in 2 ways – to predict a target word given the context (continuous bag

of words (CBOW)), or to predict the target context given a word (skip-gram) in an un-

supervised way. The CBOW model takes the average of the vectors of the 1-hot encoded

vectors of the input context words as shown in Figure 3.2a. Our STS module follows

the skip-gram model. The skip-gram model (cf. Figure 3.2b) consists of an input layer

of 1-hot encoded vector with V -dimensions and an output layer with C × V -dimensional

one-hot encoded word vectors where C is the number of total words predicted by the

input word. A weight matrix of V × N -dimension is multiplied with the input vector

producing an N -dimensional hidden layer. Each output word is obtained by multiplying

the hidden layer and the weight matrix associated with the predicted words.

The word2vec based STS model was trained on the Google News corpus and Wikipedia

corpus. The STS module was pre-trained with word and phrase vectors available as part of

the Google News dataset (Mikolov et al., 2013a) which consists of about 100 billion words.

The STS module used a latent semantic analysis (LSA) word-vector mappings model

which contains 300-dimensional vectors for three million words and phrases. Additionally,

we built word and phrase vectors from Wikipedia articles for both Bengali and English

language data. We generated 300-dimensional word and phrase vectors from Wikipedia

articles using the word2vec tool. To build word2vec for learning high-quality word vectors

we use Gensim4 – a Python framework for vector space modeling. Gensim provides an

efficient implementation of the word2vec model5. The word2vec model computes cosine

4https://radimrehurek.com/gensim/
5https://radimrehurek.com/gensim/models/word2vec.html
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(a) Continuous bag-of-words model. (b) Skip-gram model.

Figure 3.2: Word2vec models: The vocabulary for learning word vectors consists of
V -dim words and N is the dimension of the hidden layer. The input to hidden layer con-
nections are represented by matrix W ∈ RV×N , where each row represents a vocabulary
word. Similarly, hidden layer to output layer connections are described by matrix W′ ∈
RN×V . C is the number of words in the context. These figures are borrowed from the
tutorials in Chris McCormick’ Blog (http://mccormickml.com/tutorials/) and these

models are originally reported in Mikolov et al. (2010)

.

similarity between two vectors. These vectors represent two candidate texts T and H. We

evaluated our STS module using SemEval6 data.

An example for vector representations “in action” could be as follows: vector (“King”)

− vector (“Man”) + vector (“Woman”) results in a vector that is closest to the vector

representation of the word “Queen.”

Our TE recognition system consists of various components: a lexical component, a syn-

tactic component, a semantic component, a Support Vector Machine (SVM) module, and

an Entailment Decision module (cf. Section 3.4). The system is a combination of these

different components working on various lexical knowledge sources (WordNet, Wikipedia),

lexical distance, syntactic similarity, and semantic similarity. The system computes the

entailment decision using the outcome from each of these components. Our TE system is

trained on Recognition Textual Entailment (RTE)7 datasets.

6https://en.wikipedia.org/wiki/SemEval
7http://pascallin.ecs.soton.ac.uk/Challenges/RTE/
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Algorithm 1: Calculation of the score
Input: Text Pairs (t1, t2)

Output: Final Score

CS ← Calculate STS Score of (t1, t2) by using Cosine Similarity;

if CS > 0.7 then

Final Score ← Calculate TE Score of (t1, t2) using TE system;

else

Final Score ← CS score of (t1, t2);

Initially, TESim takes text pairs (t1, t2) and calculates cosine similarity between the

word2vec (vector) representation between two texts. We set a threshold on the cosine

similarity value (0.7), and if the similarity measure is greater than the threshold value, a

similarity score between t1 and t2 is generated by the TE system (cf. Algorithm 1).

Figure 3.3: System Architecture

The reason behind the use of both STS and TE techniques for TESim is that, sometimes

STS provides high similarity scores between T and H, even when they are not similar or

entailed. Consider the case of Id 1, in Table 3.1. The STS module cannot detect the

negation and provides a semantic similarity score of 1.0. However, the entailment score

is 0.22776. Therefore, the system can easily conclude that Text 1 and Text 2 (cf. Id 1)

are not similar texts. This technique helps to remove negation sentences from the cluster
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Id Text 1 (H) Text 2 (T)
Semantic

similarity

score

Entailment

1 Clinton’s new book is

not a big seller here.

Clinton’s book is a big

seller.

1.0 0.22776

2 Vodafone’s share of

net new subscribers in

Japan has dwindled in

recent months.

There have been many

new subscribers to

Vodafone in Japan in

the past few months.

0.8059 0.2944

Table 3.1: Examples of text pairs and entailment results

(cf. Section 3.5.2) which means negative sentences will form a different cluster. This can

help MT to better translate negative sentences.

3.4 A Two-way TE System

A two-way automatic TE recognition system is integrated into the TESim system (see

Section 3.3). The TE system uses a support vector machine (SVM) which is trained on

lexical, syntactic and semantic features between T and H. We use a total of thirty features

to train our TE model. The system architecture is shown in Figure 3.4. The entailment

engine contains four modules: lexical, syntactic, reVerb and semantic. Thirty features

are extracted from T and H after preprocessing (the lexical module produces eighteen

features, the syntactic module provides ten features, one feature from reVerb and one

feature from the semantic module). We used TE features described in (Pakray, 2013).

The work is based on the joint research publication (Pakray et al., 2010a,b).

3.4.1 Lexical Module

This module performs six different types of lexical comparison and twelve types of lexical

similarity comparison between T and H. The six lexical comparisons are:
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Figure 3.4: Two way TE architecture

• Unigram match: This features simply measures the fraction of unigrams in H that

match with unigrams in T. While matching, we also consider WordNet8 synonyms

as a match.

feature_weightuni =
count(words ∈ T ∩H)

count(words ∈ H)

• Bigram match: Bigrams are extracted from T and H. This feature measures the

fraction of bigrams in H that match with bigrams in T. Like a unigram matching,

we also use WordNet synonym matches for individual words in bigrams.

feature_weightbi =
count(bigrams ∈ T ∩H)

count(bigrams ∈ H)

• Longest common sub-sequence (LCS): LCS(T,H) measures the similarity be-

tween T and H in terms of the length of the LCS of T and H. Like in case of unigrams

and bigrams, we consider WordNet synonyms as matches.

• skip-gram: A skip-gram9 is defined as any combination of n words in the or-

der as they appear in a sentence, allowing arbitrary gaps. We considered only

1_skip_bigrams i.e., one word gap between two words in a sentence. The skip-

gram based feature weight is calculated as

8https://wordnet.princeton.edu/
9These are surface skip-grams, not skip-grams as in the word2vec model.
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feature_weightskip =
count(skip_gram ∈ T ∩H)

n

where skip_gram(T,H) refers to the number of common 1_skip_bigrams (pair of

words in sentence order with one word gap) found in T and H and n is the number

of 1_skip_bigrams in the hypothesis H. Feature weights are calculated on surface

form only.

• Stemming: Each word in a T–H pair is stemmed and the feature value is calculated

as the fraction of stems in H that match with stems in T.

feature_weightstem =
count(stemmed_unigrams ∈ T ∩H)

count_unigrams(H)

• Named entity (NE) matching10:

feature_weightNE =
count(NE ∈ T ∩H)

count(NE ∈ H)

Twelve types of lexical similarity comparisons between T and H are measured using Vector

Space Measures (Euclidean distance, Block distance, Minkowsky distance, Cosine similar-

ity and Matching Coefficient), Set-based Similarities (Dice, Jaccard, Overlap, Harmonic)

and Edit Distance Measures (Levenshtein distance, Smith-Waterman distance, Jaro dis-

tance).

3.4.2 The Syntactic Module

The syntactic module compares the dependency relations between both H and T. The

system extracts syntactic structures from the T–H pairs using a Combinatory Catego-

rial Grammar (CCG) Parser11 (Steedman, 2000; Clark et al., 2002) and the Stanford

Parser12 (de Marneffe and Manning, 2008) and compares the corresponding structures.

Two different systems have been implemented: one system is based on the Stanford Parser

output while the other operates on the CCG Parser. The system accepts pairs of text

snippets (T and H) as input and produces a score for every comparison. Some of the

important comparisons based on the dependency structures between T and H are:
10For NE detection we used LT-TTT2 Toolkit: http://www.ltg.ed.ac.uk/software/lt-ttt2
11http://svn.ask.it.usyd.edu.au/trac/candc/
12http://nlp.stanford.edu/software/lex-parser.shtml
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1. Subject-Verb Comparison: Subject and verb are identified from the both H and

T by analyzing their word dependency relations. The feature weights are calculated

by comparing the subject and verb between T and H.

2. WordNet Based Subject-Verb Comparison: In this case, the feature weights

are calculated by considering wordnet synonyms during the comparison between T

and H.

3. Object-Verb Comparison: Objects and verbs that are identified through dobj

dependency relation. Feature weights are calculated similarity to the feature weight

described in 1.

4. WordNet Based Object-Verb Comparison: Feature weights are calculated

similar to the feature weight described in 2.

Other syntactic similarity features include cross subject-object comparison, number com-

parison, noun comparison, prepositional phrase comparison, determiner comparison and

comparisons for other word dependency relations.

3.4.3 reVerb Module

ReVerb13 (Fader et al., 2011) is a tool which provides binary relationships of an English

sentence. The extraction format is shown in Example 3.1.

Example 3.1. Extraction Format: A person is playing a guitar

reVerb Extracts: arg1= {A person}; rel = {is playing}; arg2 = {a guitar};

The system parses T and H using the reverb tool. We calculate scores by comparing the

relations between T and H.

3.4.4 Semantic Module

The semantic module is based on the Universal Networking Language (UNL) (Uchida

et al., 2012). UNL can express information or knowledge in semantic network form with

hyper-nodes. UNL is like a natural language for computers to represent and process
13http://reverb.cs.washington.edu/
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human knowledge. There are two modules in the UNL system: En-converter and De-

converter. The process of representing natural language sentences in UNL graphs is

called En-converting and the process of generating natural language sentences from UNL

graphs is called De-converting. An En-converter is a language independent parser, which

provides a framework for morphological, syntactic, and semantic analysis synchronously.

The En-Converter is based on a word dictionary and a set of en-conversion grammar rules.

It analyses sentences according to the en-conversion rules. A De-converter is a language

independent generator, which provides a framework for syntactic and morphological gen-

eration synchronously. An example UNL relation for a sentence “Pfizer is accused of

murdering 11 children” is shown in Example 3.2.

Example 3.2. Pfizer is accused of murdering 11 children

{org:en} Pfizer is accused of murdering 11 children{/org}

{unl}

obj(accuse(icl>do,equ>charge,cob>abstract_thing,agt>person,obj>person)

.@entry .@present,pfizer.@topic)

qua:01(child(icl>juvenile>thing).@pl,11)

obj:01(murder(icl>kill>do,agt>thing,obj>living_thing)

.@entry,child(icl>juvenile >thing).@pl)

cob(accuse(icl>do,equ>charge,cob>abstract_thing,agt>person,obj>person)

.@entr y.@present,:01)

{/unl}

3.4.5 Support Vector Machines (SVM)

SVMs14 (Vapnik, 1995; Cortes and Vapnik, 1995) are supervised learning models used for

classification and regression analysis. The basic SVM takes a set of training examples

(e.g., feature vectors with binary values) as input data and predicts, for each given input,

the possible class from a given set of classes using a classification function. We used the

RTE-1, RTE-2, RTE-3 and RTE-4 datasets to build the SVM based TE models. Each of

these RTE datasets consists of manually annotated (‘YES’ and ‘NO’ TE decision) data

for every T–H pairs. The released version of RTE datasets contains development and test

14http://en.wikipedia.org/wiki/Support_vector_machine
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set data. Therefore, to make a single model trained on all available data, we combined all

these RTE development as well as test set data together to prepare training data for our

SVM based TE system. Table 3.2 shows the statistics of the RTE datasets and overall

5567 T-H pairs were used as the training data for the SVM model.

RTE data
Entailment

decision
T-H Pairs Overall

RTE-1

Development Set 1
Yes 143

287
No 144

Development Set 2
Yes 140

280
No 140

Test Set
Yes 400

800
No 400

RTE-2

Development Set
Yes 400

800
No 400

Test Set
Yes 400

800
No 400

RTE-3

Development Set
Yes 412

800
No 388

Test Set
Yes 410

800
No 390

RTE-4 Test Set
Yes 500

1000
No 500

Total 5567

Table 3.2: RTE-data statistics used for training our SVM based TE system

The SVM classifier deals with the two-way classification (e.g., ‘Yes’ or ‘No’ i.e., entailment

or not) task. We used LIBSVM15 (Chang and Lin, 2011) – a library for SVMs for the

classifier to learn from these data sets. As shown in Table 3.2, the total size of the training

data is small, therefore we set default hyper-parameter settings for these classification task.

15http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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3.5 Comparable Text Extraction from Comparable Corpora

3.5.1 Comparable Corpora Collection

Wikipedia is a huge collection of articles on large varieties of topics in may domains

in a wide range of languages. Wikipedia links articles on the same topic in different

languages using the “interwiki” linking facility. Thus, document alignment for multi-

lingual documents on similar topics is already provided in Wikipedia.

To collect comparable corpora for English–Bengali document pairs, a crawler was de-

signed16. The crawler operates on an initial “seed keyword list”. In our work we focus on

the tourism domain. The “seed keyword list” is mainly a named entity (NE) list, collected

from the English tourism domain corpus using the Stanford NE Recognizer17. The crawler

first visits each English page of Wikipedia, saves the raw text (in HTML format), and

then follows the cross-lingual link for each English page and collects the corresponding

Bengali page. We keep only the textual information and all the other details are discarded.

We extract English and Bengali sentences from each document; however, there is not a

one-to-one correspondence between the English and Bengali sentences. Moreover, often

Bengali documents contain limited information compared to the corresponding English

documents.

3.5.2 Monolingual Clustering

The TESim system compares every sentence of a document with every other sentence

in the same document and provides an entailment score for each sentence pair. Thus,

n× (n−1) comparisons are made for a document containing n sentences. The TE system

operates on the monolingual data. A cut-off (above 0.7) entailment score was considered

for grouping entailed sentences into the same cluster. The TE system divides the source

side of the complete set of comparable documents into a smaller sets of clusters. Each

cluster contains at least two sentences. Since the TESim system operates on monolingual

English data, only the English side of the comparable corpora contains sets of clusters. To

extract parallel fragments from comparable data, we assign a comparable set of Bengali

16The crawl of Wikipedia was made in November, 2013.
17http://nlp.stanford.edu/software/CRF-NER.shtml
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sentences (the Bengali cluster) corresponding to each English cluster which is detailed in

Section 3.5.3.

3.5.3 Cross-lingual Linked Clusters

To establish cross-lingual linked clusters between the English and Bengali comparable

documents, we use a probabilistic bilingual English-Bengali lexicon (lexe2f ). The lexicon

was prepared by using a statistical word alignment tool GIZA++18 (Och and Ney, 2003a;

Brown et al., 1993). We established the word alignments on a bilingual parallel English–

Bengali corpus (see Section 3.7) in the tourism domain19 with GIZA++ which produces

a probabilistic bilingual word alignment list. We retain only five most probable target

words with respect to the source words in the bilingual lexicon. Initially, we consider

each English cluster as a bag-of-words (BOW) and translate each word in BOW using

lexe2f . The translated BOW clusters are then passed as a query to the indexed Bengali

comparable documents and retrieve a set of top ten ranked relevant Bengali sentences.

Each Bengali sentence for each document is indexed using Lucene20. We use the OR

Boolean retrieval model21 to retrieve related sentences from the comparable document.

In this way, we established cross-lingual linked clusters of English–Bengali comparable

documents.

3.6 Alignment of Parallel Text Fragments

We then extract bilingual phrases from comparable cross-linked clusters using a template

based phrase extraction method (cf. Section 3.6.1). Although the template based ap-

proach works well in the case of parallel corpora, it can also be applied to comparable

corpora. In this case, the template based method can only align atomic22 translations (cf.
18http://code.google.com/p/giza-pp
19The corpus was collected from the consortia-mode project “Development of English to Indian Lan-

guage Machine Translation (EILMT) System”, the EILMT project is funded by the Department of Elec-
tronics and Information Technology (DEITY), Ministry of Communications and Information Technology
(MCIT), Government of India.

20https://lucene.apache.org/
21The details regarding this method can be found in http://nlp.stanford.edu/IR-book/pdf/01bool.

pdf
22 An atomic translation template Tsrc and Ttgt between languages Lsrc and Ltgt means that the

strings Tsrc and Ttgt correspond to each other. The variables in translation templates Tsrc are X1...Xn,
and the variables in translation templates Ttgt are Y1...Yn, where n > 1 i.e., Tsrc ↔ Ttgt if X1 ↔
Y1 and... and Xn ↔ Yn.
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Section 3.6.1). Other phrases such as corresponding match sequences (CMS) extracted by

the template-based method are aligned by a baseline PB-SMT system (see Section 4.8.3)

trained on our tourism domain parallel corpus. This is the same machine translation

system whose performance we want to improve. We also performed the same task in the

other direction, i.e., Bengali–English.

For each of the cross-linked clusters, each translated source phrase (CMSsrc) (trans-

lated from English–Bengali or Bengali–English) is compared with all the target phrases

(CMStgt) extracted from the corresponding target cluster.

3.6.1 Template-based Phrase Extraction

We extract phrase pairs based on the EBMT work described in (Cicekli and Güvenir,

2001). They automatically extract translation templates from sentence-aligned bilingual

text by observing the similarities and differences between two example pairs. Their ap-

proach produces two types of translation templates, generalized and atomic translation

templates. A generalized translation template replaces similar CMS or differing sequences

(Corresponding Difference Pair (CDP)) with variables while an atomic translation tem-

plate does not contain any variables. We extract the atomic translation templates from

the cross-linked clusters extracted from our comparable documents and add them as ad-

ditional phrase pairs to our PB-SMT system. Consider the following two English–Bengali

translation pairs from the tourism domain data:

(1) a. visitors feel happiness: darsakera ananda onuvab kore

b. visitors feel restlessness: darsakera klanti onuvab kore

These two examples share the word sequence “visitors feel” (CMS) and differ in the word

sequence “happiness” and “restlessness” (CDS) on the source side. Similarly, on the

target side, the differing fragments are “ananda” and “klanti”. Based on these differing

fragments, we extract the following sub-sentential phrase pairs as in (2).

(2) a. happiness: ananda

b. restlessness: klanti

We apply this process recursively to extract sub-sentential phrase pairs when more than

one differing sequence is present between a pair of sentences by looking for further evidence
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within the source–target language cluster pairs. The details of the algorithm can be found

in (Cicekli and Guvenir, 2001).

This particular approach has a cubic runtime complexity with respect to the number of

sentences in the bilingual corpus. It takes a significant amount of time to extract phrase

pairs even from a small corpus. Therefore, we used heuristics to reduce the processing

time. We grouped the entire comparable corpus into a number of cross-linked clusters

based on the technique described in Sections 3.5.2 and 3.5.3 so that similar or entailed

sentences belong to the same cluster. We extract atomic translation pairs from each

of these clusters. Since the parallel atomic translations are extracted from comparable

sentences, they are noisy. To remove noisy atomic translations, we need to validate

whether these phrase translations are correct or not. These atomic translations as well

as the alignment of CMS which are also extracted from the comparable sentences are

validated by using English–Bengali Machine translation. An English–Bengali baseline PB-

SMT system was developed which was trained on our tourism domain parallel corpus. We

translated the English CMS into Bengali. Each translated source CMS (translated from

English to Bengali) is compared with the corresponding target CMS (CMStgt) extracted

from the comparable sentences of the corresponding target-side cross-link cluster. When

a translated CMS is considered, we compare each of its tokens to each token in the

CMStgt. We performed the comparison using the Minimum Edit Distance Ratio and

Longest Common Subsequence Ratio methods.

3.7 Dataset

In our experiment, we use an English-Bengali parallel corpus containing 23,492 parallel

sentences comprising of total 488,026 word tokens from the travel and tourism domain23.

We randomly selected 500 sentences each for the development set and the test set from

the initial parallel corpus. The rest of the sentences were used as the training corpus.

The training corpus was filtered with a maximum allowable sentence length of 100 words

and sentence length ratio of 1:2 (either way).

23The corpus was collected from the “Development of English to Indian Languages Machine Translation
(EILMT) System” project funded by the Department of Electronics and Information Technology (DEITY),
Ministry of Communications and Information Technology (MCIT), Government of India.

57



Chapter 3. Mining Parallel Corpus

3.8 System Setup

The effectiveness of the parallel phrase pairs extracted from the comparable corpus was

tested by using the standard log-linear PB-SMT model as our baseline system. For build-

ing the baseline PB-SMT system, we used the Moses toolkit24 with a maximum phrase

length of seven and a 5-gram language model. The other experimental settings were the

GIZA++ implementation of IBM word alignment model 4 with grow-diagonal-final-and

heuristics for performing word alignment and phrase-extraction (Koehn et al., 2003). The

reordering model was msd-bidirectional (i.e., using both forward and backward models)

and conditioned on both source and target languages. The reordering model was built

by calculating the probabilities of the phrase pairs associated with the given orientations

monotone (m), swap (s), and discontinuous (d). We used Minimum Error Rate Train-

ing (MERT) (Och, 2003). We also set up a hierarchical (Galley and Manning, 2008)

reordering model for our experiment on a held-out development set of 500 sentences, and

the target language model was built with Kneser-Ney smoothing (Kneser and Ney, 1995)

trained with SRILM (Stolcke, 2002) using the Bengali side of the bilingual tourism data.

3.9 Experiments and Results

Our experiments were carried out in two directions. First, we improved the baseline model

using the aligned parallel fragments extracted from our comparable corpora.

Total (English) Total (Bengali)

Comparable corpora 579,037 Sentences 169,978 Sentences

Extracted comparable sentence pairs 4,723 Sentences 4,723 Sentences

Aligned parallel phrases 6,937 Phrases 6,937 Phrases

Table 3.3: Statistics of the Comparable Corpus

The collected comparable corpus consisted of 6,825 English–Bengali document pairs. It

is evident from Table 3.3 that English documents are more informative than the Ben-

gali documents, as the sentences in English documents outnumber the sentences in the

Bengali documents. The TESim system was able to establish cross-lingual entailment

for 4,723 English–Bengali comparable sentence pairs by means of cross-lingual links using
24http://statmt.org/moses/ (Koehn et al., 2007)
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GIZA++ (cf. Section 3.5.3). When the Bengali phrases were input to the Bengali–English

translation module, some of them could not be translated into English and some of them

could be translated only partially. Therefore, some of the tokens were translated while

some were not. Untranslated and partially translated phrases were discarded. Manual

inspection of the parallel list revealed that most of the aligned texts were of good quality.

The MT evaluation results are reported in Table 3.4. The evaluation was carried out using

established automatic MT evaluation metrics: BLEU (Papineni et al., 2002), NIST (Dod-

dington, 2002), METEOR (Lavie and Agarwal, 2007), and TER (Snover et al., 2006a).

Exp. Experiments BLEU NIST METEOR TER

1 Baseline (B1) with lexical reordering 10.92 4.16 0.3073 75.34

2 Baseline (B2) with hierarchical reordering 11.04 4.20 0.3101 75.01

3 B1 + Extracted Parallel Phrases 13.98 4.45 0.3401 72.03

4 B2 + Extracted Parallel Phrases 14.12 4.49 0.3492 71.53

Table 3.4: Evaluation results; all scores are statistically significant over baseline sys-
tems.

Table 3.4 shows the performance of the PB-SMT systems built on the initial parallel

training corpus and the larger training corpus containing the parallel phrases extracted

from the comparable corpora. There are two different baseline settings based on the

reordering models which have been developed: the baseline with lexical reordering model

(B1, see Experiment 1 in Table 3.4) and with the hierarchical reordering model (B2, see

Experiment 2). Treating the parallel phrases extracted from the comparable corpora as

additional training material (cf. Experiment 3) results in a significant improvement in

terms of BLEU (3.06 points, 28.02% relative) over the baseline (B1) system. Similar

improvements are also obtained for the other metrics. It is to be noted that, when

we performed a similar experiment (i.e., Experiment 4 is like Experiment 3) with the

hierarchical reordering model, the data augmented system provided further improvement.

This experiment reduced TER scores considerably compared to the other experiment.

Reducing TER score signifies that the output of the MT system would be more fluent.

In terms of BLEU, our system also performs better (3.2 points, 29.30% relative) over the

baseline system.
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Treating the parallel phrases extracted from the comparable corpora as additional training

material results in significant improvement in terms of BLEU (3.06 points, 32.97% relative)

over the baseline system. Similar improvements are also obtained for the other metrics.

3.10 Conclusions and Future Work

We presented a methodology that uses a textual entailment technique for extraction of

parallel phrases from comparable corpora. For low-resource language pairs, this approach

can be useful to improve the quality of MT systems. The overall low evaluation scores

(BLEU in the range of 10.92–14.12) obtained in our experiments can be attributed to the

fact that Bengali is a morphologically rich language and has a relatively free word order;

besides, we had only one set of reference translations for the test set. Manual inspection

of a subset of the output generated by our system reveals that the additional training

examples extracted from comparable corpora effectively resulted in better lexical choices

and fewer out-of-vocabulary cases in comparison with the baseline PB-SMT output. One

of the outcomes of this experiment is the improvement over the baseline PB-SMT for a low-

resource language pair after adding parallel phrases extracted from comparable corpora,

which answers RQ1 i.e., improving MT for low resource languages. Another interesting

outcome of this experiment is the usability of the TE method within comparable corpora

research which is a novel contribution (Pal et al., 2014b, 2015b).

In future, we will explore parallel phrase extraction techniques from comparable corpora

by combining a TE system with hybrid word alignments or hybrid MT methods. We also

plan to investigate whether this approach can bring about improvements of comparable

magnitude settings where larger parallel training data is available.
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Hybrid Machine Translation

This chapter describes different strategies that we applied to build an efficient hybrid

pipeline for state-of-the-art statistical machine translation (SMT) and forest to string

based SMT. This chapter mainly addresses RQ2: How can SMT better profit from the

existing training data? and RQ3: What could improved hybrid implementations of MT

be like? by focusing on the following improvements:

1. Pre-ordering

2. Effective preprocessing and use of explicitly aligned bilingual terminology. e.g.,

named entities (NEs) and multiword expressions (MWEs).

3. Hybrid word alignment

4. A simple but effective hybridization technique to combine multiple knowledge sources

Reordering poses a big challenge in SMT between distant language pairs. This chap-

ter presents how reordering between distant language pairs can be handled efficiently in

phrase-based statistical machine translation. We approach the problem of reordering be-

tween distant languages with prior reordering of the source text at chunk level to simulate

the target language ordering. Prior reordering of source chunks is performed by following

the target language word order suggested by word alignment. The test set is reordered

using monolingual MT trained on the source and the reordered source. Our approach

of prior reordering of the source chunks is compared with pre-ordering of source words

based on word alignments and the traditional approach of prior source reordering based
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on language-pair specific reordering rules. The effects of these reordering approaches is

studied on an English–Bengali translation task, a language pair with different word or-

ders. From the experimental results we find that word alignment based reordering of the

source chunks is more effective than the other reordering approaches, and that it produces

statistically significant improvements over the baseline system on BLEU. On manual in-

spection we find that this reordering approach results in significant improvements in terms

of word alignments.

Our hybrid system improves over the baseline SMT performance by incorporating addi-

tional knowledge sources such as extracted bilingual NEs, MWEs, translation memories

and phrase pairs induced from example-based methods. We report the performance of hy-

brid systems in terms of the results of a confusion network-based system combination that

combines the best performance of each individual system within a multi-engine pipeline.

Core parts of the research presented in this chapter have been published in (Pal et al.,

2014c,a, 2015a, 2016a).

The research presented and the research questions addressed in this Chapter are schemat-

ically represented in Figure 4.1.

4.1 Introduction

Recently, corpus-based MT has delivered increasingly better translations. Different corpus-

based MT approaches have been proposed in the last few decades such as Translation

Memory (TM) (Kay, 1997), Example-based Machine Translation (EBMT) (Carl and Way,

2003) and Statistical Machine Translation (SMT) (Koehn, 2010). Out of these, in terms

of large-scale evaluations, SMT has arguably been (until recently) the most successful and

efficient MT paradigm1. The quality of SMT mainly relies on good quality word align-

ment as well as good phrase pair estimation, both of which can be achieved by using large

amounts of sentence-aligned parallel corpora. However, SMT for low-resource language

pairs usually produces inferior quality translation.

One of the dominating approaches in SMT is Phrase-Based SMT (PB-SMT) in which the

best translation e = e1 . . . ei . . . eI for a source sentence f = f1 . . . .fj . . . .fJ (containing I

1WMT 2016 has been the first large scale shared task in which NMT outperformed the SMT based
approaches.
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Figure 4.1: Schematic design of the research and the research questions presented in
this Chapter.
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target and J source phrases respectively) is selected to maximize Equation 4.1

argmaxI,eI1
P (eI1|fJ

1 ) = argmaxI,eI1
P (fJ

1 |eI1)× P (eI1) (4.1)

where P (fJ
1 |eI1) and P (eI1) denote respectively the translation model and the target lan-

guage model (Brown et al., 1993). To achieve high quality translation, PB-SMT must

ensure two major factors: good quality word alignment and good coverage of the phrase

translation candidates in the phrase table. In state-of-the-art PB-SMT systems, these two

components are estimated from large sentence aligned parallel corpora. To achieve bet-

ter estimation, data pre-processing plays a crucial part in any data-driven/corpus-based

approach. Effective pre-processing of data in the form of explicit alignment of bilingual

terminology (e.g. MWEs and NEs) can provide more productive and functional MT sys-

tems. MWEs and NEs offer challenges within a language. The proper way of handling

MWEs in the context of estimating phrase translation probabilities, phrase extraction

methodologies and even the generation phase of SMT, is extremely challenging because

of the idiosyncratic nature of MWEs (Sag et al., 2002). Examples of MWEs include com-

pound nouns (“building complex”), phrasal prepositions (“according to”), conjunctions

(“as well as”), idioms (“kick the bucket” means “to die”), phrasal verbs (“find out”), verb-

object combinations involving light or support verb constructions (“make a mistake”), etc.

Named entities on the other hand often consist of more than one word; therefore, they

can also be considered as a specific type of MWEs such as noun compounds (Jackendoff,

1997).

Traditional approaches to word alignment following IBM Models (Brown et al., 1993) do

not work well with MWEs because the structure and meaning of MWEs can not always be

derived from their component words when they appear independently. Most of the South

Asian languages, especially, Indian languages like Bengali and Hindi, are morphologically

rich. To express predicates these languages often use their morphological inventories in

terms of complex predicates. In Bengali, complex predicate (CPs) patterns are made up

of verb + verb (compound verbs: e.g., বলেত লাগেলা (bolte laglo) “started saying”, মের

ফলা (mere phela) “kill”) or noun/adjective/adverb + verb (conjunct verbs: e.g., ভরসা

করা (bharsha kara) “to depend”, ঝকঝক করা (jhakjhak kara) “to glow”). The first verb in

a compound verb is represented either in conjunctive participial form “-এ (-e)” or the

infinitive form “- ত (-te)” at the surface level which is called a Full Verb. The other
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verb bears inflection for Tense, Aspect and Person, and is referred to as the Light Verb.

On the other hand, each Bengali conjunct verb consists of an adjective, adverb or noun

followed by a light verb. These light verbs (LV) are polysemous, semantically bleached

and confined to a limited set of verbs (Paul, 2010; Das et al., 2010). Complex predicates

are also considered as MWEs since the conventional meaning of light verbs in complex

predicates is usually absent (Baldwin and Kim, 2010). Traditional PB-SMT systems

derive phrase pairs directly from the training corpus purely based on statistical methods.

Thus, PB-SMT phrase pairs may not follow the MWE constituents of a sentence; they are

just n-grams. This we expect is one of the reasons why PB-SMT often produces wrong

word translations for MWEs. Our approach is to restrict the phrase extraction module

to extract phrase pairs that respect MWE boundaries. This approach ensures that the

extracted phrase pairs are not just n-grams; they also contain MWE knowledge to some

extent.

Ideally, NEs – particularly multiword NEs – on the source and the target sides of a

parallel corpus should be aligned and translated as a whole. This is also true for MWEs

and complex predicates in general (Pal et al., 2011). However, in state-of-the-art PB-SMT

systems, the constituents of such MWEs are often split and aligned as part of consecutive

phrases since PB-SMT (or any other approaches to SMT) does not generally treat MWEs

as special tokens. This motivated us to consider NEs for special treatment in this work

by converting them into single tokens to make sure that PB-SMT also treats them as

a whole. There has been some work to handle MWEs in PB-SMT (Pal et al., 2011,

2013b) using a single tokenization technique and they also proposed various alignment

methods for MWEs. We follow these methods for a resource-rich language pair (English–

German) and some resource-poor language pairs (Indian languages, English–Hindi, etc.).

Additionally, and orthogonally, we also investigate how EBMT phrases can provide further

improvement in SMT. However, in this work, instead of only using one-to-one alignment

of MWEs and NEs, we also apply a pseudo aligned parallel corpus2 containing MWEs

and NEs.

The first objective of the work described in this chapter is to investigate how single

tokenization, prior alignment (pseudo alignment) of NEs and MWEs, and the use of these

parallel terminologies as supplementary training data affect the overall MT quality.

2These works have been published as shared task papers in WMT 2014 (Tan and Pal, 2014), 2015
(Pal et al., 2015a) and ICON 2014 (Pal et al., 2014c).
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The second objective is to investigate whether a hybrid word alignment model combining

both unsupervised and semi-supervised techniques can enhance the quality of translation.

Our hybrid word alignment combines several word alignment models including explicit

alignment of MWEs NEs, and EBMT phrases.

EBMT phrases tend to be more linguistically motivated than SMT phrases which essen-

tially operate on n-grams. The knowledge extraction as well as the representation process,

in both EBMT and SMT, use very different techniques in order to extract resources. In

our research, we extract EBMT phrases following the work of Cicekli and Güvenir (2001).

High frequency EBMT phrases obtained from the training corpus are added to our train-

ing corpus as additional training material. Prior (EBMT) phrase alignment helps the

statistical aligner operating on the extended training material indirectly in the sense that

more evidence is provided to the statistical aligner about highly frequent EBMT phrases.

It also narrows down the focus of the alignment at the beginning of IBMModel 1’s initially

uniform probability estimation. The EBMT phrases facilitate the IBM models to make

the alignments more reliable and definite and they also help the IBM models converge

faster during the training phrase of SMT. Thus, prior (EBMT) phrase alignment indi-

rectly improves the performance of the statistical word aligner, which in turn results in

the extraction of well aligned source–target phrases during the phrase extraction process.

Reduction in noisy alignments also reduces the size of the phrase table which is prepared

during the SMT training pipeline. Moreover, a smaller translation model also results in

faster translation during decoding time by reducing the search space. This motivated

us to improve the quality of state-of-the-art word alignment methods by applying a hy-

brid methodology. We present an improvement of word alignment quality by combining

three statistical word alignment tables: (i) GIZA++ alignment (Och and Ney, 2003a),

(ii) SymGiza++ alignment (Junczys-Dowmunt and Szał, 2012) and (iii) Berkeley align-

ment (Liang et al., 2006). Our third objective is to assess the effectiveness of the hybrid

word alignment model and to see whether it can enhance the overall translation quality.

Each data-driven approach (in this case, EBMT and SMT) has its own method of ac-

quiring and using translation knowledge from the parallel bilingual translation examples,

along with its own advantages and disadvantages. The SMT phrases operate on n–grams,

rather than syntactic phrases as in EBMT. Many researchers have investigated combining

these different MT approaches (hybrid MT) to achieve better performance (Smith and
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Clark, 2009; Dandapat et al., 2010, 2011). Our hybrid MT system described below is one

such approach. Additionally, we incorporate aligned MWEs and NEs as additional train-

ing material. The end process of the hybrid pipeline is the combination of different SMT

based engines developed in different component settings. We investigate the performance

of our approach with

1. Resource poor languages (English–Hindi, Bengali–Hindi, Marathi–Hindi, Tamil–

Hindi, and Telugu–Hindi) in two different domains: tourism and health

2. Resource-rich languages (English–German)

Reordering is the one of the most difficult problems in SMT; it presents itself differently for

different language-pairs. For some language pairs (English–French, Chinese–English, etc.)

only local movements are sufficient for translation, while some language-pairs have signif-

icant syntactic divergences. Particularly, SMT between SVO–SOV (e.g., English–Hindi,

English–Bengali etc., here S, V and O stand for subject, verb, and object, respectively)

or SVO–VSO (e.g., English–Arabic) language pairs suffer from long-distance reordering

phenomena. Most of the Indian languages are relatively free phrase-order languages; they

are generally verb-final, i.e., verb phrases are positioned at the end of the sentence and

local movement of words within phrases also takes place (i.e., SOV). In section 4.3.3, we

address this issue for English–Bengali language pair using a word-alignment based chunk

pre-ordering approach.

In this chapter, we also investigate Forest to String Based SMT (FSBSMT) with hybrid

word alignment settings. FSBSMT (Galley et al., 2004; Mi et al., 2008; Wu et al., 2011;

Neubig, 2013) is a forest-based tree sequence to string translation model for syntax based

SMT. The model automatically learns tree sequence to string translation rules from a

given word alignment estimated on a source-side-parsed bilingual parallel corpus. This

chapter also presents a hybrid method which combines different word alignment meth-

ods and integrates them into an FSBSMT system. The hybrid word alignment provides

the most informative alignment links to the FSBSMT system. We show that hybrid

word alignment integrated into various experimental settings of FSBSMT provides con-

siderable improvement over state-of-the-art Hierarchical Phrase based SMT (HPBSMT).

The research also demonstrates that additional integration of NE alignments and EBMT

phrases (all extracted from the bilingual parallel training data) into the system brings
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further improvements over the hybrid FSBSMT system. We apply our hybrid model to a

distant language pair, English–Bengali.

4.2 Related Research

Like any other approach to data driven MT, phrase alignment in syntax based SMT or

FSBSMT relies on word alignment quality and also on data preprocessesing (cf. Chapter

2). Hybrid approaches to word alignment have been able to successfully improve MT

translation quality (Tu et al., 2012; Pal et al., 2013a). Previous research demonstrated that

compact representations such as alignment combination (Och, 2003; Koehn et al., 2003;

Ayan et al., 2005; DeNero and Macherey, 2011), can produce improved results. Inspired

by Och (2003) and Koehn et al. (2003), a novel approach to combine multiple alignments

for improving MT was proposed by Tu et al. (2012). Instead of combining exactly two

bidirectional alignments as in (Och, 2003; Koehn et al., 2003), they used an arbitrary

number of alignments. Apart from that they also considered the occurrences of potential

links of individual alignments. To combine an arbitrary number of alignments, they

constructed weighted alignment matrices over 1-best alignments (Liu et al., 2009; Tu et al.,

2011) from multiple alignments generated by different models (including a refined model

as well as minimum Bayes risk (MBR) based models). As the alignment probabilities

between different alignment models are generally incomparable, they proposed a novel

calculation of link probabilities in word alignment models. An alignment refinement

model was applied to refine multiple alignments into a new alignment that favors the

consensus of various models. The MBR decision is used to find the candidate hypothesis

that has the least expected loss under a probability model when the true reference is

unknown (Bickel and Doksum, 1977).

To alleviate the problem of reordering, researchers carried out work in two directions:

one which tries to directly improve the reordering model inside the SMT system, and the

other by prior reordering of the source text so that it resembles the target word order.

This section also presents an overview of research that deals with prior reordering of the

source text to emulate the target word order.

Prior reordering of the source text affects MT performance in two ways as stated in

Holmqvist et al. (2012). Firstly, it lessens the burden of the reordering model since most
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of the long-distance reorderings are taken care of during the reordering of the source text

prior to training; only minor reorderings are performed during decoding and the trans-

lation hypothesis is constructed almost monotonically. Secondly, since statistical word

alignment techniques are known to perform better for language pairs with similar word

order, prior source reordering essentially should lead to more accurate word alignments

and hence better translation model and improved translation quality.

Most of the research on pre-ordering relies either on automatically acquired (Xu et al.,

2009; Niehues and Kolss, 2009; Genzel, 2010; Gupta et al., 2007; Habash, 2007) or hand-

crafted reordering rules (Collins et al., 2005; Popović and Ney, 2006). Reordering rules

are usually automatically learned from parsed training data and/or word alignments.

Holmqvist et al. (2012) presented a method where source text is reordered to replicate

the target word order based on word alignment. Then word alignment is performed

again between reordered source and target training data; the new word alignments are

transferred back to the original training data to connect words in their original order which

results in the same parallel training data with potentially improved word alignments.

Holmqvist et al. (2012) reported improved translation quality for English–German and

English–Swedish. They also studied the effect of this preprocessing on the word alignment

quality and found that this approach resulted in improved recall but degraded precision.

Andreas et al. (2011) reported improvements in an Arabic–English translation task by

using two parse “fuzzification” techniques that allow the translation system to select

among a range of possible subject–verb reorderings.

A syntax-driven approach to reordering using association rule mining was proposed by

Avinesh (2010) where reordering rules are automatically learned from parsed source side

data and word alignment; however it resulted in a drop in BLEU score compared to

baseline Moses.

Dan et al. (2012) proposed linguistically motivated head-finalization reordering rules based

on HPSG parses in a Chinese-to-Japanese translation task and reported significant im-

provements in translation quality. Gupta et al. (2007) proposed a POS-based prior re-

ordering model which learns to reorder adjectives, nouns and verbs by observing the

distances between the source and target phrases using target-to-source alignments. Their

model was employed as an additional feature function at the rescoring stage of PB-SMT
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and it resulted in improved BLEU scores in Japanese–English and German–English trans-

lation tasks.

Xu et al. (2009) presented a preordering approach where handcrafted precedence rules

are applied recursively on dependency trees. They applied this approach on English to

five SOV languages and achieved statistically significant improvements over the respective

PB-SMT baselines for all the language pairs.

Niehues and Kolss (2009) proposed automatically extracting POS-based discontinuous

reordering rules from word-aligned parallel data to model long-range reorderings. This

method improves over applying POS-based continuous reordering rules and baseline PB-

SMT.

Badr et al. (2009) presented linguistically motivated reordering rules that reorder English

text to look like Arabic. To automatically detect and relocate clause-initial verbs in

the Arabic side of a word-aligned parallel corpus, Bisazza and Federico (2010) proposed

a chunk-based reordering technique that impacts the VSO type sentences in Arabic–

English machine translation. Carpuat et al. (2010) proposed a novel approach to improve

the SMT quality using a noisy syntactic parser that reorders verb-subject construction to

subject-verb construction in Arabic–English SMT.

In this chapter, we propose word alignment-based pre-ordering of source chunks which is

inspired by and an extension of Holmqvist et al. (2012). However there are two important

distinctions between the work presented here and in Holmqvist et al. (2012). Firstly, the

main objective of Holmqvist et al. (2012) was to improve word alignment, not reorder-

ing. They do not use the reordered training set to train the final system. Contrary to

Holmqvist et al. (2012), in the present work we address both the issues of word alignment

and reordering, and reorder the source side of all the datasets accordingly. Secondly,

Holmqvist et al. (2012) reordered source words based on word alignment, whereas we

suggest reordering source chunks. We also show that chunk-level reordering is much more

effective than word-level reordering.

The motivation behind this work stems from the fact that word alignment-based pre-

ordering of source words requires neither any reordering rules, nor any language dependent

preprocessing. But word alignment-based reordering of source words is dependent on

the quality of the word alignment. The objective of the present work is to reorder the
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source chunks such that the source and target chunk alignments become monotone. We

argue that with imperfect word alignments it might not be possible to produce perfectly

monotone word alignments. However, by using these word alignments we can obtain

monotone chunk associations which reduces the problem of long-range reordering to only

short-range, intra-chunk reordering while preserving some source language syntax. The

only language-dependent processing involved is chunking in the source language. The

assumption is that human translators perform translation at chunk level rather than at

the word level, and given the choices of translating from word- and chunk-reordered source

text, human translators would much prefer translating from the latter.

Hybrid MT systems have been explored by many researchers using a combination of

different modules, approaches, resources and paradigms. Chapter 2 provides an account

of previous research on such hybrid MT systems.

4.3 Preprocessing

Effective preprocessing of data in the form of explicit alignment of bilingual terminology

(viz. NEs and MWEs) (cf. Section 4.3.1 and 4.3.2) has been shown to improve the output

quality of the baseline PB-SMT system (Pal et al., 2013a; Tan and Pal, 2014). Two kinds

of terminologies, viz. NEs and MWEs, are considered in the present work. Intuitively,

MWEs should be both aligned in the parallel corpus and translated as a whole. However,

as we discussed earlier, state-of-the-art PB-SMT (or any other approaches to SMT) does

not generally treat MWEs as special tokens. By converting the MWEs into single tokens,

we make sure that PB-SMT also treats them as a whole. Translation correspondences

between MWEs are mainly many-to-many. In our approach, once the MWEs are identi-

fied, they are converted into single tokens by replacing the spaces with underscores (“_”)

so that their alignments can be mapped to single tokens. Before decoding, MWEs in the

source side of the testset are also single tokenized by looking up the extracted MWE list.

For our experiments, we considered Point-wise Mutual Information (PMI), Log-likelihood

Ratio (LLR) and Phi-coefficient for identification of MWEs. Finally, a system combina-

tion model was developed which provides a normalized score for each of the extracted

MWEs. Candidates having scores above a predefined threshold value are considered as

MWEs.
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4.3.1 Named Entity Alignment

We applied two different methodologies to align bilingual NEs: Method 1 for English–

Bengali and Method 2 for English–Hindi, Bengali–Hindi, Marathi–Hindi, Tamil–Hindi,

Telugu–Hindi, and English–German.

Method 1: We identified NEs on the source (i.e., English) side of the parallel corpus

using Stanford NER3 (Finkel et al., 2005). NEs in the target side (i.e., Bengali) are

identified using the NER system of Ekbal and Bandyopadhyay (2010). Next, we try

to align the extracted source and target NEs. The alignment is trivial when both sides

contain only one NE. We add such NE pairs to populate a parallel NE corpus that contains

examples having only one token in both sides. Since Bengali has a different orthography

than English, NE alignments are performed using transliteration and edit distance (Pal

et al., 2010). However, for language pairs having the same orthography, NE alignments

can often be established by making use of edit distance solely. If both the source and

target sides contain n number of NEs, and the alignments of n−1 NEs can be established

through the transliteration method or by means of already existing alignments, then the

nth alignment is established between the remaining (i.e., non-aligned) source and target

NE. The bilingual NE pairs thus extracted serve as additional training material and they

improve the word alignment.

Method 2: We initially identify NEs on both the source and target side of the POS-

tagged parallel training corpus4. We create an NE parallel corpus (a pseudo-parallel

corpus) by extracting the source and target NEs from the NE-tagged (NNP or N_NNP)

parallel translations in which both sides contain at least one NE. For example, we extract

the NE translation pairs given in (2) from the sentence pair shown in (1), where the NEs

are shown as italicized.

(1a) In/IN this/DT Yamuna/NNP Bio/NNP Diversity/NNP Park/NNP an/DT effort/NN

has/VBZ been/VBN made/VBN to/TO grow/VB and/CC preserve/VB the/DT herb-

s/NNS produced/VBN in/IN the/DT Yamuna/NNP region/NN ./.

3http://nlp.stanford.edu/software/CRF-NER.shtml
4 POS tagged parallel corpus was released in the ICON 2014 shared task on translation between Indian

languages. In case of English–Hindi WMT 2014 data, we developed our own POS tagger for Hindi (Tan
and Pal, 2014).
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(1b) इनमें/DM_DMR यमुना/N_NNP बायो/N_NNP डायव सर्टी/N_NNP पाकर् /N_NNP में/PSP
यमुना/N_NNP के्षतर्/N_NN में/PSP उपजने/V_VM वाली/PSP वनस्पितय /N_NN को/PSP
एक/QT_QTC जगह/N_NN उगाने/V_VMऔर/CC_CCD संरिक्षत/N_NN करने/V_VM क /PSP

कोिशश/N_NN क /V_VM गई/V_VAUX ह/ैV_VAUX ।/RD_PUNC

(2a) Yamuna Bio Diversity Park Yamuna

(2b) यमुना बायो डायव सर्टी पाकर् यमुना

The above example (2a–2b) is not an exact one-to-one NE alignment; instead both source

and target NEs preserve their respective order as they occur in the parallel corpus. The

resultant corpus is a pseudo-parallel corpus containing only NEs. Compared with Method

1, Method 2 is a simple method that is more easily scalable to many language pairs.

Although the resulting bilingual NE table does not provide a perfect NE dictionary, it

filters out useful NEs from the training sentences and improves word alignments at the

start of the MT pipeline due to the additional training data.

4.3.2 Multi-word Expression Alignment

We extracted highly collocated MWEs on both the source and target side. The extraction

methods are based on statistical association measurement techniques. In the case of

complex predicates identification (extracted only from the Bengali side) we followed the

approach described in Das et al. (2010) which uses a rule based approach to identify

the lexical patterns of complex predicates based on the information provided by shallow

morphology and a seed list of verbs. Finally a fine-grained error analysis through a

confusion matrix was performed to highlight the limit of lexical patterns and in addition

the impact of different constraints for identifying the complex predicates. For MWE

identification other than complex predicates on both source and target side of the bilingual

training data, we considered the following association measures.

Point-wise Mutual Information (PMI): This is an information-theoretic measure

for discovering interesting collocations (Church and Hanks, 1989). Point-wise mutual

information is defined in Equation 4.2,

PMI(x, y) = log
( p(x, y)

p(x)p(y)

)
(4.2)
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where, p(x, y) is the probability of the words x and y occurring together, p(x) is the

probability of x occurring in the corpus and p(y) is the probability of y occurring in the

corpus.

Log-Likelihood Ratio (LLR): This is the ratio between the probability of observing

one component (i) of a collocation given the other (j) is present (i.e., f(i, j)) and the

probability of observing the same component of a collocation in the absence of the other

(f ′(i, j)) (Dunning, 1993).

LLR(x, y) = −2
∑
i,j

f(i, j) log
( f(i, j)

f ′(i, j)

)
(4.3)

Here the sequence of the words in the candidate collocation is irrelevant. We adopted the

probability using Bayes’ theorem by averaging the probability of collocates w1 given w2

and probability of w2 given w1.

Phi-Coefficient: In statistics, the Phi coefficient (Φ) is a measure of association for two

binary variables. Φ is also related to the chi-square statistic as in Equation 4.4:

Φ =
2

√
χ2

n
(4.4)

where n is the total number of observations and χ2 is the chi-square distribution. Two

binary variables are considered positively associated if most of the data falls along the

diagonal cells. Here, the binary distinction denotes the positional information of the

words. If we have a 2 × 2 table for two random variables x and y which denotes the

presence of words w1 and w2 respectively, we have the following matrix:

y = 1 y = 0 Total

x = 1 n11 n10 nx1

x = 0 n01 n00 nx0

Total ny1 ny0 N

Table 4.1: Phi-matrix

where, n11 is the actual bigram frequency of (w1, w2), n10 is the frequency of bigrams

containing w1 but not w2, n01 is the frequency of bigrams containing w2 but not w1, n00

is the frequency of bigrams neither containing w1 nor w2. Note that nx1 and nx0 are the
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summation of their respective rows and ny1 and ny0 are the summation of their respective

columns. Alternative words are in place of absent w1 or w2. The Phi coefficient describes

the association of x and y and is shown in Equation 4.5

Φ =
n00n11 − n01n10

2
√
nx0nx1ny0ny1

(4.5)

Finally, a MWE system combination model was developed which gives a weighted com-

bination score (Chakraborty et al., 2011) to each of the associations. Weights are set

based on the training and tuning of both the English and Bengali side separately. We

train the English side using an open source MWE corpus5 containing both the training

and development set, and similarly the Bengali side was trained using MWE resources

described in (Chakraborty et al., 2014). All statistical measures are considered in the

weighted scheme to assign weights to the candidate phrases. After weight tuning on the

development data, the optimal weights are assigned with each of the individual scores.

The individual score of each measure is normalized before assigning weights, therefore,

all of them fall in the range of 0 to 1. For each measurement, the scores are sorted in

descending order; the intuition is that the higher the value of the statistical measure for

a candidate phrase, the more it behaves like an MWE. A predefined cut-off score (70%

i.e., > 0.7) was considered and the candidates having scores above the threshold value are

treated as MWEs.

We extracted MWEs separately from the source and target sentences and prepared an-

other MWE-aligned pseudo-parallel corpus containing only MWEs (like the preparation

of pseudo-parallel corpus in Section 4.3.1). This MWE-aligned corpus is later used as

additional parallel training data for our hybrid system.

4.3.3 Preordering

To address the problem of word reordering in SMT, language models play a crucial role in

positioning the target words in an acceptable order. But language models also have their

limitations; to keep the model size within acceptable limits, a language model typically

considers up to 5-grams, which can not capture long distance dependencies and hence is

not sufficient to make decisions about good translations. If we increase the value of n
5https://www.ukp.tu-darmstadt.de/data/lexical-resources/wikimwe/
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then the reordering cost involved becomes much higher in terms of computational effort

and requirements; besides longer n-grams in language models suffer from data sparsity.

In the PB-SMT framework, reordering is typically handled by two models: a distortion

model and a lexicalized reordering model (Koehn et al., 2005; Galley and Manning, 2008).

The distortion model was proposed by the IBM Models (Brown et al., 1993). IBM models

1 and 2 define the distortion parameters in terms of the word positions in the sentence pair

instead of the actual words at those positions. The distortion probability also depends on

the source and target sentence lengths. Models 4 and 5 limit this by replacing absolute

word positions with relative word positions. However, all these models are limited to

only word movements; they do not consider phrasal movement. Koehn et al. (2003)

proposed a relative distortion model in PB-SMT. The model works by considering the

difference between the current phrase position and the previous phrase position in the

source sentence. The basic PB-SMT model considers word movements up to 6 tokens

which could be increased to consider long distance reordering; however, higher distortion

limits often result in degraded performance (Koehn et al., 2007).

The lexicalized reordering model conditions reordering on the PB-SMT phrases. It con-

sists of three types of reordering – monotone (M), swap (S), and discontinuous (D) – by

considering the orientation of the previous and the next phrases. The orientation is called

monotone if the previous source phrase is aligned with the previous target phrase. The

swap orientation occurs when the next source phrase is aligned with the previous phrase

in the target; and the orientation is termed as discontinuous if neither of the two above

mentioned cases are true. The reordering model is built by calculating the probabilities

of the phrase pairs being associated with the given orientation. Notwithstanding the re-

ordering models used in the state-of-the-art PB-SMT, the differences in word ordering

between distant languages often result in poor translation quality.

In this section we discuss (inter alia) a simple yet effective language-independent approach

to pre-reordering based on word alignment which follows Holmqvist et al. (2012). This

method has the advantage that it does not require any reordering rules, neither hand-

crafted nor automatically acquired. It also avoids any language-dependent preprocessing

of the target language; it only requires chunking of the source language. There are two

important distinctions between the work presented here and in Holmqvist et al. (2012).

Firstly, the main objective of Holmqvist et al. (2012) was to improve word alignment, not
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reordering. They do not use the reordered training set to train the final system. Sec-

ondly, Holmqvist et al. (2012) reordered source words based on word alignment, whereas

we suggest reordering source chunks. We also showed that chunk-level reordering is much

more effective than word level reordering.

4.3.3.1 Tree Based Reordering

To compare the effectiveness of our word alignment based reordering approach, we build

a linguistically motivated syntactic reordering approach which follows target language or-

dering rules. For tree-based reordering (Xia and McCord, 2004; Collins et al., 2005) we

only consider repositioning the verbs at the end of the sentence or clause. We categorize

each source sentence into three basic types6: simple, complex and compound, and repo-

sition the verbs accordingly. For identifying the basic sentence type we first parse the

source sentences. The parse trees are categorized into the above mentioned three types

by analyzing the structure of the tree and presence of keywords such as ‘that’, ‘which’,

and ‘who’ as well as by looking at the presence of tags like ‘CC’, ‘WHNP’, ‘SBAR’, and

‘S’.

4.3.3.2 Word Alignment-based Reordering

In this reordering approach we first run the GIZA++ word alignment tool on the original

parallel corpus bidirectionally which produces 1 − to − n alignments for both directions.

Then a symmetrization matrix is built on these two unidirectional word alignments and

the ‘grow-diagonal-final-and’ (GDFA) heuristic is applied which produces many-to-many

alignments. The GDFA heuristic is often believed to be the most favourable word align-

ment heuristic for PB-SMT, and is used in the Moses vanilla settings. This word alignment

serves as the basis for our source reordering approach.

Once the word alignment has been obtained, chunks are identified in the source (i.e.,

English) side of the training set which are then reordered following the word alignment.

For chunk identification in English sentences, we used the CRF Chunker7 (Sha and Pereira,

2003).

6We consider English as source language for this experiment.
7http://crfchunker.sourceforge.net/
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For reordering a source sentence, the algorithm starts with the chunked source sentence

and the word alignment for that sentence pair. Let us consider the following chunked

source sentence, the target sentence and the word alignment:

S = (s1, s2, s3, . . . , sp) = (C1, C2, C3, . . . , Cm)

where

Ci = (sj , . . . , sj+n)

and

T = (t1, t2, t3, . . . , tq)

where S is a source sentence, T is the corresponding target sentence, and s, t and C

represent source words, target words and source chunks, respectively. The alignment

between words in S and T is given by:

A = {a1, a2, . . . , ar}, where ak = [sj , tl]

For the sake of simplicity the algorithm assumes 1-based indexing while 0-based indexing

is used for the actual alignments.

The algorithm uses a list of indices, listpos, for each source chunk. listipos stores indices

of target words which are linked to the component words of the ith source chunk (Ci) via

word alignment, i.e.,

listipos = {j : tj ∈ T ∧ ∃k : sk ∈ Ci ∧ [sk − tj ] ∈ A}

In an ideal scenario, all tokens in a source sentence, or at least some tokens in every

source chunk should be aligned to some tokens in the corresponding target sentence; but

that is not always the case. If no correspondence can be found with the target via word

alignment for any of the tokens belonging to Ci, the source chunk position of Ci is simply

added to listipos. Finally, the entries in each listpos are sorted in ascending order, and the

chunks are arranged according to the first entry in the corresponding listpos.

The pseudo-code of the algorithm used to reorder source chunks according to word align-

ment information is given in Algorithm 2.
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Algorithm 2: Word alignment-based source chunk reordering

for i = 1 to m chunks in the source do
new_posi = NULL;

for j = 1 to n source words in chunki do

for k = 1 to r alignments in A do

if ak =[sj , tl] then
add l to list new_posi;

end

end

end

if new_posi is NULL then
add i to new_posi;

end

end

for i = 1 to m new_pos lists do
Sort the items in new_posi in ascending order;

end

reordered_sen = NULL;

while not(all new_pos lists are empty) do
i = index of the first new_pos list containing the smallest first entry;

j = first entry in new_posi;

Append chunkj to reordered_sen;

new_posi = NULL;
end

4.3.4 Example Based Phrase Alignment

Example based phrase pairs are extracted based on the work described in Chapter 3 and

in (Cicekli and Güvenir, 2001), who proposed a compiled approach of EBMT that auto-

matically extracts translation templates from sentence-aligned bilingual text by observing

the similarities and differences between two example pairs.

Since this particular approach has a cubic run-time complexity, it takes a significant

amount of time to extract phrase pairs even from a small corpus. Therefore we used
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heuristics to reduce the time complexity. We divided the entire corpus into n clusters

based on sentence length such that similar length sentences belong to the same cluster.

We extract atomic example-based translations from each of these clusters.

4.4 Hybrid Word Alignment

Our hybrid word alignment model is trained on the parallel bilingual training corpus with

aligned MWEs, NEs and EBMT phrases as additional training materials. The hybrid

word alignment model is a combination of three statistical word alignment models as

described below.

4.4.1 Word Alignment Using GIZA++

GIZA++ (Och and Ney, 2003a) is a statistical word alignment tool which implements

maximum likelihood estimators for IBM models 1-6 and an HMM alignment model. The

model parameters of GIZA++ are generally estimated from large amounts of parallel data.

Symmetrization methods are able to provide some improvements in MT where the parallel

corpora are trained bidirectionally to establish the word alignment. The two alignment

tables are reconciled using different heuristics, e.g., union, intersection, grow-diagonal-

final and grow-diagonal-final-and heuristics (Koehn, 2010). In spite of these heuristics,

the word alignment quality provided by GIZA++ often remains low and calls for further

improvement.

4.4.2 Berkeley Aligner

Like GIZA++, the Berkeley Aligner (Liang et al., 2006) is also a statistical aligner which

is used to align words in a bilingual parallel corpus. The Berkeley Aligner allows the use

of both unsupervised and supervised approaches to align words from parallel corpora. We

initially train on the parallel corpus using the fully unsupervised method of producing

Berkeley word alignments. The Berkeley aligner is an extension of the Cross Expectation

Maximization word aligner. The aligner uses agreement between two simple sequence-

based models during training and facilitates substantial error reductions over standard
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models. Moreover, it is jointly trained with HMMs, and as a result the alignment error

rate (Vilar et al., 2006) is substantially reduced.

4.4.3 SymGiza++

SymGiza++ (Junczys-Dowmunt and Szał, 2012) modified the counting phase of each

model of Giza++ to allow updating of the symmetrisised models between the chosen

iterations of the original training algorithms. It computes symmetric word alignment

models with the capability of taking advantage of multi-processor systems. Experimental

results show that the alignment quality improves by more than 17% compared to Giza++.

4.4.4 Hybridization

Our hybrid word alignment method combines three different statistical word alignments

– Giza++ word alignment with grow-diag-final-and (GDFA) heuristic (Koehn, 2010),

Berkeley word alignment and SymGiza++ word alignment and for each of these we use

our bilingual training data together with the translation pairs extracted using the pre-

alignment methods (described in Section 4.3) for NEs, MWEs and example-based phrases.

We prepared an one-to-one pre-alignment set containing only one-to-one alignment pairs

of NEs, MWEs and atomic translation pairs of EBMT phrases. We have followed the

strategies to combine all word alignment tables as described in (Pal et al., 2013a).

The hybridization method uses the following heuristic. We consider either of the align-

ments generated by GIZA++ GDFA (a1), Berkeley aligner (a2), or SymGiza++ (a3) as

the standard alignment. One-to-one pre-alignment set (a4) generated by the methods

described in Section 4.3.1 and 4.3.2 to produce additional alignment points (contains only

one-to-one alignment pairs). We combine the four alignments a1–a4 following the method

described in Algorithm 3. Although alignment pairs from the pre-alignment methods are

contained within the word alignment training data (for a1, a1, and a3), the pre-alignments

(a4) are specifically used (cf. Algorithm 3) to remove some noisy alignment points (involv-

ing the source NE, MWE tokens and atomic EBMT phrases) produced by the statistical

aligners.
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Algorithm 3: Producing alignment combination

• Step 1: Choose a standard alignment (Sa) from a1, a2 or a3. ▷ The empirically

best preforming aligner among the individual aligners (a1, a2 or a3) is considered

as Sa.

• Step 2: Produce a combined alignment Sc = Sa ∪ (a2 ∩ a3), if a1 is considered as

Sa.

• Step 3: Delete all the alignment points aij ∈ Sc such that ∃aik ∈ a4 where j ̸= k.

• Step 4: Update Sc as Sc = Sc ∪ a4.

4.5 Forest-to-String Based SMT

Forest-to-String Based SMT (FSBSMT) (Galley et al., 2004; Mi et al., 2008; Wu et al.,

2011; Neubig, 2013) is an extension of tree-based SMT. Current tree-based systems suffer

from a major drawback: during translation they only use the 1-best parse tree, which

might result in incorrect translation due to parsing errors. In forest-based systems, the

decoder produces translations of a packed forest of exponentially many k-best parses. A

forest is a compact representation of all the parse trees for a given input sentence under

a context-free grammar.

There are two separate steps preformed by existing standard tree-based systems (Yamada

and Knight, 2001): (i) parsing of the source input sentence into a 1-best tree τ and (ii)

decoding, where the decoder searches for the best derivation δ∗ that translates source tree

τ into a target-language string among all possible derivations D:

δ∗ = argmaxδ∈DP (δ|τ) (4.6)

Equation 4.6 can be unpacked as:

δ∗ = argmaxδ∈DP (δ|τ)λ0 × eλ1|δ| (4.7)

×Plm(s)λ2 × eλ3|s|
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Equation 4.7 can be represented as a log-linear model:

δ∗ = argmaxδ∈Dλ0 logP (δ|τ) + λ1|δ| (4.8)

+λ2 logPlm(s) + λ3|s|

where, eλ1|δ| is the penalty term on the number of rules in a derivation, Plm(s) is the

language model score and eλ3|s| is the length penalty term on the target translation s.

The decoding step of FSBSMT translates the parse forest using the set of translation

rules. A technique of pattern-matching from tree-based decoding is applied to convert a

parse forest into a translation forest. The decoder chooses the best derivation from the

translation forest and finally produces the translation output in the form of a target string.

Therefore, in FSBSMT the derivation probability P (δ|τ) is now replaced by P (δ|ℏ) where

ℏ is the parse forest, and this is the product of probabilities of translation rules r ∈ δ.

P (δ|ℏ) =
∏
r∈δ

P (r) (4.9)

Each P (r) is defined as the product of five different probabilities as in Equation 4.10 .

Let t and s be the source-side tree and target-side string of rule r, respectively, P (t|s) and

P (s|t) are the two translation probabilities, and Plex(t|s) and Plex(s|t) are the two lexical

probabilities. P (t|ℏ) denotes the source side parsing probability of the current translation

rule r in the parse forest.

P (r) = P (t|s)λ4 × P (s|t)λ5 × Plex(t|s)λ6 (4.10)

×Plex(s|t)λ7 × P (t|ℏ)λ8

We incorporated FSBSMT as an alternative MT engine for the multi-engine framework

(Pal et al., 2016a) described below.

4.6 Multi-Engine Hybrid System

The MT system combination framework implies selecting the best hypothesis translation

from multiple hypotheses produced by different systems. In order to apply this framework
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to the translations produced by our systems we implemented the Minimum Bayes Risk

(MBR) coupled with the Confusion Network (MBRCN) framework as described in (Du

et al., 2009). The MBR decoder (Kumar and Byrne, 2004) selects for each sentence

the best system output from the n outputs by minimizing the BLEU (Papineni et al.,

2002) loss. This output is known as the backbone. A confusion network (Matusov et al.,

2006) is built from the backbone while the remaining hypotheses are aligned against the

backbone using an edit-distance based alignment method (TER alignment). The features

used to score each arc in the confusion network (CN) are word posterior probability, target

language model (3-gram, 4-gram), and length penalties. Minimum Error Rate Training

(MERT) (Och, 2003) is applied to tune the CN weights (Pal et al., 2014c).

4.7 Experiments with English–Bengali Data

In this section we describe the system performance on a low-resource language pair -

English–Bengali. We experimented with various experimental settings which are detailed

in the following subsections.

4.7.1 Data

We used an English–Bengali parallel corpus8 containing 25,000 sentences from the travel

and tourism domain (Pal et al. (2010) used the same data for their experiment). Corpus

cleaning was carried out first by calculating the global mean ratio of the number of

characters in a source sentence to that in the corresponding target sentence and then

filtering out sentence pairs that exceed or fall below 20% of the global ratio (Tan and Pal,

2014). Tokenization and punctuation normalization were performed using Moses scripts.

Finally, we filtered the parallel training data using a maximum allowable sentence length

of 100 tokens and sentence length ratio of 1:2 (either direction).

After cleaning, the English–Bengali parallel corpus contained 23,492 parallel sentences

consisting of 569,600 source tokens and 489,609 target tokens. We randomly selected 500

8This corpus is produced in the EILMT project funded by the Department of Electronics and Informa-
tion Technology (DEITY), Ministry of Communications and Information Technology (MCIT), Government
of India.
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sentences each for the development set and the test set from this filtered parallel corpus

and treated the rest as the training corpus.

4.7.2 Experiment with Forest-to-String Based SMT

The effectiveness of the FSBSMT approach is demonstrated by comparing it against the

Hierarchical phrase-based SMT (HPBSMT) (Chiang, 2005) model which serves as our

baseline. For building the baseline HPBSMT system, we use the maximum phrase length

of 7 and a 5-gram language model. For performing word alignment for the baseline

systems, we used the Berkeley Aligner (BA) as BA generally provides better alignment

than the GIZA++ implementation of IBM word alignment model 4 with grow-diagonal-

final-and heuristics. The phrase extraction process was carried out using the hierarchical

model (Chiang, 2005). For FSBSMT (Neubig, 2013) (described in Section 4.5), rule

extraction from forests is performed using the method described in (Mi and Huang, 2008).

To build our FSBSMT systems, we used Egret9 to parse the English sentences as it

provides high accuracy parsing as well as the output of k-best parses in the packed forest

format.

The 5-gram target language model was trained using KENLM (Heafield, 2011) on the

target-side of the training data. Parameter tuning for both HPBSMT and FSBSMT was

carried out using both k-best MIRA (Cherry and Foster, 2012) and Minimum Error Rate

Training (MERT) (Och, 2003) on the held-out development set. After the parameters

were tuned, decoding was carried out on the held out test set. In the set of experiments

presented here, we first integrated the hybrid word alignment model (c.f., Section 4.4)

within both the hierarchical phrase-extraction (Chiang, 2005) as well as the state-of-the-

art forest to string based phrase extraction model.

4.7.2.1 Results

To test the effect of the hybrid word alignment model on the forest based system, we

compared the systems with various experimental settings. We evaluated the systems

9http://code.google.com/p/egret-parser/
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SYSTEM Experiment BLEU NIST TER METEOR

HPB

BA 1 12.53 4.34 72.93 40.97

SYM 2 11.20 4.35 71.10 39.67

GIZA 3 11.62 4.25 73.90 40.45

BA_FB 4 12.96 4.38 72.41 41.27

FB

GIZA 5 17.79 4.62 66.78 41.61

GIZA_NEA 6 18.30 4.70 66.27 42.03

BA 7 21.28 4.77 69.37 41.88

BA_NEA 8 21.40 4.81 69.20 42.05

HWA_NEA 9 22.03 4.91 67.67 42.94

HWA_NEA_EBMT 10 22.37 4.92 67.53 42.52

Table 4.2: Systematic evaluation results for English–Bengali. HPB:=HPBSMT,
FB:=FSBSMT; All FB outputs provide statistically significant improvements over HPB.

using three well known automatic MT evaluation metrics: BLEU (Papineni et al., 2002),

NIST10, METEOR (Lavie and Agarwal, 2007) and TER (Snover et al., 2006a).

The evaluation results are reported in Table 4.2. We used HPBSMT (Experiment 1)

implemented with BA as our baseline model. As reported in Table 4.2, BA performed

better than the other statistical word aligners such as GIZA++ (Experiment 3) and Sym-

Giza++ (Experiment 2). The BLEU score of the baseline is 12.53. Experiment 5 is

a simple GIZA++ implementation of FSBSMT while Experiment 6 is an extension of

Experiment 5 where we make use of the NE aligned parallel data as additional paral-

lel training examples. Similarly, the Experiment 7 system is a BA implementation of

FSBSMT and Experiment 8 additionally uses NE alignments as extra training material.

The use of a combination of multiple alignments, i.e., hybrid word alignment (HWA)

implemented in the FSBSMT system, improves the BLEU score further. The HWA com-

bined with NEA and prior high frequency EBMT phrases (Experiment 10 in Table 4.2)

provided the overall best performance in terms of both BLEU (22.37) and NIST (4.92),

while HWA with NEA produced the overall best METEOR score (42.94) and the Exper-

iment 6 system resulted in the best TER (66.27) score. The proposed FSBSMT system

10http://www.itl.nist.gov/iad/mig/tests/mt/2008/doc/ngram-study.pdf
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provides 78.5% relative (9.84 absolute) BLEU points improvement over the baseline HPB-

SMT. The relative improvement in terms of BLEU compared to the vanilla settings of

HPBSMT is 92.5% (relative).

4.7.3 Experiment with Word Alignment based Pre-reordering

The parallel dataset (English–Bengali) used for the experiments is described in Section

4.7.1. For identification of chunks, the English training set and testset sentences are first

POS-tagged using the Stanford POS tagger11. Chunks are identified from the POS-tagged

sentences using a CRF chunker12(Sha and Pereira, 2003). The source side of the datasets

were parsed using the Stanford Parser13 (de Marneffe and Manning, 2008) for tree based

reordering.

The MT experiments were carried out using the standard log-linear phrase-based SMT

toolkit MOSES (Koehn et al., 2007), GIZA++ (Och and Ney, 2003a) implementation of

IBM word alignment model 4 with the ‘grow-diagonal-final-and’ heuristic for performing

word alignment. Phrase extraction was performed following Koehn et al. (2003). The fea-

ture weights were tuned using MERT (Och, 2003) on a held-out development set in terms

of BLEU. For language modelling purpose we used the SRILM toolkit (Stolcke, 2002)

with Kneser-Ney smoothing (Kneser and Ney, 1995) on the target side of the bilingual

training data.

We carried out the experiments with a 4-gram language model and maximum phrase

length of 7 as this produced the best results for the baseline PB-SMT system. Table 4.3

presents the experimental results. We carried out experiments on tree-based and word

alignment-based source reordering14. To compare the effect of word alignment-based

reordering at chunk- and word-level, we carried out experiments on both. For the sake

of completeness we also carried out experiments on word-based SMT (setting the phrase

length to 1) to see whether chunk-level reordering could bring any improvement over

baseline word-based SMT. We also replicated the experiment of (Holmqvist et al., 2012)

on this dataset. Holmqvist et al. (2012) reported a 1-pass reordering experiment, while

11http://nlp.stanford.edu/software/tagger.shtml
12http://crfchunker.sourceforge.net/
13http://nlp.stanford.edu/software/lex-parser.shtml
14We frequently switch the terms ‘reordering’ and ‘pre-reordering’. In this work, we pre-reordered the

source-side of the parallel corpus.
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we carry out both 1-pass and 2-pass experiments. In the 2-pass experiment, the process

of reordering the source side is simply carried out twice, i.e., the reordered source side is

subjected to reordering once again. We also carried out a chunk-reordering experiment in

PB-SMT where the chunks are reordered based on the final alignments obtained by the

1-pass experiment of (Holmqvist et al., 2012).

It is to be noted that for applying any pre-reordering technique, the test set (and in case of

tuning, the development set) needs to be reordered as well using the same technique that

was applied to the training data. For the tree-based reordering approach we reordered the

test set and the development set using the same set of rules. For the word alignment based

reordering experiments, the test set is reordered using monolingual PB-SMT systems built

on the original source training data and the corresponding reordered source training data.

For the monolingual PB-SMT systems, we do not perform automatic word alignment since

the word alignments between the source training set and the reordered training set are

already known. We create two lexical translation tables where each source word has

only one translation option, i.e., the same word itself in the target, with a translation

probability of 1.0. It is to be noted that both these lexical translation tables are exactly

the same. The phrase table and the reordering table are built on these alignments using

Moses. Since the purpose of this monolingual PB-SMT system is to reorder the source

sentences, we do not use a language model for this monolingual PB-SMT model. A

monolingual PB-SMT system built thus essentially just reorders the source sentences.

The ‘TR’ column in Table 4.3 indicates whether or not the test set is reordered (using

monolingual MT) in the corresponding experiment.
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Experiments Prior reordering Level TR Exp BLEU NIST METEOR TER

Word-based SMT
none (baseline) no 1 8.87 3.61 0.3028 86.95

alignment-based
word yes 2 8.97 3.54 0.2985 88.86
chunk yes 3 9.94∗ 3.71 0.3107 86.64

Phrase-based SMT

none (baseline) no 4 10.68 4.13 0.3035 73.37
tree-based yes 5 11.53∗ 4.22 0.3126 72.75

alignment-based
word yes 6 11.11 4.08 0.3073 75.34
chunk yes 7 12.65∗ 4.29 0.3144 73.00

alignment-based
word reordering,
1-pass

no 8 11.25 4.09 0.3129 75.25

alignment-based
word reordering,
2-pass

no 9 11.47 4.12 0.3141 75.14

alignment-based
chunk reordering,
2-pass

yes 10 13.17∗ 4.28 0.3161 72.66

Table 4.3: Evaluation results obtained on the reordering experiments.

89



Chapter 4. Hybrid Machine Translation

We carried out evaluation of the MT quality using four automatic MT evaluation metrics:

BLEU (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005), NIST (Dodding-

ton, 2002) and TER (Snover et al., 2006a). For the PB-SMT experiments, tree-based

reordering brings some improvements over the PB-SMT baseline. Word alignment-based

reordering at word-level also provides some improvements over the PB-SMT baseline; how-

ever the improvements are smaller than those obtained in tree-based reordering. Word

alignment-based reordering at chunk-level improves over both and provides the overall

best BLEU score among all 1-pass PB-SMT experiments (Experiment 4–8). A similar

trend is observed for the word-based SMT experiments for which both word- and chunk-

level reordering prove to be beneficial over the baseline while chunk-level reordering ap-

pears to be more effective than word-level reordering.

Our approach to alignment-based chunk-reordering (Experiment 7) outperforms alignment-

based word-reordering (Experiment 8) described in (Holmqvist et al., 2012). However,

tree-based reordering produced the best scores as per TER among all 1-pass PB-SMT

experiments.

The 2-pass approach to alignment-based word-reordering (Experiment 9) also improves

over the 1-pass approach (Experiment 8) across all metrics; however the improvements

are small. Our final experiment (Experiment 10) with chunk reordering based on the

final alignments obtained by Experiment 8 produces the overall best scores in BLEU and

TER. Statistical significance tests were carried out using the bootstrap resampling method

(Koehn, 2004) and the ‘*’ marked scores represent statistically significant improvements

on BLEU over the respective baseline systems.

Figure 4.2 shows the effect of prior reordering of the source on word alignment. Fig-

ure 1.a shows the initial word alignment extracted by the baseline system for a sentence

pair. Figure 1.b presents the correct (i.e., manual) alignment and Figure 1.c shows the fi-

nal word alignment obtained by chunk-reordered (CR, Experiment 7) and word-reordered

(WR, Experiment 6) PB-SMT systems for the sentence pair. Figure 1.b in addition shows

whether the source chunks could be ordered properly (which is indeed the case here) and

how they could minimize the number of cross links (28 down to 2 here). The correct align-

ments are shown as solid lines and the incorrect ones as dotted lines in Figure 1.a and

Figure 1.c. English chunks are shown in brackets and Bengali chunks are shown as under-

lined. It is to be noted that chunking in the target side is not required in alignment-based
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FIGURE 1.a – Initial word alignment

Source:

Target:

FIGURE 1.c – Final word alignment

CR Source:

Target:

WR Source:

FIGURE 1.b – Correct word alignment

 [he] [of his life] [the last thirty years] [devoted] [to his experimental research] [.]

 [he] [devoted] [the last thirty years] [of his life] [to his experimental research] [.]

িতিন তাঁর জীবেনর েশষ িtশ বছর uত্সগর্ কেরন তাঁর পরীkামূলক গেবষনায় ।

he  his  life  the  last  devoted  thirty  years  of  his  experimental  to  research  .

 [he] [devoted] [the last thirty years] [of his life] [to his experimental research] [.]

িতিন তাঁর জীবেনর েশষ িtশ বছর uত্সগর্ কেরন তাঁর পরীkামূলক গেবষনায় ।

িতিন তাঁর জীবেনর েশষ িtশ বছর uত্সগর্ কেরন তাঁর পরীkামূলক গেবষনায় ।

Source:

Target:

CR Source:  [he] [of his life] [the last thirty years] [devoted] [to his experimental research] [.]

Figure 4.2: Word alignments with unordered and reordered source.

reordering; the target side has been chunk-marked (i.e. underlined) in Figures 1.b and 1.c

just for visualization of source-target chunk associations. In the initial word alignment

(cf. Figure 1.a) 11 out of 14 word associations are correct (precision=0.79, recall=0.73).

However, when the source sentence is (chunk-) reordered based on this initial word align-

ment, the association between the source and target chunks becomes monotone (cf. Figure

1.c). In the final word alignment between the word-reordered source and the target sen-

tence, 12 out of 15 alignments are correct (precision=0.8, recall=0.8), an improvement

over the baseline, while 13 out of 14 alignments are correct (precision=0.93, recall=0.87)

between the chunk-reordered source and the target sentence. Thus, word-alignment based

source reordering improves both precision and recall for word alignment. This example

illustrates two important improvements: firstly, word-alignment based chunk reordering

of the source results in fewer cross-chunk alignments, in this case zero (cf. Figure 1.c),

and secondly and more importantly, it improves the accuracy of the word alignment.

From this example it is also evident that word-alignment based chunk reordering is more
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effective than word-alignment based word reordering in PB-SMT. This approach to re-

ordering can be considered as a bootstrapping approach to word alignment since it is

based on word alignment and the purpose of it is to improve the word alignment quality.

Word alignments produced by statistical word aligners are never perfect even for sizable

amount of data; if they were perfect it would have defeated the purpose of reordering. In

this real-world scenario it makes more sense to reorder at chunk level than at word level

since both rely on imperfect word alignments while chunk-level reordering preserves some

source language syntax and is less affected by noisy word alignments.

Due to the unavailability of the gold-standard word alignment, improvement in terms of

word alignment quality could not be measured empirically; however the example presented

in Figure 4.2 clearly demonstrates the usefulness of word-alignment based source chunk

reordering in improving word alignment quality. Although this approach calls for the test

set to be reordered (as opposed to (Holmqvist et al., 2012)) and is sensitive to errors in

chunking, it was still able to produce significant improvements over the baseline systems.

We inspected the lexfile15 and phrase table sizes for the PB-SMT experiments and found

that lexfile and phrase table sizes were inversely proportional to the BLEU scores obtained

from them, which suggests that prior reordering also reduces the data sparsity problem.

4.8 Experiment with English/Indian Language (IL)– Hindi

Data

We tested our hybrid system (described in Section 4.8.2) on the English/Indian Language

(IL)– Hindi translation shared task organized by ICON 201416

We conducted an analysis of the training data to filter noisy sentences, and append ex-

tracted NEs to the sentence pairs as additional training data. We were provided with

24,000 sentence pairs for the training set, 500 sentence pairs for the development set and

500 sentence pairs for the test set in each of the five language pairs (i.e., English–Hindi,

Bengali–Hindi, Marathi–Hindi, Tamil–Hindi, and Telugu–Hindi) for each of the two do-

mains: health and tourism. The general domain was obtained by combining the health

15The lexfile (i.e., lexical translation table) is prepared from the statistical word alignment during the
training phrase of PB-SMT. The lexfile acts as a probabilistic bilingual lexicon.

16http://ltrc.iiit.ac.in/icon/2014/contests.php
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Criteria TOURISM HEALTH

Initial Total 24000 24000

After Filtering 23207 23515

NE alignments added 24741 25148

Table 4.4: Summary of pre-processing of training data (number of sentences):
Bengali→Hindi

and tourism data. Table 4.4 shows the number of sentences after filtering out (second

row) and the number after adding NEs (third row) to the baseline training data (first

row) for BN–HI. Similar numbers were obtained across all language pairs.

4.8.1 TM Implementation

Translation Memories (TM) are an important part of CAT tools. Since many translations

are highly repetitive, it is useful to find existing translations for the entire source input

sentence or part of the source input sentence and to reuse them. TMs reduce the workload

of translators. Below we explore a way of integrating a TM in an MT focused translation

workflow. Our TM stores existing translations that are collected from the training data.

Our TM also contains the EBMT phrases and parallel NEs extracted from the training

data. The basic functions of the TM are:

• Case I: If the source sentence is found in the TM, it will immediately return the

target output sentence.

• Case II: If a sequence of words in the input sentence is found in the TM, the

source sequence is also replaced with the corresponding target word sequence in

the input sentence. The corresponding target sequences are marked as an arbitrary

XML tag (e.g., <zone translation=“eine englische Übersetzung”>an English trans-

lation</zone>.) in the input sentence. The input sentences containing this XML

are presented to the decoder. Any phrases (source word sequences) from the phrase

table that overlap with that corresponding target sequence spans in the XML mark-

up are completely ignored by the Moses decoder17 (Koehn et al., 2007). E.g., let us

17In this case, during decoding process, the -xml-input flag with exclusive is used for our hybrid trans-
lation (cf. http://www.statmt.org/moses/?n=Advanced.Hybrid).
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consider an input English sentence “This is <zone translation=“eine englische Über-

setzung”>an English translation</zone>” is presented to the Moses decoder with

‘-xml-input exclusive’ option, the decoder retains the “eine englische Übersetzung”

phrase in the generated German translation. Therefore, the complete translation

will be “Das ist eine englische Übersetzung” .

4.8.2 Hybrid System

Our Hybrid approach combining TM, EBMT, and SMT was investigated with multi-

way translation such as NE substitution, EBMT phrase substitution (cf. Case II in

Section 4.8.1), followed by the SMT decoder. As mentioned earlier, we implemented four

different systems, namely Baseline SMT, Baseline SMT with NE alignment (NEA), NEA

with EBMT phrase alignment (NEA-EBMT) and a TM-EBMT-SMT hybrid system. In

order to achieve optimal performance from the component modules, we finally generated

a multi-engine translation output using a confusion network-based system combination

(described in Section 4.6).

NEA System: For the NEA system, we appended the extracted parallel NE list described

in Section 4.3.1 to the training data.

NEA-EBMT System: In order to build the training corpus for this model, we appended

the extracted parallel NE list and also the EBMT parallel phrases (cf. Section 4.3.4) to

the training sentence pairs.

TM-EBMT-SMT hybrid system: The TM repository consists of our parallel training

data, a parallel NE list (cf. Section 4.3.1) and EBMT parallel phrases (cf. Section 4.3.4).

When a new sentence is input to the system for translation, the hybrid MT system first

checks whether the translation is already present in the stored TM. If the input sentence

is found in TM then the output is immediately returned. If there are no exact matches

in the TM, then the system looks for word sequence matches in the TM repository. If a

sequence of source tokens in the input sentence is found in the TM repository, then the

source sequence is immediately replaced with the target sequence from TM using XML

mark-up. The generated sequence serves as an input to the SMT system. The SMT

system then produces the final translation output.
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System Combination: In our experiments, four MT hypotheses (Baseline, NEA, NEA-

EBMT, TM-EBMT-SMT) are fed to the System Combination framework (cf. Section

4.6) from which one is selected as the backbone. The features used to score each arc

in the confusion network are word posterior probability, target language model (3-gram,

4-gram), and length penalties. Minimum Error Rate Training (MERT) (Och, 2003) is

applied to tune the CN weights.

4.8.3 Baseline Settings

The standard log-linear PB-SMT model serves as our baseline system. For building the

baseline system, we experimented with various maximum phrase lengths for the transla-

tion model and n–gram settings for the language model. We found that using a maximum

phrase length of 7 and a 5-gram language model produced the best results in terms of

BLEU scores for our baseline model. We use target (Hindi) side of the training data to

build 5-gram language model.

The other experimental settings were: GIZA++ implementation of IBM word align-

ment model 4 with grow-diagonal-final-and heuristics for performing word alignment

and phrase-extraction (Koehn et al., 2003). The reordering model was trained on msd-

bidirectional (i.e. using both forward and backward models) and conditioned on both

source and target language. The reordering model was built by calculating the probabil-

ities of the phrase pairs being associated with the given orientation such as monotone,

swap and discontinuous. The 5-gram target language model with Kneser-Ney smooth-

ing (Kneser and Ney, 1995) was trained using SRILM (Stolcke, 2002). Minimum Error

Rate Training (MERT) (Och, 2003) was carried out on a held-out development set (de-

vset). After the parameters were tuned, decoding was carried out on the held out test

set.

Note that all the systems described in Section 4.8.2 employ the same PB-SMT settings

(apart from the feature weights which are obtained via MERT) as the Baseline system.

4.8.4 Result and Analysis

The system outputs are evaluated with respect to BLEU score (Papineni et al., 2002).

For each of the three domains (health, tourism, and general), each of the five source
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Figure 4.3: BLEU scores for all 5 language pairs on all three domains: Health, Tourism,
and General

.

SYSTEM HEA TOUR GEN

Baseline 29.29 28.63 29.00

NEA 28.81 28.67 28.80

NEA-EBMT 27.83 27.51 27.73

TM-EBMT-SMT 29.18 28.94 29.14

Combination 29.55 29.01 29.18

Table 4.5: Summary of Results on testset data (BLEU score): Bengali→Hindi

languages (Bengali (BN), English (EN), Marathi (MR), Tamil (TA), and Telugu (TE))

was translated into Hindi (HI) using four separate MT systems (Baseline [SMT], NEA,

NEA-EBMT, and TM-EBMT-SMT). The four MT outputs are then fed into the System

Combination framework to select the final MT output. Thus we ran a total of 60 SMT

(four MT systems for five language pairs in three domains) systems (in addition to three

System Combination runs per language) for this task.

The optimal system combination hybrid system obtained the overall average BLEU (Pa-

pineni et al., 2002) score of 24.61 and average TER (Snover et al., 2006a) score of 57.86.

Figure 4.3 is a graphical representation of the BLEU scores (y-axis) for all five language

pairs (x-axis) across all three domains (three shades of bars). Table 4.6 shows evaluation
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results for each language pair in three domains. Table 4.7 shows systematic comparison

between the baseline and our hybrid system for all the language pairs in three domains. In

each language, it was observed that the MT systems perform best on the Health domain.

One reason for this could be that the vocabulary size in the health domain was nearly

1.75 times smaller than in the tourism domain, implying less data sparsity and noise.

When comparing across languages (trained on approximately the same size and type of

data), Marathi → Hindi was observed to be the best performing system. This was as

expected since out of the five languages under study, Marathi is most similar to the target

language (Hindi), followed by Bengali. Both Tamil and Telugu belong to the Dravidian

family of languages which are significantly different from Hindi and therefore the scores

are lower. English, unlike the other languages, has an entirely different grammar (SVO

versus SOV in Indian languages). Note that a strong sense of linguistic purism is found in

Tamil (Ramaswamy, 1993) which opposes the use of foreign loanwords. Also, the meta-

linguistic base of Tamil is Old Tamil unlike most other Indian languages for which it is

Sanskrit. These factors are most probably the cause for a lower MT performance on the

Tamil–Hindi language pair.

In order to compare and contrast individual performances of each of our MT engines, Table

4.5 shows the BLEU scores for the Bengali→ Hindi language pair in all three domains. As

observed above, the combination output is the best performing system and outperforms

an individual component output by as high as 0.26 BLEU points. One reason for the

NEA-EBMT system under-performing is that we did not extract all possible example-

based phrase pairs due to time complexity (cf. Chapter 3, Section 3.6.1). The hybrid

system displays definite gains over others. Similar relative performance was observed in

the other languages.

97



C
hapter

4.
H

ybrid
M

achine
Translation

BN-HI EN-HI MR-HI TA-HI TE-HI Avg. Score per Domain

BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

Health 29.55 50.01 18.03 68.14 35.85 46.74 17.53 72.1 26.53 53.21 25.498 58.04

Tourism 29.01 49.77 15.23 71.72 34.92 44.93 14.05 69.67 23.8 55.91 23.402 58.4

General 29.18 49.67 15.96 67.86 36.4 45.01 16.89 69.57 26.26 53.53 24.938 57.128

Score per

Language

Pair

29.247 49.817 16.407 69.24 35.723 45.56 16.157 70.447 25.53 54.217

Table 4.6: Evaluation scores of our system-combination submission in ICON-2014 on 5 language pairs in three domains; Overall average BLEU
Score : 24.613 TER: 57.856
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Health Tourism General

Hybrid Baseline Hybrid Baseline Hybrid Baseline

BN-HI
BLEU 29.55 29.29 29.01 28.71 29.18 29.04

TER 50.01 49.94 49.77 50.00 49.67 49.43

EN-HI
BLEU 18.03 17.85 15.23 15.00 15.96 13.57

TER 68.14 68.54 71.72 71.32 67.86 75.13

MR-HI
BLEU 35.85 34.83 34.92 34.85 36.40 35.56

TER 46.74 47.82 44.93 45.17 45.01 44.87

TA-HI
BLEU 17.53 17.57 14.05 14.02 16.89 16.36

TER 72.10 70.60 69.67 69.93 69.57 69.47

TE-HI
BLEU 26.53 25.54 23.8 23.09 16.26 25.15

TER 53.21 53.79 55.91 56.14 53.53 54.37

Table 4.7: Systematic comparison between system-combination and Baseline system
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4.9 Experiments with English–German Data

In the section above we reported findings on our hybrid system in low-resource data

settings. To investigate a rich resource data setting, this section examines the performance

of our hybrid system (detailed in Section 4.9.2) on the WMT 2015 English → German

translation task. The hybrid system is trained on English–German parallel data (cf.

Section 4.9.1). The test set for the language pair was drawn from user-generated comments

on the news articles18.

4.9.1 Data

We utilized all the parallel training data provided by the WMT 2015 shared task or-

ganizers for English–German translation19. The training data include Europarl, News

Commentary and Common Crawl. The provided data is noisy and contains some non-

German as well as non-English words and sentences. Therefore, we applied a Language

Identifier (Shuyo, 2010) on both bilingual English–German parallel data and the mono-

lingual German corpora used for language model training. We discarded those parallel

sentences from the bilingual training data which were detected as belonging to some dif-

ferent language by the language identifier. The same method was also applied to the

monolingual data.

Further corpus cleaning was carried out first by calculating the global mean ratio of the

number of characters in a source sentence to that in the corresponding target sentence

and then filtering out sentence pairs that exceed or fall below 20% of the global ratio (Tan

and Pal, 2014). We sorted the entire parallel training corpus based on sentence length.

Tokenization and punctuation normalization were performed using Moses scripts. In

the final step of cleaning, we filtered the parallel training data on maximum allowable

sentence length of 100 word tokens and sentence length ratio of 1:2 (either direction).

Approximately 36% of the sentences were removed from the total training data during the

cleaning process. Table 4.8 shows the parallel data statistics after cleaning and filtering.

After filtering, our monolingual data contained approximately 26M sentences.

18The test data was collected from WMT 2015 translation task.
19www.statmt.org/wmt15/translation-task.html
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Data Sentences
Tokens

EN DE

Europarl and news 1,623,546 36,050,888 34,564,547

Common crawl 1,811,826 37,456,978 35,172,840

Total 3,435,372 73,507,866 69,737,387

Table 4.8: Parallel training data statistics after cleaning

4.9.2 Hybrid System

A hybrid approach was investigated by combining multiple knowledge sources such as

NEA, EBMT Phrases and MWEs and following different strategies. We implemented

several systems, namely:

(1) Baseline PB-SMT (cf. Section 4.9.4),

(2) Baseline PB-SMT with NE alignment (NEA) (cf. Section 4.3.1, Method 2),

(3) NEA with EBMT phrase extraction (NEA–EBMT) (cf. Section 4.3.1, 4.3.4),

(4) NEA with EBMT phrase extraction and single-tokenized MWE20 (NEA–EBMT–

MWE) and

(5) LM–NEA–EBMT–MWE system-combination (see Section 4.9.2.1).

The baseline SMT system is trained on the cleaned English-German parallel corpus. The

NEA system makes use of NE aligned parallel data as additional parallel examples. Sim-

ilarly, EBMT phrase pairs as well as NE aligned data are also used as additional training

examples in the NEA–EBMT system. The NEA–EBMT–MWE system is very similar to

the above mentioned NEA–EBMT system, the only difference being that the identified

source side English MWEs are converted into single tokens for NEA–EBMT–MWE. In

order to achieve optimal performance from the component modules, we finally generated

a system-combination translation output using confusion network-based system combina-

tion (cf. Section 4.9.3.1).

20We extracted MWE on the English side and performed single-tokenization. The extraction method
is described in Section 4.3.2
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4.9.2.1 LM-NEA-EBMT-SMT hybrid system

In this system, we experiment with the above-described models with varying sizes of

monolingual data. We experimented with four folds of monolingual data to train the

Language Models (LMs):

• LM1: Only using the target (i.e. German) side of the parallel training data (where

the target data size is L in terms of number of sentences) for language modeling

• LM2: L + double size of L, collected from the cleaned monolingual corpus

• LM3: L + triple size of L from the cleaned monolingual corpus

• LM4: L + all the cleaned monolingual data

Therefore, there were 16 different systems (four systems, i.e., Baseline, NEA, NEA–EBMT

and NEA–EBMT–MWE, each with four LM settings) output available for system combi-

nation.

4.9.3 MIRA-MERT coupled tuning

The Minimum Error Rate Training (MERT) (Och, 2003) method has been the most

popular method used for parameter tuning in SMT; it has some nice properties such

as simplicity, effectiveness and speed. However, it does not scale well for systems with

large numbers of features. The Margin Infused Relaxed Algorithm (MIRA) (Cherry and

Foster, 2012), an alternative tuning method, works well with a large number of features,

although, the optimization problem in MIRA is much more complicated than MERT. We

linearly interpolate the weights learned from these two optimization methods wmira and

wmert as in Equation 4.11.

wt = λwmira + (1− λ)wmert (4.11)

We calculate the λ parameter (0 < λ < 1.0) based on the iteration in which the BLEU

score on the development set is highest. We apply the λ value for reranking the hypothesis

based on weights of wmira and wmert on the n-best hypothesis generated from the test

set. The results of our experiments are presented in Table 4.7.2.1 (cf. System 3).
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4.9.3.1 System Combination

System Combination is a technique which combines translation hypotheses (outputs) pro-

duced by multiple MT systems. We applied a system combination method (cf. Section

4.6) on the outputs of the different MT systems described earlier.

4.9.4 Baseline Settings

We used the standard log-linear PB-SMT model as our baseline. For building the baseline

system, we used a maximum phrase length of 7 and a 5-gram language model. The

other experimental settings include word alignment using SymGIZA++ aligner (Junczys-

Dowmunt and Szał, 2012)21 and the phrase-extraction following Koehn et al. (2003).

The reordering model was trained on hier-mslr-bidirectional (i.e. using both forward and

backward models) and conditioned on both source and target language. The reordering

model was built by calculating the probabilities of the phrase pairs being associated

with the given orientation such as monotone, swap and discontinuous. The 5-gram target

language model was trained using KENLM (Heafield, 2011). Parameter tuning was carried

out using both k-best MIRA and MERT on the held-out development set. After the

parameters were tuned, decoding was carried out on the held out test set.

Systems BLEU BLEU(Cased) TER

Baseline 16.7 16.2 89.6

System 1 18.1 17.5 88.2

System 2 18.1 17.6 87.8

System 3 19.0 18.4 85.3

System 4 20.0 19.5 84.1

System 5 20.3 19.7 83.8

System 6 20.7 20.2 83.5

System 7 22.6 22.1 82.3

Table 4.9: Systematic comparison between system-combination (System 7), six best
performing individual systems and Baseline system

21SymGIZA++ is a modified version of GIZA++ word alignment models by updating the symmetri-
sizing models between chosen iterations of the original word alignment training algorithms.

103



Chapter 4. Hybrid Machine Translation

4.9.5 Results and Analysis

As described in Section 4.9.2.1, we developed sixteen different systems. Instead of using

all these sixteen different systems, we used only the six best performing systems for system

combination. Performance is measured on the development set. Table 4.9 reports the final

evaluation results obtained on the test dataset. The six best individual systems are as

follows:

• System 1: NEA–EBMT (selective high frequency EBMT phrases) with baseline

PB-SMT settings and LM1.

• System 2: System 1 experimental settings + single tokenized source MWEs (i.e.

NEA–EBMT–MWE).

• System 3: System 2 with MIRA-MERT coupled tuning (cf. Section 4.9.3).

• System 4: System 3 with LM2.

• System 5: System 3 with LM3.

• System 6: System 3 with LM4.

System 6 provides the individual best performing system. System combination (System-7

in Table 4.9) of the six best performing individual systems brings considerable improve-

ments over each of the individual systems. A hybrid system (System 6) with NE align-

ment, EBMT phrases, single-tokenized source MWEs, and MIRA-MERT coupled tuning

(cf. Section 4.9.3) results in the best performing system. However, confusion network-

based system combination outperforms all the individual MT systems. The fact that the

systems were tuned with BLEU scores may be one of the reasons behind the poor TER

scores produced by the systems. This work was submitted to WMT 2015 translation task.

Our hybrid system ranked 10th among 24 submissions.

4.10 Conclusions and Future Work

The chapter presented how effective pre-processing of NEs and MWEs in the parallel cor-

pus and direct or indirect incorporation of their alignments in the word alignment model
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can improve SMT system performance. In data driven approaches to MT, specifically for

scarce resource language pairs, this approach can help to improve state-of-art MT quality

as well as the word alignment quality.

The Indian languages/English to Hindi (cf. Section 4.8) and English to German (cf.

Section 4.9) hybrid systems with NE alignment, EBMT phrases, single-tokenized source

MWEs, and MIRA-MERT coupled tuning resulted in the best performance. However,

confusion network-based system combination outperforms all the individual MT systems.

The fact that the systems were tuned with BLEU scores may be one of the reasons behind

the poor TER scores produced by the systems.

We also presented a method of source chunk pre-ordering based on word alignment. Source

chunks are reordered based on their associations with the target words and the target word

order. The testset is reordered using monolingual PB-SMT built on the original source

training data and the reordered source training data. Our experiments showed that word

alignment based source chunk pre-ordering is more effective than word alignment based

source word pre-ordering and tree-based reordering; and it produced statistically signif-

icant improvements on both. On manual inspection we found significant improvements

in terms of word alignments. This method also reduces the data sparsity problem. The

method presented in the paper has the advantage that it does not require any language

specific tools like parsers except a chunker for the source language.

This chapter also reported research on integrating hybrid word alignment in FSBSMT.

Experimental results on an English–Bengali dataset show that FSBSMT with Berkeley

alignment results in a large improvement (69.83% relative, 8.75 absolute BLEU points)

over the state-of-the-art HPBSMT baseline. Systems like HPBSMT which work only

with 1-best parse tree may suffer from parsing errors. FSBSMT alleviates this problem

by considering a packed forest of k-best parses.

Additional integration of prior aligned named entities and high frequency EBMT phrases

into the proposed system also brings about further improvements. The enhanced sys-

tem provides 78.5% relative (9.84 absolute BLEU points) improvement over the baseline

HPBSMT system and 5.12% relative improvement (1.09 absolute BLEU points) over an

FSBSMT baseline system with Berkeley alignment.
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We introduced two research questions (i.e., RQ2 and RQ3) at the beginning of this chapter.

The use of parallel/pseudo-parallel NEs, MWEs and parallel EBMT phrases as additional

training examples successfully improved the MT performance for Indian languages to

Hindi, English–Hindi and English–German language pairs. This addresses RQ2, i.e., “how

can SMT better profit from the existing training data?”. Prior reordering also provides

some benefits in terms of both word alignment quality and MT performance; this also

covers RQ2 to some extent. RQ3, i.e., “What could improved hybrid implementations of

MT be like?” is an open research question. We provided a proposal in terms of a two

level of hybridization architecture as follows:

• Hybrid word alignment: Alignment combination of multiple word alignments pro-

vided by different statistical aligners and a rule based aligner.

• System combination: Combination of different MT engines developed using differ-

ent MT methodologies each of which operates below the hybrid word alignment

architecture.

We successfully showed that the resulting hybrid MT system outperforms all the individual

component systems (Pal et al., 2014c,a, 2015a, 2016a).

In future, we would like to apply a similar methodology with other alignment combination

methods and compare between them. We will also focus on improving our hybrid word

alignment model by considering the strength of alignment points given by the various word

alignment models. For multi-engine system combination, we would like to incorporate

neural machine translation as an another component engine into our hybrid framework.

Finally, tight coupling of SMT and NMT, by taking advantage of the translations of longer

phrases in PB-SMT and better context dependent translations in NMT, is a very difficult

proposition which we would like to explore.
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Automatic Post Editing

For many applications the performance of state-of-the-art MT systems is useful but far

from perfect. MT technologies have gained wide acceptance in the localization industry.

Computer aided translation (CAT) followed by post-editing has become the de-facto stan-

dard in large parts of the translation industry which has resulted in a surge of demand

for professional post-editors. This, in turn, has resulted in substantial quantities of PE

data which can be used to develop automatic post-editing (APE) systems. This chapter

is focused on addressing two research questions: RQ4: How can we build an effective

automatic post-editing system which can improve the translation quality of the first-stage

MT system? and RQ5: To what extent is an APE system able to reduce final post-editing

effort in terms of increasing productivity?

APE systems assume the availability of source language input text (SLip), target language

MT output (TLmt) and target language PE data (TLpe). An APE system can be modelled

as an MT system between SLip_TLmt and TLpe. However, if we do not have access to

SLip, but have sufficiently large amounts of parallel TLmt—TLpe data, we can still build

an APE model between TLmt and TLpe.

Translations provided by state-of-the-art MT systems suffer from different types of errors

including incorrect lexical choice, word ordering, word insertion, word deletion, etc. The

APE work presented in this chapter is an effort to improve the MT output by rectifying

some of these errors. For this purpose we adopt various strategies, including:
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1. A hybrid word alignment model integrated within two different statistical machine

translation (SMT) frameworks: Phrase-Based Statistical APE (PB-SAPE) and Hi-

erarchical PB-SAPE (HPB-SAPE). Both are trained on TLmt and TLpe.

2. An operation sequence Model (OSM). We adopt the OSM model for MT (Durrani

et al., 2011, 2015) to monolingual APE.

3. A deep neural network (DNN) based approach: our neural network model of APE

(NNAPE) is based on a bidirectional recurrent neural network (RNN) model and

consists of an encoder that encodes an MT output into a fixed-length vector from

which a decoder provides a post-edited (PE) translation.

4. A system combination framework. The focus of this study is twofold – to study

how existing word alignment techniques and system combination frameworks can

be intelligently used to improve monolingual APE, and whether the improvements

in APE measured in terms of automatic evaluation metrics translate to measurable

productivity gains in human post-editing in commercial translation workflows.

Core parts of the research presented in this chapter have been published in (Pal

et al., 2015c, 2016b,c,f)

Figure 5.1 schematically shows the research presented and the research questions ad-

dressed in this Chapter.

5.1 Introduction

In the context of MT, “post-editing” (PE) is defined as the corrections performed by

humans on the translations produced by an MT system (Veale and Way, 1997), often with

minimal amount of manual effort (TAUS Report, 2010) and as a process of modification

rather than revision (Loffler-Laurian, 1985).

The quality of translations produced by MT systems has improved substantially over the

past few decades. This is particularly noticeable for some language pairs (e.g., English–

Italian) and for some specific domains (e.g., technical documentation). However, some

language pairs, e.g., English–German, have proved to be difficult for MT. Texts produced

by MT systems are now widely used in the translation and localization industry. MT
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Figure 5.1: Schematic design of the research and the research questions presented in
this Chapter.
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output is post-edited by professional translators and MT has become an important part

of the translation workflow. A number of studies confirm that post-editing MT output

can improve translators performance in terms of productivity and it may also impact

translation quality and consistency (Guerberof, 2009; Plitt and Masselot, 2010; Zampieri

and Vela, 2014).

The ultimate goal of MT systems is to provide translations that can be post-edited with

the least amount of effort by human translators. One of the strategies to improve MT

output quality is to apply APE methods (Knight and Chander, 1994; Simard et al.,

2007a,b). APE methods work under the assumption that some errors in MT systems (e.g.,

incorrect lexical choice, wrong word orderings, erroneous word insertion, deletion) are

recurrent and can be corrected automatically during a post-processing stage thus providing

better output to be post-edited by human experts. APE methods are applied before

human post-editing takes place and, if effective, these methods can increase translators’

productivity.

MT systems primarily make two types of errors – lexical and reordering errors. However,

due to the statistical and probabilistic nature of modelling in SMT, one of the currently

dominant MT paradigms, it is non-trivial to rectify these errors in the SMT models

themselves. Human post-edited data are often used in incremental MT frameworks as

additional training material. However, often this does not fully exploit the potential of

these rich PE data: e.g., PE data may just be drowned out by a large SMT model.

An APE system trained on human post-edited data can serve as an MT post-processing

module which can improve overall performance. An APE system can be considered as an

MT system, translating predictable error patterns in MT output to their corresponding

corrections. In order to automatically post-edit, in part of our research we adopt Phrase-

Based (PB-SMT), Hierarchical Phrase-Based (HPB-SMT) and operation sequence Model

(OSM) for SMT to build our Statistical APE (SAPE) system. Because in the OSM

model the translation and reordering operations are coupled in a single generative story,

the reordering decisions may depend on preceding translation decisions and translation

decisions may depend on preceding reordering decisions. Our OSM-based SAPE model

provides a natural reordering mechanism and deals with both local and long-distance

reorderings consistently. Furthermore, we also develop a DNN-based monolingual neural
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MT (NMT) APE system as well as a system combination based approach to test the

potential of an APE model in commercial environments.

NMT (Kalchbrenner and Blunsom, 2013; Cho et al., 2014b) is a newly emerging approach

to MT. The motivation behind the use of a DNN based approach in our APE task is that

on the one hand DNNs represent language in a continuous vector space which eases the

modelling of semantic (rather than surface) similarities (or distance) between phrases or

sentences, and on the other hand DNNs can also consider contextual information, e.g.,

utilizing all available history information in deciding the next target word, which is not

an easy task to model with standard SMT-based APE systems (Simard et al., 2007b; Pal,

2015).

Unlike the SAPE systems found in the literature (Simard et al., 2007a,b; Pal, 2015; Pal

et al., 2015c), where each individual component (e.g., word alignments, phrase alignments,

language models) is estimated separately, our NNAPE system builds and trains a single

large neural network that accepts a ‘draft’ translation (TLmt) and outputs an improved

translation (TLpe).

Another direction of APE research presented in this chapter explores the use of system

combination in APE. System combination in MT has been studied extensively (Matusov

et al., 2006; Du et al., 2009; Pal et al., 2014c), except in the context of APE. Here we

use system combination architectures at three different levels: (i) sequential combination

between the first-stage system and APE, (ii) combination of multiple alignments at the

level of APE and (iii) parallel combination of APE systems (including the first-stage

MT system). More precisely, our approach makes use of a hybrid implementation of

multiple alignments combined with Phrase-Based SAPE (PB-SAPE) and hierarchical PB-

SAPE (HPB-SAPE) and a system combination framework (a multi-engine pipeline) that

combines the best translations from the enhanced PB-SAPE, HPB-SAPE and the raw

MT output. System combination and hybrid word alignment strategies are commonly

used in MT. However, to the best of our knowledge, the work presented in this chapter

is the first approach to APE that uses system combination and hybrid word alignment

methods in APE.
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5.2 Related Work

APE approaches cover a wide methodological range. Simard et al. (2007a,b) applied

SMT for post-editing that handles the repetitive nature of errors typically made by rule-

based MT (RBMT) systems. The SMT APE system was trained on the output of a

rule-based MT system as the source language and reference human translations as the

target language. This APE system based on PB-SMT, was able to correct systematic

errors produced by the RBMT system and reduce post-editing effort. The approach

achieved large improvements in performance not only over the baseline rule-based system

but also over a similar PB-SMT used in a standalone mode. Denkowski (2015) proposed

a method for real time integration of post-edited MT output into the translation model.

He extracted a grammar for each input sentence and applied it to the model. Rosa et al.

(2012) and Mareček et al. (2011) applied a rule-based approach to APE for English–

Czech MT outputs on the morphological level. They used 20 hand-written rules based

on the most frequent errors encountered in translation. The method efficiently corrects

morpho-syntactic categories of a word such as number, case, gender, and person as well

as dependency labels. Intuitively, integration of source-language information in APE is

useful to improve the APE performance. Béchara et al. (2011) proposed “source-context

aware” APE. The source side of the parallel training data for APE is modified with the

automatically created word alignments between source and MT. This technique results in

a new source language consisting of source–MT joint token pairs. Chatterjee et al. (2015b)

examined the potentiality of two different statistical APE methods: (Simard et al., 2007b)

and (Béchara et al., 2011). They systematically tested these two different APE approaches

in controlled conditions over several language pairs and analyzed them. They found

that inclusion of source language information into statistical APE results in consistent

improvements in all language pairs. To overcome data sparsity issues, Chatterjee et al.

(2015a) proposed a pipeline where the best language model and pruned phrase table are

selected through task-specific dense features.

While various automatic or semi-automatic post-processing techniques to implement cor-

rections of repetitive errors have been developed, the overall resulting MT output usually

still needs to be post-edited by humans in order to produce publishable quality transla-

tions (Roturier, 2009; TAUS/CNGL Report, 2010). Even though MT output needs human
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PE, it is often faster and cheaper to post-edit MT output than to perform human transla-

tion from scratch. In some cases, recent studies have even shown that the quality of MT

plus PE can exceed the quality of human translations (Fiederer and OB́rien, 2009; Koehn,

2009; De Palma and Kelly, 2009) as well as increase productivity. Aimed at cost-effective

and time saving use of MT, the PE process needs to be further optimized (TAUS/CNGL

Report, 2010).

System combination is a technology where multiple translation outputs from potentially

very different MT systems are combined using e.g., confusion networks (Matusov et al.,

2006). The confusion networks are built using backbone selection using either multiple

hypotheses as backbones (Leusch and Ney, 2010) or a single backbone (Rosti et al.,

2007b; Du et al., 2009) using TER (Snover et al., 2006a) or BLEU (Papineni et al.,

2002). These alignment metrics select the hypothesis that agrees most with the other

hypotheses on average. System combination can improve translation quality significantly

which motivated us to apply the system combination strategy for the APE task.

Parra Escartín and Arcedillo (2015a,b) studied the impact of various factors and methods

in APE on productivity gains. However, those studies were not conducted to observe PE

effort in commercial environments.

Recently, a number of papers have presented the application of neural networks in MT (Kalch-

brenner and Blunsom, 2013; Cho et al., 2014a,b; Bahdanau et al., 2015). These approaches

typically consist of two components: an encoder encodes a source sentence and a de-

coder decodes into a target sentence.

In this chapter we present different approaches to APE – PB-SAPE, HPB-SAPE, OSM

based SAPE and neural network based APE (NNAPE). Our NNAPE model is inspired

by the MT work of Bahdanau et al. (2015) which is based on bidirectional recur-

rent neural networks (RNN). Unlike Bahdanau et al. (2015), we use long-short term

memory (LSTM) (Hochreiter and Schmidhuber, 1997) rather than gated recurrent units

(GRU) (Cho et al., 2014b) as hidden units. RNNs allow processing of arbitrary length

sequences. However, they are susceptible to the problem of vanishing and exploding gra-

dients (Bengio et al., 1994). To tackle vanishing gradients in RNNs, two architectures

are generally used: GRU and LSTM. According to empirical studies (Chung et al., 2014;

Józefowicz et al., 2015) the two architectures yield comparable performance. GRUs tend

to train faster than LSTMs. On the other hand, given sufficient amounts of training
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data, LSTMs may lead to slightly better results. Since our task is monolingual and we

have more than 200K sentence pairs (English–Italian Google translate output and the

corresponding PE translation) for training, we use a full LSTM (as the hidden units) to

model our NNAPE system. To the best of our knowledge the NNAPE work presented in

this chapter is the first approach that uses neural networks for APE.

5.3 Hybrid Word Alignment

Previous research in MT demonstrated that a combination of information coming from

multiple word alignment models can improve translation quality. This can be achieved in

different ways, e.g., by combining two bidirectional alignments (Och, 2003; Koehn et al.,

2003; DeNero and Macherey, 2011), combining an arbitrary number of alignments (Tu

et al., 2012; Pal et al., 2013a), or by constructing weighted alignment matrices over 1-best

alignments from multiple alignments generated by different models (Liu et al., 2009; Tu

et al., 2011). This motivated us to explore the alignment combination model for APE.

Our hybrid word alignment method combines word alignments produced by three different

statistical word alignment methods: (i) GIZA++ (Och and Ney, 2003a) word alignment

with the grow-diag-final-and (GDFA) heuristic (Koehn, 2010), (ii) Berkeley word align-

ment (Liang et al., 2006), and (iii) SymGiza++ (Junczys-Dowmunt and Szał, 2012) word

alignment, as well as two different edit distance based word aligners based on TER (Trans-

lation Edit Rate) (Snover et al., 2006a) and METEOR (Lavie and Agarwal, 2007). We

follow (Pal et al., 2013a) in combining word alignment tables. However, we addition-

ally used 3-word (i.e., trigram) consistent phrases to generate more alignment links (cf.

Section 5.3.3). We integrate the word alignments obtained with this hybrid model into

PB-SAPE (Pal et al., 2015c) and HPB-SAPE (Pal, 2015).

5.3.1 Statistical Word Alignment

GIZA++ is a statistical word alignment tool which implements IBM models 1–5, an HMM

alignment model, as well as the IBM-6 model for covering many-to-many alignments.

The Berkeley word aligner uses an extension of Cross Expectation Maximization and

is jointly trained with HMM models. SymGiza++ is a modification of GIZA++. It
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modifies the counting phase of each model of GIZA++ in order to allow for updates

of the symmetrisized models between the iterations of the original training algorithm.

SymGiza++ computes symmetric word alignment models with the capability of taking

advantage of multi-processor systems.

5.3.2 Edit Distance-Based Word Alignment

We use two different edit distance style word aligners where alignments are based on edit

distance style MT evaluation metrics – TER and METEOR.

5.3.2.1 TER Alignment:

TER is an edit distance based automatic MT evaluation metric that measures the ratio

between the number of edit operations that are required to turn a translation hypothesis

H (i.e., the MT output) into a reference translation R (in this case the PE translation)

to the total number of words in R. The allowable edit operations include insertion (I),

substitution (S), deletion (D) and phrase shifts (Sh). As a by-product of finding the

minimum edit distance, TER also produces an alignment between the hypothesis and the

reference. TER is computed as in equation 5.1.

TER(H,R) =
(I +D + S + Sh) ∗ 100%

total number of words in R (5.1)

For the monolingual SAPE task, we make use of TER alignment as a potential alignment

between TLmt and TLpe. The TER alignment between a TLpe and TLmt is illustrated in

the example given below. The vertical bar ‘|’ represents a match and I, D and S represent

three post-editing operations – insertion, deletion and substitution, respectively.

TLmt: w1 w2 w3 ϵ w4 w5 w6 w7 w8 w9

| D S I | | S | | |

TLpe: w̄1 ϵ w̄2 w̄3 w̄8 w̄4 w̄5 w̄6 w̄7 w̄9
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5.3.2.2 METEOR Alignment

METEOR (Lavie and Agarwal, 2007) is an automatic MT evaluation metric which pro-

vides an alignment between a H and R. Given a pair of strings H and R to be compared,

the alignment is a mapping between the words in H and R, which is built incrementally

by three sequences of word-mapping modules:

(i) Exact: maps if the words are exactly the same.

(ii) Porter stem: maps if the words are the same after stemming.

(iii) WN synonymy: maps if the words are synonyms in WordNet. (Miller, 1995).

If multiple alignments exist, METEOR selects the alignment for which the word order in

the two strings is most similar (i.e. the alignment which has the fewest number of crossing

alignment links). The final alignment is produced as the union of alignments from the

three stages (i.e., Exact, Porter stem and WN synonymy).

5.3.3 Producing Additional Alignments

To generate additional alignment points between parallel sentence pairs, we perform

phrase extraction Koehn et al. (2003)1 between Tmt and Tpe. We extract all phrase

pairs, Tmt phrase (e) and Tpe phrase (ē), that are continuous and consistent with the edit

distance based monolingual alignments. This phrase extraction process is performed indi-

vidually for both TER and METEOR based alignments. A phrase pair (e, ē) is consistent

with alignment a if Equation 5.2 is satisfied.

(∀wi ∈ e : (wi, x) ∈ a ∧ x ∈ ē) ∧ (∀w̄i ∈ ē : (y, w̄i) ∈ a ∧ y ∈ e) (5.2)

Unaligned words in a phrase pair are aligned to all the phrase internal words in the other

language. Figure 5.2 depicts the process of generating additional alignments where the

solid links represent edit distance based alignments and the dotted links represent the

newly established alignments. The newly established alignment points are added to the

corresponding (i.e., TER or METEOR) alignment matrix.

1For this task, we use 3-words phrases.
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Figure 5.2: Producing additional alignments (wi–w̄j , wi–w̄j+1)

5.3.4 Alignment Hybridization

The alignment hybridization method follows the following heuristic. We consider either

of the alignments generated by GIZA++ with the grow-diag-final-and heuristic (Koehn,

2010) (a1), Berkeley aligner (a2), or SymGiza++ (a3) as the standard alignment since

edit distance based alignments, TER (a4) and METEOR, fail to align many words in the

monolingual MT–PE parallel sentences. From the five alignments a1–a5, we compute the

alignment combination as follows.

Algorithm 4: Producing alignment combination

• Step 1: Choose a standard alignment (Sa) from a1, a2 or a3 (Sa ← Empirically

best preforming aligner among the individual aligners (a1, a2 or a3)).

• Step 2: Produce a combined alignment Sc = Sa ∪ (a2 ∩ a3), if a1 is considered as

Sa.

• Step 3: Delete all the alignment points aij ∈ Sc such that ∃aik ∈ a4 ∪ a5 where

j ̸= k.

• Step 4: Update Sc as Sc = Sc ∪ a4 ∪ a5.

5.4 Phrase-Based SAPE

Our PB-SAPE system is modelled similar to the PB-SMT, in which the post-edited trans-

lation (TLpe), eL1 = e1...ei...eL for a given MT translation (TLpe), fJ
1 = f1...fj ...fJ is
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chosen to maximize Equation (5.3):

argmaxL,eL1
P (eL1 |fJ

1 ) = argmaxL,eL1
P (fJ

1 |eL1 ) ∗ P (eL1 ) (5.3)

where P (fJ
1 |eL1 ) is the SAPE translation model and P (eL1 ) the target language model. In

log-linear phrase-based SAPE, the posterior probability is directly modeled as a log-linear

combination of features (Och and Ney, 2003a), involving M translation features, and the

language model, as in Equation (5.4):

logP (eL1 |fJ
1 ) =

M∑
m=1

λmhm(fJ
1 , e

L
1 , s

k
1) + λLM logP (eL1 ) (5.4)

where sk1 = s1 . . . sk denotes a segmentation of the (TLmt) and (TLpe) sentences

respectively into the sequences of phrases (êk1 = ê1 . . . êk ) and (f̂k
1 = f̂1 . . . f̂k ) such

that (we set i0 = 0) in Equation (5.5):

∀1 ≤ k ≤ K, (5.5)

sk = (ik, bk, jk),

êk = eik−1+1...eik

f̂k = fbk ...fjk

and each feature ĥm in Equation (5.4) can be rewritten as in Equation (5.6):

hm(fJ
1 , e

L
1 , s

k
1) =

K∑
k=1

ĥm(f̂k, êk, sk) (5.6)

where ĥm is a feature that applies to a single phrase-pair. It thus follows in Equation (5.7):

M∑
m=1

λm

K∑
k=1

ĥm(f̂k, êk, sk) =
K∑
k=1

ĥ(f̂k, êk, sk) (5.7)

where ĥ =
∑K

k=1 λm ĥm.
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5.5 Hierarchical Phrase-based SAPE

Hierarchical PB-SMT is based on Synchronous Context Free Grammar (SCFG) (Aho and

Ullman, 1969). SCFG rewrites rules on the right-hand side with aligned pairs (Chiang,

2007).

X →< γ, α,∼> (5.8)

where X represents a non-terminal, γ, α represent sequences of both terminal and non-

terminal strings and ∼ represents an one-to-one correspondence between occurrences of

non-terminals appearing in γ and α.

The weight of each rule is defined as:

w(X →< γ, α,∼>) =
∏
i

ϕi(X →< γ, α,∼>)λi (5.9)

where ϕi is a feature defined for each rule and λi is the weight of ϕi. The features are

associated with four probabilities: phrase probabilities P (γ|α), P (α|γ), lexical weights

Pw(γ|α), Pw(α|γ) (estimate how well the words in α translate the words in γ ) and a

phrase penalty exp(−1).

There exist two additional rules called “glue rules” or “glue grammar”:

S →< SX,SX > (5.10)

S →< X,X > (5.11)

These rules are used when no rules match or the span exceeds a certain length. These

rules simply monotonically connect translations of two adjacent blocks together.

The weight of the above rules is defined as:

w(S →< SX,SX >) = exp(−λg) (5.12)
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where λg controls the model’s preference for hierarchical phrases over a serial combination

of phrases.

The weight (w(dg)) of the derivation grammar (dg) for generated source (fd) and target

(ed) strings, is the product of the weights of the rules used in translation w(r), language

model probability Plm and the word penalty exp(−λwp|e|) with some control over the

length of the target output (e). The representation of dg can be defined as a triplet

< r, i, j >, where, r is the grammar rule to rewrite a non-terminal that spans f j
di

on the

source side.

w(dg) =
∏

<r,i,j>∈dg

w(r)× P λlm
lm × exp(−λwp|e|) (5.13)

5.6 OSM based APE

Our OSM based SAPE system is based on an n-gram operation sequence model (Durrani

et al., 2015) which integrates translation and reordering operations into the phrase-based

APE system. Traditional PB-SMT (Koehn et al., 2003) provides a powerful transla-

tion mechanism which can be directly used to model a PB-SAPE system (Simard et al.,

2007a,b; Pal et al., 2015c) using TLmt–TLpe as the parallel training corpus. Like PB-SMT,

PB-SAPE is subject to drawbacks such as ignoring some dependencies among neighbor-

ing phrases and a limited capability of handling discontinuous phrases. Our OSM-APE

system is based on the phrase-based n-gram APE model. However, the reordering ap-

proach is essentially different: it considers all possible orderings of phrases instead of

pre-calculated orientations. The model represents the automatic post-editing (monolin-

gual translation) process as a linear sequence of operations such as the lexical generation

of post-edited translation and their orderings. The translation and reordering decisions

are conditioned on n previous translation and reordering decisions. The model is able to

consistently model both local and long-range reorderings. Traditional OSM based MT

models use a sequence of three operations:

• Generation of a sequence of source and/or target words.

• For reordering operations, insertion of gaps at explicit target positions.
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• Forward and backward jump operations

The sequence operation is based on n-gram models. The probability of the nth operation

depends on the n− 1 preceding operations. For generating TLpe from a given TLmt, the

decoder provides a sequence of hypotheses H: h1,...,hn and the APE model estimates the

probability p(TLmt, TLpe) (cf. Equation 5.14), using a sequence of I operations o1, ...oI

given m words2 of context.

p(TLmt, TLpe) ≈
I∏

i=1

p(oi|oi−m+1...oi−1) (5.14)

The decoder searches for the best translation (pe∗) as in Equation 5.15 using the language

model plm(TLpe),

pe∗ = argmax{TLpe}
p(TLmt, TLpe)

ppr(TLpe)
× plm(TLpe) (5.15)

where ppr(pe) ≈
∏I

i=1 p(wi|wi−m+1...wi−1), is the prior probability that marginalizes

the joint probability p(TLmt, TLpe). The model is then represented in a log-linear ap-

proach (Och and Ney, 2003a) (in Equation 5.16) that makes it useful to incorporate

standard features along with several novel features that improve accuracy.

pe∗ = argmax{TLpe}

I∑
i=1

λihi(TLmt, TLpe) (5.16)

λi is the weight associated with the feature hi(TLmt, TLpe): p(TLmt, TLpe), ppr(TLpe)

and plm(TLpe). Apart from this, eight additional features were included in the log-linear

model:

1. Length penalty: Length penalty based on the length of TLpe in terms of number of

words.

2. Deletion penalty.

3. Gap bonus: Total number of gaps inserted to produce the TLpe sentence.

4. Open gap penalty: Number of open gaps; this penalty controls how quickly the gap

was closed.
2We use a 6-gram model trained on SRILM-Toolkit (Stolcke, 2002)
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5. Distortion: Distance based reordering that is similar to PB-SMT.

6. Gap distance penalty: The gap between TLmt and TLpe sentences generated during

the generation process.

7. Lexical features: TLmt–TLpe and TLpe–TLmt lexical translation probabilities (Koehn

et al., 2003).

5.7 System Combination for APE

The system combination framework selects the best translation hypothesis from multiple

hypotheses produced by different systems. In order to apply the system combination

framework on the translations produced by our SAPE systems and the baseline MT sys-

tem3, we implemented Minimum Bayes Risk (MBR) coupled with the Confusion Network

(MBRCN) framework as described in Du et al. (2009). The MBR decoder (Kumar and

Byrne, 2004) selects for each input sentence the best of the three system outputs by min-

imizing the BLEU (Papineni et al., 2002) loss. This output is known as the backbone. A

confusion network (Matusov et al., 2006) is built from the backbone while the remaining

hypotheses are aligned against the backbone using edit-distance based alignment methods

(cf. Section 5.3.2). The features used to score each arc in the confusion network (CN) are

word posterior probability, target language model and length penalty. Minimum Error

Rate Training (MERT) (Och, 2003) is applied to tune the CN weights. In our experiments,

both APE hypotheses – PB-SAPE and HPB-SAPE – and the baseline Google Translate

(GT) output are passed on to the system combination framework which produces the final

system combination output (SC-APE).

5.8 Neural Network based APE

Our NNAPE system is based on a bidirectional (forward-backward) RNN based encoder-

decoder4 (Bahdanau et al., 2015). Our NNAPE model encodes a variable-length TLmt

3We used Google Translate as our baseline MT for the experiments reported in this chapter.
4We used GroundHog (https://github.com/lisa-groundhog/GroundHog) to build our NNAPE sys-

tem.
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Figure 5.3: Generating the tth TLpe word yt for a given TLmt (x) by our NNAPE
System. We followed the same graphical architecture described in Bahdanau et al. (2015).

sequence (e.g. x = x1, x2, x3...xm) into a fixed-length vector representation and then de-

codes a given fixed-length vector representation back into a variable-length TLpe sequence

(e.g. y = y1, y2, y3...yn). Input and output sequence lengths, m and n, may differ. In

our experiment, using an attention mechanism, we applied variable-length vector repre-

sentations for the encoder, which is found beneficial as described in (Bahdanau et al.,

2015).

A Bidirectional RNN encoder consists of forward and backward RNNs. The forward RNN

encoder reads in each x sequentially from x1 to xm and at each time step t. The hidden

state ht of the RNN is updated by using a non-linear activation function f (Equation

5.17), an elementwise logistic sigmoid with an LSTM unit.

ht = f(ht−1, xt) (5.17)

Similarly, the backward RNN encoder reads the input sequence and calculates hidden

states in reverse (i.e. xm to x1 and hm to h1 respectively). After reading the entire input

sequence, the hidden state of the RNN is provided a summary c context vector (‘C’ in

Figure 5.3) of the whole input sequence.

The decoder is another RNN trained to generate the output sequence by predicting the

next word yt given the hidden state ηt and the context vector ct (c.f., Figure 5.3). The
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hidden state of the decoder at time t is computed as given below.

P (yt|y1, ...yt−1,x) = f(ηt, yt−1, ct) (5.18)

ηt = f(ηt−1, yt−1, ct) (5.19)

The context vector ct can be computed as

ct =

m∑
i=1

αtihi (5.20)

Here, αti, is the weight of each hi and can be computed as

αti =
exp(eti)∑m
j=1 exp(etj)

(5.21)

where eti = a(ηt−1, hi) is an alignment model which provides a matching score between

the inputs around position i and the output at position t. The alignment score is based on

the ith annotation hi of the input sentence and the RNN hidden state ηt−1. The alignment

model itself is a feedforward neural network which directly computes a soft alignment that

allows the gradient of the cost function to be backpropagated through. The gradient is

used to train the alignment model as well as the TLmt–TLpe translation model jointly.

The alignment model is computed m× n times as follows:

a(ηt−1, hi) = vTa tanh(Waηt−1 + Uahi) (5.22)

where Wa ∈ Rnh×nh , Ua ∈ Rnh×2nh and va ∈ Rnh are the weight matrices of nh hidden

units.

In equation 5.21, the probability αti reflects the importance of the annotation hi with

respect to the previous hidden state ηt−1 in deciding the next state ηt and generating yt.

This informs the decoder in deciding which parts of the source sentence to pay attention

to. This implements a mechanism of attention in the decoder and relieves the encoder to

encode all information in the source sentence into a fixed length vector by incorporating

an attention mechanism in the decoder.
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5.9 Experiments with English–Italian Data

We evaluated our APE models on an English–Italian APE task, which is detailed in the

following subsections. We evaluated our NNAPE system and System Combination based

APE system using two different experimental setups on the same data.

5.9.1 Data

The training data used for the experiments was developed in the MateCat5 project and

consists of 312K TLmt–TLpe parallel sentences. The parallel sentences are English to Ital-

ian MT output and their corresponding (human) post-edited Italian translations. Google

Translate (GT) is the MT engine which provided the original Italian TLmt output6. The

data translated by GT and post-edited by human translators includes sentences from the

Europarl corpus as well as news commentaries and are mixed with company client data.

Since the data contains some non-Italian sentences, we applied automatic language iden-

tification (Shuyo, 2010) in order to select only Italian sentences. Automatic cleaning and

pre-processing of the data was carried out by sorting the entire parallel training corpus

based on sentence length, filtering the parallel data on maximum allowable sentence length

of 80 tokens and sentence length ratio of 1:2 (either direction), removing duplicates and

applying tokenization and punctuation normalization using Moses (Koehn et al., 2007)

scripts. After cleaning the corpus we obtained a sentence-aligned TLmt–TLpe parallel

corpus containing 213,795 sentence pairs. We randomly extracted 1,000 sentence pairs

each for the development set and test set from the pre-processed parallel corpus and used

the remaining 211,795 sentences as the training corpus for the APE engines. The training

data features 57,568 and 61,582 unique words in TLmt and TLpe, respectively. We chose

the 40,000 most frequent words from both TLmt and TLpe to train our NNAPE model.

The remaining words, which are not among the most frequent words, are replaced by a

special token ([UNK]). Our NNAPE model was trained for approximately 35 days, which

is equivalent to 2,000,000 updates with GPU settings.

5https://www.matecat.com/
6Data for conducting the experiments and manual evaluation were shared by Translated SRL, Rome,

Italy. The Italian translation were produced using Google Translate before the year 2013.
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5.9.2 Experimental Settings for NNAPE

Our bidirectional RNN Encoder-Decoder contains 1,000 hidden units for the forward back-

ward RNN encoder and 1,000 hidden units for the decoder. The network can be thought of

as a multilateral neural network with a single maxout unit as a hidden layer (Goodfellow

et al., 2013) to compute the conditional probability of each target word. The word embed-

ding vector dimension is 620 and the size of the maxout hidden layer in the deep output is

500. The number of hidden units in the alignment model is 1,000. The model was trained

on a mini-batched stochastic gradient descent (SGD) with ‘Adadelta’ (Zeiler, 2012). The

main reason behind the use of ‘Adadelta’ was to automatically adapt the learning rate of

each parameter (ϵ = 10−6 and ρ = 0.95). Each SGD update direction is computed using

a mini-batch of 80 sentences.

We compare our NNAPE system with state-of-the-art phrase-based (Simard et al., 2007b)

as well as hierarchical phrase-based APE (Pal, 2015) systems. We also compare the output

provided by our system against the original Google Translate output. For building our

phrase-based and hierarchical phrase-based APE systems, we set maximum phrase length

to 7. A 5-gram language model built using KenLM (Heafield, 2011) was used for decoding.

We used the Italian human post-edited data (i.e., TLpe used for APE training) to build the

5-gram language model. System tuning was carried out using both k-best MIRA (Cherry

and Foster, 2012) and Minimum Error Rate Training (MERT) (Och, 2003) on the held-out

development set (devset) (see Section 4.9.3 in Chapter 4). After parameters were tuned,

decoding was carried out on the held-out test set.

5.9.3 Evaluation of the NNAPE System

The performance of the NNAPE system was evaluated using both automatic and human

evaluation as described below.

5.9.3.1 Automatic Evaluation

The output of the NNAPE system on the 1,000 test set sentences was evaluated using

three MT evaluation metrics: BLEU (Papineni et al., 2002), TER (Snover et al., 2006a)
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and METEOR (Denkowski and Lavie, 2011). Table 5.1 provides a comparison of the per-

formance of our neural APE model against the baseline phrase-based APE (S1), baseline

hierarchical phrase-based APE (S2) and the original GT output. We use a, b, c, and

d in Table 5.1 for GT, S1, S2 and our NNAPE system (NN), respectively, to indicate

statistical significance. For example, the S2 BLEU score 63.87a,b in Table 5.1 signifies

that the improvements provided by S2 in BLEU over Google Translate and phrase-based

APE are statistically significant. Table 5.1 shows that S1 provides statistically significant

(0.01 < p < 0.04) improvements over GT across all metrics. Similarly S2 yields statisti-

cally significant (p < 0.01) improvements over both GT and S1 across all metrics. The

NN system performs best and results in statistically significant (p < 0.01) improvements

over all other systems across all metrics. A systematic trend (NN > S2 > S1 > GT ) can

be observed in Table 5.1 and the improvements are consistent across the different metrics.

The relative performance gain achieved by NN over GT is the highest in TER.

System BLEU TER METEOR

GT (a) 61.26 30.94 72.73

S1 (b) 62.54a 29.49a 73.21a
S2 (c) 63.87a,b 28.67a,b 73.63a,b
NN (d) 65.22a,b,c 27.56a,b,c 74.59a,b,c

Table 5.1: Automatic evaluation.

5.9.3.2 Human Evaluation

Human evaluation was carried out by four native speakers of Italian who all had between

one and two years of professional translation experience. Since human evaluation is very

costly and time consuming, it was carried out on a small portion of the test set consisting of

145 randomly sampled sentences where the NNAPE output differed from the GT output

and the NNAPE system was only compared with the original GT output. We used a

polling scheme with three different options. Translators were asked to choose the better

of the two (GT or NN) outputs. They were also provided the ‘uncertain’ option in case

of a tie. To avoid bias towards any particular system, the order in which the two system

outputs were presented was randomized so that the translators did not know which system

they were voting for.
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We analyzed the outcome of the voting process (four translators each giving 145 votes) and

found that the winning NN system received 285 (49.13%) votes compared to 99 (17.07%)

votes received by the GT system, while the rest of the votes (196, 33.79%) went to the

‘uncertain’ option (cf. Figure 5.4). We measured pairwise inter-annotator agreement

Figure 5.4: Polling outcome of NNAPE vs GT

between the translators by computing Cohen’s κ coefficient (Cohen, 1960) reported in

Table 5.2. The overall κ coefficient is 0.330. According to Landis and Koch (1977) this

correlation coefficient can be interpreted as fair.

Cohen’s κ T1 T2 T3 T4

T1 -

T2 0.141 -

T3 0.424 0.232 -

T4 0.398 0.540 0.248 -

Table 5.2: Pairwise correlation between translators in the evaluation process.

5.9.3.3 Analysis

The results of both automatic and human evaluation revealed that NNAPE provides

additional performance gains over phrase-based and hierarchical SAPE approaches. On

manual inspection we found that the NNAPE system drastically reduced the error of
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wrong preposition insertion and deletion in Italian GT output and was also able to handle

the improper use of prepositions and determiners (e.g. “states”→ “dei stati”, “the states”

→ “gli stati”). The use of a bidirectional RNN neural model makes the model sensitive

towards contexts. Moreover, NNAPE captures global reordering by capturing contextual

features which helps to reduce word ordering errors to some extent.

5.9.4 Experimental Settings for System Combination based APE

In our APE experiments we first integrated the hybrid word alignment model (cf. Sec-

tion 5.3) into the SAPE engines modelled with PB-SMT (Koehn et al., 2003) and hier-

archical PB-SMT (HPB-SMT) (Chiang, 2005). For building our statistical APE system,

we used a maximum phrase length of 7 and a 5-gram language model trained using

KenLM (Heafield, 2011). We use the Italian human post-edited data to build 5-gram

language model. Model parameters were tuned using MERT (Och, 2003) on the held-out

development set.

5.9.5 Evaluation for System Combination based APE

During evaluation we take into consideration the output produced by all three APE

systems: PB-SAPE with hybrid word alignment, HPB-SAPE with hybrid word alignment

and the system combination system (SC-APE) which also includes the output from the

first stage system Google MT. We use a PB-SAPE system with GIZA++ alignment as a

baseline APE system. The evaluation was carried out in two ways: automatic evaluation

and human evaluation of the 1,000 test set sentences automatically post-edited by the

SAPE systems. Out of the 1,000 test set sentences, the outputs of the system combination

based final post-editing system (SC-APE) were different from the raw Google Translate

translation output for 198 sentences, i.e., only 19.8% of the GT translations are post-edited

by the SC-APE system, the remaining sentences are not affected by APE. The entire test

set was evaluated with automatic evaluation metrics while only the 198 sentences were

subjected to human evaluation.
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5.9.5.1 Automatic Evaluation

We evaluated the APE systems using three well-known automatic MT evaluation met-

rics: BLEU, METEOR and TER. We also performed sentence level BLEU evaluation.

Table 5.3 provides a comparison in terms of sentence level BLEU evaluation of the individ-

ual APE systems. Based on sentence level BLEU scores, the evaluation results presented

in Table 5.3 show that 159 out of the 198 translations provided by the SC-APE are of

better quality than the GT output. However, for the other 39 translations, the GT output

is of better quality than the APE output. This may be partly due to the fact that the

human post-edited reference translations are biased towards GT output. However, man-

ual analysis revealed that some of these 39 GT translations are indeed better than the

corresponding APE translations. Overall, PB-SAPE, HPB-SAPE and SC-SAPE provide

gains over GT ((APE−GT )/1000) in terms of translation quality in 0.9%, 3.7% and 12%

of the cases, respectively, as measured by S-BLEU.

Systems APE GT Tie % Gain % Loss

PB-SAPE (HWA) 65 56 879 6.5% 5.6%

HPB-SAPE (HWA) 91 54 855 9.1% 5.4%

SC-APE 159 39 802 15.9% 3.9%

Table 5.3: Automatic evaluation using Sentence-BLEU over 1,000 test set sentences;
% Gain = APE

1000 & % Loss = GT
1000

Table 5.4 provides a comparison between the baseline PB-SAPE based on GIZA++ word

alignment, PB-SAPE and HPB-SAPE based on hybrid word alignment (HWA), SC-APE

and GT. The comparison is carried out in terms of BLEU, METEOR and TER scores.

A general trend can be observed across all metrics. The baseline PB-SAPE system fails

to improve over GT, while HWA based PB-SAPE, HPB-SAPE and SC-APE improve the

translation quality over GT according to all metrics. Among the three HWA based APE

systems, SC-APE performs best followed by HPB-SAPE and PB-SAPE in all metrics. The

SC-APE system provides 5.9%, 11% and 2.4% relative improvements over GT in BLEU,

TER and METEOR, respectively, and all these improvements are statistically significant

(p < 0.01) over all. The HPB-SAPE system also provides promising improvements (4.2%,

7.3% and 1.2% in BLEU, TER and METEOR, respectively) over GT while PB-SAPE

system yields modest improvements.
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Metric PB-SAPE PB-SAPE HPB-SAPE SC-APE GT

(Baseline) (HWA) (HWA) (First-Stage MT)

BLEU 59.90 62.70 63.87 64.90 61.26

TER 33.52 29.92 28.67 27.52 30.94

METEOR 69.54 73.31 73.63 74.54 72.73

Table 5.4: Automatic evaluation of the systems over 1,000 test set sentences.

5.9.5.2 Human Evaluation

The human evaluation process was carried out with four professional translators by intro-

ducing a polling system. The evaluation was carried out with the same poling system and

same translators as described in Section 5.9.3.2. The polling system offered each voter

three choices for every source English segment. Two of these options correspond to two

different translation options. Translators act as voters and make a choice between the

SC-APE output and the GT first-stage translation, based on whichever translation option

they find better and more suitable for post-editing. Translators were also provided with

a third option called uncertain (U), applicable whenever they are uncertain about which

translation is better, i.e. when they deem both the GT and APE translations to be of

equal quality (including equally unusable).

Table 5.5 shows the results of the polling scheme (human evaluation) of the raw GT

output compared to the final automatic post-editing (SC-APE) output. The values in

the table represent how many translations were chosen by each translator for individual

systems. The polling based evaluation was carried out with 145 (of the 198) sentences.

We discarded sentences containing fewer than six words (either in their source or their

translation). Table 5.5 shows that translators preferred APE output over the raw MT

output. Translators did not have any knowledge about which translations were from which

system as the two translation options were presented to them in a random order. The

winning APE system received on an average 49.3% votes compared to 17% votes received

by the GT system, while 33.7% votes were neutral as the translators were undecided for

those sentences.

The SC-APE system received a total of 280 votes and it received votes from at least

one translator for 105 unique segments, while GT received 112 total votes for 61 unique

segments and 188 votes were received for 94 unique segments for the uncertain category.
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After detailed analysis we found that all four translators agreed on 27 APE translations,

6 GT translation and 9 neutral cases among the 145 sentences.

Translator Degree Expertise
Experience

in years
APE GT U

T1 Translation EN,FR → IT 1 91 22 32

T2
Linguistic and

Cultural Studies

EN,FR,

ES, CA → IT
2 57 17 71

T3
European

Languages and

Cultures

EN, FR,

ES, DE → IT
1 72 37 36

T4
Business &

Administration
EN → IT 1 65 23 58

Table 5.5: Outcome of polling with four expert translators for 145 sentences.
(EN:English, DE:German, FR:French, ES:Spanish, CA:Catalan, IT:Italian).

For the 145 sentences, we measured pairwise inter-annotator agreements between the

translators by computing Cohen’s κ coefficient Cohen (1960). The overall κ coefficient was

0.331. According to Landis and Koch (1977) this correlation coefficient can be interpreted

as fair.

5.9.5.3 Time and Productivity Gain Analysis

In order to investigate the effectiveness of the APE system in terms of time and produc-

tivity gains, a completely new test set was distributed among the four translators. The

new test data consisted of real-life client segments consisting of 119 sentences with total

3,120 words in the same domain. SC-APE and GT translations were presented separately

to the translators within their daily usage interface (MateCat).

Table 5.6 shows the statistics of how much time on average each individual translator took

for the post-editing task. Table 5.6 also shows the average number of words (per minute,

day) post-edited by each translator. We calculated productivity gain by comparing column

2 (SC-APE) with column 3 (GT) in Table 5.6. Table 5.6 shows that SC-APE improved the

productivity of the translators in general. Among the four translators, SC-APE resulted

in improved productivity for three translators (T1, T2 and T3), while for one translator
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(T4) it seems to have resulted in a productivity loss. If we look at the seconds/word,

words/minute, and words/hour measures on the GT data for the four translators, it is

easily noticeable that T1 is the most efficient post-editor among them, followed by T2,

T4 and T3. However, when the translators worked on the SAPE output, T2 was found to

be the most productive while T4 was found to be the least productive. The productivity

changes varied from 46.6% to -40%, which indicates that the utility of SAPE also varies

from person to person. However, even taking into account the negative productivity of T4,

average productivity increased 12.96% with SC-APE. One thing to be noted here is that

the productivity loss of T4 should possibly not be considered for evaluation. We spoke

to T4 after the evaluation and found that the translator was not solely concentrating on

the post-editing job, instead switching amongst different jobs.

SC-APE GT

secs words words secs words words Gain % Gain

/word /min /hour /word /min /hour /hour

T1 2.81 21 1260 2.92 20 1200 60 5.0

T2 2.7 22 1320 3.88 15 900 420 46.6

T3 4.82 12 720 6.75 9 540 180 33.3

T4 9.80 6 360 5.84 10 600 -240 -40.0

Table 5.6: Post editing statistics over GT and SC-APE.

We also conducted a detailed evaluation of the post-editing carried out by the four trans-

lators. The results are reported in Table 5.7. Column 2 (fine grained evaluation score) in

Table 5.7 shows the average of scores assigned to each translator by MateCat based on

5 criteria: tag issues (mismatches, white spaces), translation errors (mistranslation, ad-

ditions/omissions), terminology and translation consistency, language quality (grammar,

punctuation, spelling) and style (readability, consistent style and tone). MateCat also

classifies each translator to one of the 4 performance levels7 – excellent (3), acceptable

(2), poor (1) and fail (0), for each of the above mentioned 5 criteria. Column 3 (weight

based on quality) shows the sum of the scores indicating performance levels for the 5

criteria. By multiplying the values in column 2 and column 3, we arrive at the final

assessment score assigned to each translator.

7http://www.matecat.com/support/revising-projects/revising-translation-jobs/
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Fine grained Weight based Final Assessment

Evaluation score (sf) on quality (wq) fa = sf × wq

T1 4.46 7 31.22

T2 4.44 6 26.64

T3 1.33 2 2.66

T4 2.74 1 2.74

Table 5.7: Assessment of the post-editors based on their performance and quality.

By weighting the percentage gain (cf. last column in Table 5.6) with the final assessment

scores (cf. last column in Table 5.7), as in Equation 5.23, we obtain an average produc-

tivity increase of 21.76%. Even considering the negative productivity of T4, this overall

productivity gain is significant.

average productivity gain =

∑4
i=1 gaini × fai∑4

i=1 fai
(5.23)

5.10 Experiment with English–German Data

The MT outputs provided by the WMT-2016 APE task (Turchi et al., 2016; Bojar et al.,

2016) (c.f. Table 5.8) are considered as the first-stage MT system translation. The

training data consist of 12K triplets of source (SL), MT output (TLmt) and human post-

edits (TLpe). The description of the released data are detailed in Bojar et al. (2016). For

building our SAPE system, we experimented with various maximum phrase lengths for

the translation model and n-gram settings for the language model. We found that using

a maximum phrase length of 10 for the translation model and a 6-gram language model

produced the best results in terms of BLEU (Papineni et al., 2002) scores.

The experimental settings for building our APE system include word alignment between

TLmt and TLpe trained on three different aligners: Berkeley Aligner (Liang et al., 2006),

METEOR aligner (Lavie and Agarwal, 2007) and TER (Snover et al., 2006a). We used

phrase-extraction (Koehn et al., 2003) and hierarchical phrase-extraction (Chiang, 2005)

to build our PB-SAPE and hierarchical phrase-based statistical (HPB-SAPE) system

respectively. The reordering model for PB-SAPE was trained with the hierarchical,

monotone, swap, left-to-right bidirectional (hier-mslr-bidirectional) method (Galley and
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Manning, 2008) and conditioned on both source and target language. The 5-gram tar-

get language model was trained using KenLM (Heafield, 2011) on TLpe training data.

We performed smoothing of the phrase table using the Good-Turing smoothing tech-

nique (Foster et al., 2006). System tuning was carried out using Minimum Error Rate

Training (MERT) (Och, 2003) optimized with k-best MIRA (Cherry and Foster, 2012)

on a held-out development set of 500 sentences randomly extracted from the training

data. Therefore, all models were built on 11,500 parallel TLmt–TLpe sentences. After the

parameters were tuned, decoding was carried out on the held-out development set (‘Dev’

in Table 5.8) as well as on the test set.

Table 5.8 presents the statistics of the training, development and test sets released for

the English–German APE Task organized in WMT-2016. These data sets did not require

any preprocessing in terms of encoding or alignment.

SEN Tokens

EN DE-MT DE-PE

Train 12,000 201,505 210,573 214,720

Dev 1,000 17,827 19,355 19,763

Test 2,000 31,477 34,332 35,276

Table 5.8: Statistics of the WMT-2016 APE Shared Task Data Set. SEN: Sentences,
EN: English, DE: German.

We carried out various experiments with different settings using this dataset and the re-

sults obtained on the development set are reported in Table 5.9. In the set of experiments

reported in Table 5.9, three word alignment models – one statistical based aligner i.e.,

the Berkeley aligner (Liang et al., 2006) and two edit distance based aligners i.e., the

METEOR aligner (Lavie and Agarwal, 2007) and the TER aligner (Snover et al., 2006a),

are integrated separately within both PB-SAPE and the HPB-SAPE systems which re-

sulted in three different PB-SAPE (Experiment 2, 3 and 4 in Table 5.9) and HPB-SAPE

(Experiment 5, 6 and 7 in Table 5.9) systems. These systems are compared against the

raw MT output (Baseline in Table 5.9).

It is evident from Table 5.9 that in this task the METEOR aligner performs better than the

other two aligners. Therefore, we used METEOR based alignment for our OSM based PB-

SAPE model (‘OSM’ in Table 5.9). The experiment results show that compared to other

systems in Table 5.9 the OSM based model performs better in terms of BLEU (Papineni
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et al., 2002), TER and METEOR. Evaluation results also reveal that both PB-SAPE and

HPB-SAPE system perform better than the baseline system on the development set data.

The OSM system achieves 3.06% relative (1.99 absolute BLEU points) improvement over

the baseline.

System Exp. BLEU MET TER

Baseline WMT MT-PE 1 65.02 47.79 24.42

PB-SAPE

Berkeley Aligner 2 65.89 48.23 24.51

METEOR Aligner 3 65.97 48.34 24.36

TER Aligner 4 65.14 47.85 24.96

HPB-SAPE

Berkeley Aligner 5 66.09 48.31 24.56

METEOR Aligner 6 66.55 48.58 24.51

TER Aligner 7 65.19 47.91 24.97

OSM METEOR Aligner 8 67.01 48.80 24.04

Table 5.9: Systematic Evaluation on the WMT-2016 APE Shared Task Development
Set

Table 5.10 presents the evaluation results obtained on the test set. According to the

test set evaluation, our system achieves similar improvements to those seen when using

the development set data. Two baseline systems are reported in Table 5.10; Baseline1

represents the raw MT output and Baseline2 is based on Statistical APE (Simard et al.,

2007b) (a phrase-based system (Koehn et al., 2007) built using Moses8 with default set-

tings). Two different systems – OSM_Primary and OSM_Constrastive were submitted

to the WMT-2016 APE shared task. The difference between the two submissions is that

the OSM_Primary system was tuned with all phrase-based setting parameters including

OSM parameters while OSM_Constrastive was also tuned with similar parameters but

excluding OSM parameters. The tuning process of the OSM parameters is conducted

with MERT and optimized with MIRA. Our primary submission obtained a BLEU score

of 64.10 (1.99 absolute points and 3.2% relative improvement in BLEU) and a TER score

of 24.14 (0.66 absolute points and 0.25% relative improvement in TER) over Baseline1.

Compared to the Baseline2 system, our primary submission achieved 0.63 absolute points

and 0.99% relative improvement in BLEU and 0.50 absolute points and 0.20% relative

improvement in TER.

8http://www.statmt.org/moses/
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System BLEU TER

Baseline1 62.11 24.76

Baseline2 63.47 24.64

OSM_Primary 64.10 24.14

OSM_Constrastive 64.00 24.14

Table 5.10: Evaluation on the WMT-2016 APE Shared Task Test Set

5.11 Conclusions and Future Work

We applied different approaches to APE on two different datasets (English–Italian and

English–German). We tested the NNAPE and SC-APE systems on the English–Italian

dataset. The OSM based APE system was evaluated on the English–German WMT 2016

APE dataset.

The NNAPE system provides statistically significant improvements over existing state-of-

the-art APE models and produces significantly better translations than GT which is a very

strong first-stage MT system and very difficult to beat. This enhancement in translation

quality through APE should reduce human PE effort. Human evaluation revealed that

the NNAPE generated PE translations contain fewer lexical errors and more importantly

NNAPE rectifies erroneous word insertions and deletions, and improves word ordering.

We evaluated our system in a real-life setting in a commercial environment to analyze

time and productivity gain provided by the proposed automatic post-editing. We found

an average productivity gain of 21.76% for English–Italian APE (Pal et al., 2016b). This

addresses RQ5 (“To what extent is an APE system able to reduce final post-editing effort

in terms of increasing productivity?”) raised at the beginning of this chapter.

The use of a single statistical aligner in our PB-SMT based baseline APE fails to improve

over raw Italian Google MT output; instead it degrades the performance, as was also

reported by Béchara et al. (2011). This motivated us to use alignment combination models

including both statistical and edit-distance based methods in our hybrid word alignment

model for APE. By improving word alignment, the APE system automatically acquires

better lexical associations and the “hybrid” PB-SAPE system shows improvements over

the Google MT baseline. The reason for using a hierarchical phrase extraction model

for APE is that it makes the model more sensitive to syntactic structures. HPB-SAPE
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captures global reordering by SCFG, helping to correct word order errors to some extent.

Integration of our hybrid word alignment into the APE model resulted in both PB-SAPE

(S1) and HPB-SAPE (S2) producing better translations than GT. SC-APE of S1, S2

and GT provided further improvements over raw MT output. We performed a statistical

significance test on GT, S1, S2 and SC-APE, which showed that S1 provides statistically

significant (0.01 < p < 0.04) improvements over GT across all metrics. Similarly S2 yields

statistically significant (p < 0.01) improvements over both GT and S1 across all metrics.

Our SC-APE system performs best and results in statistically significant (p < 0.01)

improvements over all other systems across all metrics.

This chapter also presented the OSM based APE system submitted in the English–German

APE task at WMT-2016. The system demonstrates the crucial role METEOR-based

alignment and OSM based SAPE can play in SAPE tasks. The use of statistical aligners

in the PB-SMT/HPB-SMT pipeline improve the APE system. However, performances

with respect to the translations provided by the baseline are not promising. This is the

reason behind using edit distance-based word alignment into the pipeline. The reason for

using the OSM model is that the model tightly couples translation and reordering. Apart

from that, the OSM model also considers all possible re-orderings instead of performing

search only on a limited number of pre-calculated orderings. The proposed system, an

OSM-based SAPE approach, was successful in improving over the PB-SAPE as well as

HPB-SAPE performance.

We successfully showed that both our APE experiments (English–Italian and English–

German) outperform the first-stage MT systems. Human evaluation also revealed that

the translation quality of the APE system is much better than the first-stage MT system.

However, some of translations produced by the first-stage MT system are still better than

APE, however, they are much less in number. Therefore, in terms of overall translation

performance, APE is an effective solution. Furthermore, APE acts as a 2nd stage MT

system, therefore, it does not implicate reconfiguration or modification of the first-stage

MT system (Pal et al., 2015c, 2016b,c,f). This addresses RQ4, i.e., “How can we build an

effective automatic post-editing system which can improve the translation quality of the

first-stage MT system?”.

The WMT-2016 APE shared task was a great opportunity to test APE methods that

can later be applied in real-word post-editing and CAT tools. We are currently working
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on implementing the APE methods described in this chapter in CATaLog, a recently-

developed CAT tool that provides translators with suggestions originating from MT,

translation memory (TM) and APE (Nayek et al., 2015; Pal et al., 2016e,d). In so doing,

we aim to provide better suggestions for post-editing and we would like to investigate how

this impacts human post-editing performance by carrying out user studies.

In future, we want to extend the APE system by incorporating source language knowledge

into the network and to compare LSTM with GRU hidden units.
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Interactive Translation Workflow

This chapter presents CATaLog Online, a new web-based computer-aided translation

(CAT) tool developed towards improving existing CAT workflows. CATaLog Online is

freeware software that can be used through a web browser and requires only a simple

registration. The tool features a number of editing and logging functions enhanced with

several novel features. The tool has been developed with the goal of improving post-editing

productivity and experience. CATaLog Online employs a novel color coding scheme that

highlights matching and non-matching fragments in each suggested translation memory

(TM) segment and indicates which parts of the TM segments provide more reliable trans-

lations. Instead of the traditional fuzzy matching used in TM-based CAT tools, CATaLog

Online uses an edit distance style similarity metric and Lucene retrieval scores to iden-

tify and re-rank the relevant TM suggestions. CATaLog Online provides a post-editing

environment with simple yet helpful project management functions. It provides trans-

lation suggestions from TM, MT and automatic post-editing (APE), and furthermore it

records detailed logs of post-editing activities that are not available in most commercial

CAT tools. To test the new approaches presented in this chapter, we carried out a user

study on an English–German translation task using the tool. User feedback revealed that

the users preferred using CATaLog Online over existing CAT tools in some respects, es-

pecially by selecting the output of the APE system and taking advantage of the color

coding scheme for TM suggestions. In this chapter, we also introduce another important

function of TM: proposing a new translation suggestion from the top TM suggestions in

both the desktop version (CATaLog) and web version of CATaLog Online. Traditionally,
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TMs do not generate any new translations; therefore, this feature presents a step beyond

traditional TMs. Besides, this improves human-computer interaction (HCI) issues with

TMs since this new functionality generates a new translation based on the translation

template chosen by the user. This chapter addresses RQ6: How can human interaction

with CAT tools be optimized in existing MT workflows?

Core parts of the research presented in this chapter have been published in (Nayek et al.,

2015; Nayak et al., 2016; Pal et al., 2016e,d).

Figure 6.1 schematically shows the research presented and the research questions ad-

dressed in this Chapter.

6.1 Introduction

The use of computer software is an important part of modern translation workflows

(Lagoudaki, 2008; Zaretskaya et al., 2015c). A number of tools are widely used by profes-

sional translators, most notably CAT tools and terminology management software. These

tools increase translators’ productivity, improve consistency in translation and, in turn,

reduce cost of translation.

The most important component in state-of-the-art CAT tools is the TM. TMs are databases

which store translated segments (such as words, phrases, sentences or even paragraphs)

that can be used in future translations. For every new input text, the TM engine checks

whether there are segments in the memory which are similar to those of the input text.

The TM engine displays the most similar segments together with their translations to the

translator. The translators can either accept, reject or modify the suggestions received

from the TM engine. As the process is done iteratively, every new translation increases

the size and improves the quality of the TM making it more useful for future translations.

TMs are particularly useful in domains or text types in which translations tend to be

repetitive, most notably in the case of technical or specialized translations.

As discussed in Pal et al. (2016e), the idea behind TMs is relatively simple. However,

the process of matching and retrieval of source and target segments is not trivial. Sev-

eral strategies have been applied to improve TM retrieval engines such as incorporating

semantic knowledge and paraphrasing (Utiyama et al., 2011; Gupta and Orăsan, 2014;
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Figure 6.1: Schematic design of the research and the research questions presented in
this Chapter.
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Gupta et al., 2015b) and syntax (Clark, 2002; Gotti et al., 2005; Nayak et al., 2016).

A recent trend is the integration of TM and machine translation (MT) output in a sin-

gle environment (He et al., 2010; Kanavos and Kartsaklis, 2010; Koehn and Senellart,

2010). MT systems have been improving substantially over the past decade, particularly

for domain specific translations. Taking advantage of these improvements, a number of

CAT tools have been integrating MT outputs along with TM matches. One such tool is

MateCat (Cettolo et al., 2013).

In this chapter we discuss new approaches to improve TM performance and CAT tool

interfaces. With our contribution we aim to make TM suggestions more useful and ac-

curate as well as to improve CAT tools’ usability by providing translators with more

intuitive software interfaces. For this purpose, we developed a new CAT tool called CAT-

aLog (Nayek et al., 2015) and its web-based counterpart, CATaLog Online (Pal et al.,

2016e)1 and carried out user studies to evaluate the impact of the proposed innovations

in real-world translation workflows.

Traditionally, TM tools do not generate translations; instead they present the user with

matching sentence pairs that are very similar to the sentence being translated. Post-

editors, when working with TM tools, seldom find an exact match. Therefore, almost

always, the TM suggestions do contain at least a few unmatched fragments of the input

sentence. However, it can often be observed that the translations for those unmatched

fragments are available in other suggestions or may be in some other sentences in the TM

database. Extracting the translations of those unmatched fragments and inserting them

into the suggested TM translations can result in a complete translation for a particular

input sentence. Although this may lead to loss of fluency in the suggested new translation,

it often improves the adequacy of the suggested translation. Thus, it reduces the post-

editing effort significantly since the user does not have to translate all of unmatched

fragments in the suggested TM translations from scratch. Some of the research presented

in this chapter has been published in (Pal et al., 2016e,d; Nayak et al., 2016).

1http://ttg.uni-saarland.de/software/catalog/
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6.2 Related Work

In the translation and localization industries, translators are more frequently acting as

post-editors, working with pre-translated texts from TMs or MT output. This has re-

sulted in CAT tools becoming an integral part of a translator’s workflow. A number of

studies were carried out on the translation process to investigate translators’ productivity,

cognitive load, effort, time, quality, etc. in CAT environments (O’Brien, 2006; Guerberof,

2009; Plitt and Masselot, 2010; Federico et al., 2012; Guerberof, 2012; Zampieri and Vela,

2014; Vieira, 2014; Koponen, 2016). These studies indicate that the use of TMs and MT

output decreases the effort required for translation and improves productivity.

As recent state-of-the-art CAT tools have been integrating TM and MT in a single post-

editing environment, research has been carried out to improve translation recommendation

systems by predicting whether TM or MT output is more likely to serve as a good trans-

lation for a given segment (He et al., 2010; Kanavos and Kartsaklis, 2010). This can be

modelled by a binary classifier using text classification algorithms (e.g., Support Vector

Machines).

Simard and Isabelle (2009) reported on the integration of phrase-based statistical machine

translation (PB-SMT) with TM in a CAT environment. A similar approach was proposed

by Zhechev and van Genabith (2010). Koehn and Senellart (2010) proposed an MT–TM

integration approach in which TMs are used to retrieve matching segments and an SMT

system is used to fill in the gaps by translating parts of the segment which were not

retrieved from the TM.

CAT tools make translators’ jobs easier. They improve translation performance and sig-

nificantly increase translation quality through special quality checking tools. There are

many CAT tools available in the market from complex desktop solutions, e.g., SDL Tra-

dos2, MemoQ3, Wordfast4, to relatively simple but powerful cloud tools, e.g., SmartCAT5,

MateCat6, Memsource7, etc. OmegaT8, an excellent free and open source translation sup-

port tool capable of working with translation formats from the leading tools, is a popular
2http://www.sdl.com/solution/language/translation-productivity/trados-studio/
3https://www.memoq.com/en/
4https://www.wordfast.net/
5https://www.smartcat.ai/
6https://www.matecat.com/
7https://www.memsource.com/
8http://www.omegat.org/en/omegat.html
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alternative to commercial tools. In this chapter, we present our new free web-based CAT

tool called CATaLog Online which provides a novel and user-friendly online CAT environ-

ment for post-editors/translators. Our goal is to support distributed translation, reduce

post-editing time and effort, improve the post-editing experience and capture data for

incremental MT/APE (automatic post-editing) and translation process research.

6.3 CATaLog Online: System Description

This section describes CATaLog Online, a novel and user-friendly web-based CAT tool.

We discuss its main functionalities and its novel features that distinguish it from other

CAT tools.

CATaLog Online offers translations from three engines – TM (Nayek et al., 2015), MT

(Pal et al., 2015a) and APE (Pal et al., 2015c), from which users can choose the most

suitable translation and, if required, post-edit. Users can upload their own translation

memories on the platform or can make use of the CATaLog Online back-end translation

memory. In addition to using the CATaLog Online MT (Pal et al., 2015a) and APE (Pal

et al., 2015c) engines, users can also upload translations produced by third-party MT

systems.

Upon presenting the tool with a new input (source language) segment9, the tool retrieves

the most similar segments contained in the TM database ranked according to their sim-

ilarity to the input segment using an edit distance style ranking algorithm presented in

Section 6.3.1. An important aspect of computing similarity is finding an alignment be-

tween the input and the retrieved segments. CATaLog Online aligns the input source

language (SL) segment against the SL sentences in the TM database. It also establishes

word alignments between TM SL sentences and their corresponding translations. From

these two sets of alignments the tool identifies which parts of the TM translation sugges-

tions are relevant with respect to the input sentence and which are not, i.e., which parts of

the TM translation suggestions should remain intact after post-editing and which portions

need editing. CATaLog presents the TM matches using a novel color scheme for better

visualization; matched parts are displayed in green and unmatched parts are displayed

9‘Segment’ is a widely accepted term for ‘sentence’ in the translation industry. In this chapter we also
use ‘segment’ and ‘sentence’ interchangeably.

146



Chapter 6. Interactive Translation Workflow

in red. The colors help the translators to visualize instantaneously how similar the five

suggested segments are to the input segment and how much post-editing effort each TM

translation suggestion requires. The color scheme is detailed in Section 6.3.2. Comparing

every TM source segments against the input sentence is typically a slow process, partic-

ularly if the TM database is very large. To speed up the TM search process, CATaLog

Online uses the Nutch10 information retrieval (IR) system which is discussed in Section

6.3.3. In CATaLog Online, users can choose between MT output (cf. Section 6.3.4), au-

tomatic post-editing (APE) (cf. Section 6.3.5) and TM segments. Instead of using the

integrated MT, APE and TM, users can upload translations produced by third-party MT

systems and their own private TMs. CATaLog Online provides facilities to translate single

sentences and can also be operated in batch mode i.e., by uploading a file. Currently our

tool offers translation outputs from MT and APE engines for some language pairs. The

back-end MT and APE systems are discussed in Sections 6.3.4 and 6.3.5, respectively.

6.3.1 Finding Similar Segments

For finding TM segments that are similar to the input segment, we use alignments provided

by Translation Error Rate (TER) (Snover et al., 2009), an automatic MT evaluation

metric. The alignments provided by TER also enable us to find similar and dissimilar

parts of an input segment and a matching TM source segment. TER is an edit distance

style error metric and it provides an edit ratio (often referred to as edit rate or error rate) in

terms of how much editing is required to convert a translation hypothesis into a reference

translation with respect to the length of the translation hypothesis. TER allows four types

of editing operations – insert, delete, substitute and shift. CATaLog Online establishes the

alignment between an input sentence and a matching TM source segment by employing

the TER metric (using tercom-7.25111). Simard and Fujita (2012) first proposed the use

of MT evaluation metrics as similarity functions in TM. They experimented with several

MT evaluation metrics, viz. BLEU, NIST, Meteor and TER, and studied their behaviors

on TM performance. We use TER as the similarity metric (in an inverse way, since a lower

TER value indicates higher similarity) in CATaLog Online as it is very fast and lightweight

and it directly mimics the human post-editing effort. Among the MT evaluation metrics,

TER is known to provide high correlation with human judgements (Snover et al., 2006b).
10http://nutch.apache.org/
11http://www.cs.umd.edu/~snover/tercom/
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Input: we would like a table by the window .

TM Match: we want to have a table near the window .

TER alignment:

“we”,“we”,C,0

“want”,“”,D,0

“to”,“would”,S,0

“have”,“like”,S,0

“a”,“a”,C,0

“table”,“table”,C,0

“near”,“by”,S,0

“the”,“the”,C,0

“window”,“window”,C,0

“.”,“.”,C,0

we want to have a table near the window .

| D S S | | S | | |

we - would like a table by the window .

Figure 6.2: TER alignment between input sentence and TM matched segment.

Moreover, the tercom-7.251 package also produces the alignments between a sentence pair

from which it is very easy to identify which portions in a TM segment are relevant to the

input sentence and which portions need to be worked on.

The TER alignment between an input sentence and a TM segment is illustrated in the

example given below (cf. Figure 6.2). Here, C represents a match (shown as the vertical

bar ‘|’), and I, D and S represent the three post-editing operations – insertion, deletion

and substitution, respectively.

The example given above involves only one deletion and three substitution operations.

It does not involve any insertion or shift operations. A shift operation is indicated in

the TER alignment by a C followed by a non-zero integer (as opposed to “C,0” which

represents a match). The non-zero integer value indicates the shifting offset; positive and

negative values represent shifting to the right and left, respectively.
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Since we want to rank the relevant TM segments based on their similarity to the input

sentence, we could directly use the TER score in an inverse way. TER is an error metric

and therefore the TER score is proportional to how dissimilar two sentences are; i.e.,

the lower the TER score, the higher the similarity. However, in CATaLog Online we use

our own similarity scoring mechanism based on the alignments provided by TER. TER

gives equal weight to each edit operation, i.e., deletion, insertion, substitution and shift.

However, in actual human post-editing, deletion takes substantially less time and effort

than the other editing operations. Different edit costs for different edit operations should

yield better results. These edit costs or weights can be adjusted or tuned to obtain better

output from the TM. Ideally, these edit costs should be representative of the time and

effort required for the corresponding edit operations.

In our system, we assigned a very low weight to the deletion operation and equal weights

to the other three edit operations. To illustrate why different editing costs matter, let us

consider the example below.

• Input segment: how much does it cost ?

• TM segment 1: how much does it cost to the holiday inn by taxi ?

• TM segment 2: how much ?

If each edit operation were assigned an equal weight, according to the TER score, TM

segment 2 would be a better match with respect to the input segment than TM segment

1, as TM segment 2 involves inserting translations for three non-matching words of the

input segment (“does it cost”), as opposed to deleting translations of the six non-matching

words (“to the holiday inn by taxi”) in TM segment 1. However, deleting the translations

for the six non-matching words from the translation of TM segment 1, which are already

highlighted red (cf. Section 6.3.2) by our tool, takes much less cognitive effort and time

than inserting translations for the three non-matching words of the input segment into

the translation of TM segment 1. Therefore, TM segment 1 is intuitively a much better

choice than TM segment 2 with respect to the above mentioned input segment. This

justifies assigning minimal weights to the deletion operation which results in the system

giving preference to TM segment 1 over TM segment 2 for this input segment.
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The Needleman-Wunsch (Needleman andWunsch, 1970) algorithm is another edit-distance

based algorithm which is widely used in bioinformatics to align or find the similarity be-

tween two protein or nucleotide sequences. The outcome of both the TER and Needleman-

Wunsch algorithms is an optimal global alignment between two strings. The basic distinc-

tion between the TER and Needleman-Wunsch algorithms is that TER (or edit distance

in general) is an error metric which tries to minimize the distance (or dissimilarity) be-

tween two strings while Needleman-Wunsch is a similarity metric that tries to maximize

the similarity between two strings. Both algorithms penalize mismatches; TER assigns

a positive cost while Needleman-Wunsch algorithm assigns a negative similarity. How-

ever, unlike TER, the Needleman-Wunsch algorithm rewards matches. The similarity

metric that we used for finding similar TM segments is similar to and motivated by

the Needleman-Wunsch algorithm. However, TER has the advantage that it also con-

siders shift operations which the Needleman-Wunsch algorithm does not. Shifting is a

very meaningful edit operation in the human post-editing scenario. Therefore, we used

elements of both the TER and Needleman-Wunsch algorithms to design the similarity

metric of CATaLog Online. We take the alignment computed by TER but calculate the

similarity score using the intuition of the Needleman-Wunsch algorithm by penalizing edit

operations and rewarding matches.

The top 100 most relevant TM suggestions returned by the Lucene based search engine,

Nutch, (cf. Section 6.3.3) are re-ranked using Equation 6.1, where nm and sm refer to

the number of matches and match reward scores, respectively; ei refers to four types of

edit operations – insert, delete, substitute and shift; nei and cei refer to number of ei

edit operations required and the corresponding edit cost, respectively. Thus we reward

matches and penalize edits to arrive at the final similarity score.

S = nm × sm −
4∑

i=1

nei × cei (6.1)

By way of example let us consider match reward=0.80, deletion cost=0.10, shift cost=0.20,

insertion cost=0.50 and substitution cost=0.70. Let us also consider that the TER align-

ment between an input segment and a relevant TM source segment is “CCDCCCSCI”

where the 3rd ‘C’ refers to a shifting operation (say, “C,2”). We rewrite this alignment
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as “MMDHMMSMI” where ‘M’ and ‘H’ refer to matches and shifts, respectively. Then,

according to Equation 6.1 the corresponding TM similarity score is calculated as follows.

S = 0.80× 5− 0.10× 1− 0.20× 1− 0.50× 1− 0.70× 1 = 2.5

The desktop version of the tool, CATaLog, lets the user set these match rewards and

edit costs. The TM similarity scores (S) are finally normalized (Sn) with respect to the

maximum length (in terms of tokens) between input text and the retrieved TM segment.

The value of the normalized TM similarity score lies between −1 ≤ Sn ≤ 1.

6.3.2 Color Coding

Like most of the existing TM based CAT tools, CATaLog, the back-end TM engine in

CATaLog Online, presents the user with five most relevant translation suggestions from

the TM database, while CATaLog Online presents only the top ranking TM suggestion

from CATaLog along with the translations from the MT and APE engines.

In CATaLog, among the top five TM suggestions presented by the tool, the post-editor

selects the most suitable TM reference translation to do the post-editing task. To make

that decision process easy, CATaLog color codes the matched and unmatched parts in

both the source and target of the TM suggestions. Green portions indicate that they are

matched fragments and red portions indicate mismatches.

Matched and unmatched fragments in the source of the TM suggestions are easily identi-

fied through the TER alignments. To identify the corresponding matched and unmatched

fragments in the target side of the TM suggestions the tool establishes word alignments

between the TM source sentences and their corresponding translations using GIZA++

(Och and Ney, 2003b). However, any other word aligner, e.g., Berkeley Aligner (Liang

et al., 2006), could be used to produce this alignment. The TER alignment between

the input sentence and the relevant TM source segments, together with the alignment

between the source and target of the relevant TM suggestions, are used to generate the

color coding of the TM suggestions. The GIZA++ alignment file is directly integrated

into the TM tool. The example given below shows an example TM sentence pair along

with the corresponding word alignment produced by GIZA++.
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• English: we want to have a table near the window .

• Bengali: আমরা জানালার কােছ একটা টিবল চাই ।

1 2 3 4 5 6 7

• Alignment: NULL ({}) we ({ 1 }) want ({ 6 }) to ({ }) have ({ }) a ({ 4 }) table ({

5 }) near ({ 3 }) the ({ }) window ({ 2 }) . ({ 7 })

The word alignment between the TM source sentences and their corresponding transla-

tions is computed offline using GIZA++, only once, on the TM database for a specific

language pair. TER provides the alignments between an input sentence and the corre-

sponding top five TM source suggestions. Using these two sets of alignments we color the

matched fragments of the TM suggestions in green and the unmatched fragments in red.

Trados, a popular CAT tool, does not provide color coding at word level. By contrast,

CATaLog highlights parts of the segment at word level whereas Trados highlights the

entire segment according to the match percentage.

Color-coding the TM source segments makes explicit which portions of the matching TM

source sentences match with the input sentence and which ones do not. Similarly, color-

coding the TM target segments serves two purposes. Firstly, it makes the decision process

easier for the translators as to which TM suggestion to choose and work on. Secondly, it

guides the translators as to which fragments to post-edit in the chosen TM translation.

The reason behind color-coding both the TM source and target segments is that a longer

(matched or unmatched) source fragment might correspond to a shorter target fragment,

or vice versa, due to language divergence. A reference translation which has more green

fragments than red fragments will be a good candidate for post-editing. However, shorter

TM translations with high green coverage may not be ideal candidates for post-editing,

since post-editors might have to insert translations for many unmatched words in the

input sentence.

In this context, it is to be noted that insertion and substitution operations are the most

costly operations in post-editing. However, sentences involving insertions and substitu-

tions are not preferred by the TM as it assigns a higher cost for insertion than deletion, and

hence sentences involving many insertions are typically not shown as the top candidates

by our TM.
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The color coding scheme is illustrated with the following example in an English–Bengali

translation task. The corresponding TM database consists of English sentences taken from

the BTEC12 (Basic Travel Expression Corpus) corpus and their Bengali translations13.

For the convenience of non-native speakers, Latin transliteration glosses are provided

within parenthesis for the Bengali sentences.

Input: you gave me wrong number .

Source Matches:

1. you gave me the wrong change . i paid eighty dollars .

2. i think you ’ve got the wrong number .

3. you are wrong .

4. you pay me .

5. you ’re overcharging me .

Target Matches:

1. আপিন আমােক ভুল খুচেরা িদেয়েছন . আিম আিশ ডলার িদেয়িছ . (Gloss: apni amake vul khuchro

diyechen . ami ashi dollar diyechi .) (English Gloss: you me wrong change gave .

I eighty dollar paid .)

2. আমার ধারণা আপিন ভুল ন ের ফান কেরেছন . (Gloss: amar dharona apni vul nombore phon

korechen .) (English Gloss: I think you wrong number ’ve got .)

3. আপিন ভুল . (Gloss: apni vul .) (English Gloss: you wrong .)

4. আপিন আমােক টাকা িদন . (Gloss: apni amake taka din .) (English Gloss: you me pay .)

5. আপিন আমার কােছ থেক বিশ িনে ন . (Gloss: apni amar kache theke beshi nichchen .)

(English Gloss: you me are overcharging .)

12The BTEC corpus contains tourism-related sentences similar to those that are usually found in phrase
books for tourists going abroad.

13This represents a work in progress.
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For the input sentence shown above, the TM system shows the above mentioned color-

coded top five TM matches in order of their relevance with respect to the post-editing

effort (as deemed by the TM similarity metric) for producing the translation for the input

sentence.

It is to be noted that when the post-editor selects a TM segment for post-editing, the

input sentence is also color coded accordingly to reflect the corresponding matching and

unmatched fragments in the input sentence. This also gives the post-editor an indication

of how much post-editing is involved for the chosen TM segment. Red fragments in the

input sentence correspond to insertion while red fragments in the TM segments correspond

to deletion. Recalling the above example, if the translator chooses the translation of TM

segment 1, “you gave me the wrong change . i paid eighty dollars .”, the corresponding

input source sentence will automatically be color coded as “ you gave me wrong number

.”.

6.3.3 Improving Search Efficiency

Comparing every input sentence against all the TM source segments makes the search

process very slow, particularly for large TMs. To improve search efficiency, CATaLog

Online uses the Nutch14 information retrieval (IR) system. Nutch follows the standard IR

model of Lucene15 with document parsing, document indexing, TF-IDF (term frequency-

inverse document frequency) calculation, query parsing and finally searching/document

retrieval and document ranking. In our implementation, each document contains (a) a

TM source segment, (b) its corresponding translation and (c) the word alignments.

To generate the search query corresponding to an input segment, all the stop words are

removed first from the input segment. After presenting an input segment as a query

as a bag-of-words, Nutch retrieves the most relevant documents (i.e., a, b and c) with

respect to the query. The set of relevant candidates are ranked by Nutch according to

their similarity scores with respect to the query and the retrieved documents are collected

and stored in a file. The ranking process also deals with dissimilarity measurement that

provides a final fine-grained score to re-rank the retrieved matching segments.

Dissimilarity Measurement:
14http://nutch.apache.org/
15http://lucene.apache.org/
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Algorithm 5: Dissimilarity-Measure(s1, s2)
Data: input s1 and s2

Result: Return score

begin

score← 0;

for all n-grams n contained in s1 or s2 do

f1 ←


frequency(n), if n ∈ S1

0, if n /∈ S1

f2 ←


frequency(n), if n ∈ S2

0, if n /∈ S2

score← score+ {2(f1−f2)
(f1+f2)

}2

Algorithm 5 is based on (Kešelj et al., 2003) and it provides a measure of dissimilarity

between an input segment (s1) and the corresponding retrieved candidate segments (s2).

For identical segments that have identical n-grams, the dissimilarity score is 0. The

algorithm returns a positive dissimilarity score after being presented with s1 and s2.

6.3.3.1 Re-ranking

The dissimilarity score returned by Algorithm 5 is subtracted from the similarity score

assigned by Nutch and a final score is assigned to every candidate segment for a given

input segment. All retrieved candidates are re-ranked with respect to this score. Only

the top 100 ranked candidates are retained and passed on to the TM similarity matching

procedure (cf. Section 6.3.1) which re-ranks these 100 TM candidates.

6.3.4 Machine Translation

The MT engine behind CATaLog Online is a hybrid system (Pal et al., 2015a) trained on

additional knowledge such as extracted bilingual named entities and bilingual phrase pairs

induced from example-based methods. The final hybrid system is a confusion network

based system combination that combines output from multiple systems.

155



Chapter 6. Interactive Translation Workflow

6.3.5 Automatic Post-Editing

The back-end APE system is based on the Operation Sequence Model (OSM) (Durrani

et al., 2011, 2015) combined with phrased-based statistical MT (PB-SMT) (Koehn et al.,

2003). The system is trained on monolingual data between MT outputs (TLmt) produced

by an MT system and their corresponding human post-edited version (TLpe). The system

takes as input the output produced by the MT System (described in Section 6.3.4) and

provides an automatically post-edited translation. The APE system combines two models:

monolingual phrase-based APE (cf. Chapter 5) and OSM with an edit distance style word

alignment (METEOR (Lavie and Agarwal, 2007)) between English–German TLmt and

TLpe WMT 2016 data (Turchi et al., 2016). Our APE system focuses on systematic errors

produced by the first-stage MT system: incorrect lexical choices, incorrect word ordering,

and incorrect insertion or deletion of a word. Since, in the OSM model, the translation and

reordering operations are coupled into a single generative story, the reordering decisions

may depend on the preceding translation decisions which in turn may depend on the

preceding reordering decisions. The model provides a natural reordering mechanism and

deals with both local and long-distance re-orderings consistently. Additionally, the PB-

SMT model successfully reduces lexical errors. The integrated APE system is based on

OSM based coupled with phrase based APE described in Pal et al. (2016f).

6.3.6 Translation Process Research with CATaLog Online

For a given input segment, the translator chooses the best translation suggestion among

the options provided by CATaLog Online. The chosen translation suggestion may contain

errors like missing words, incorrect word order, wrong lexical choice, presence of irrelevant

words, untranslated words, punctuation errors, etc. The system records all the user

activities during post-editing such as cursor positions, key strokes, text selection, mouse

clicks, etc. CATaLog Online provides analytical summaries of post-editing activities on

completion of a translation job. It also generates well structured XML formatted logs (cf.

Figure 6.3) which is beneficial for translation process research (TPR).

In terms of TPR perspectives, we implemented functions in CATaLog Online to record

word alignments between source–MT, MT–PE and source–PE. These alignments and

post-editing information are beneficial for incremental MT/APE.
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6.4 CATaLog_TS: Beyond Translation Memories

Unmatched parts of the input sentence, which are not present in the TM suggestions, can

often be found in some other TM suggestions or in other sentences in the TM database.

Therefore, allowing translations of the unmatched parts to be merged into one single

sentence in a meaningful way, translation quality of the TM output can be improved and

hence post-editing effort can be reduced. Inserting the translations for the unmatched

parts into TM suggestions improves translation correctness; however, it may lead to loss of

fluency in the generated target text. To avoid this, the TM based translation generation

process is guided by the use of parsing, POS tagging and a POS-based back-off n-gram

model. The generated translation can be provided as an additional translation suggestion

in the TM.

CATaLog (desktop version) generates the top five suggestions based on its own similarity

metric (cf. Section 6.3.1). Whenever the post-editor chooses a TM translation suggestion

for post-editing, the system tries to fill in the unmatched parts, if any, of that sugges-

tion and presents the user with an additional new translation suggestion. The system

components are detailed in the following subsections.

6.4.1 Generating a Dictionary

The main focus of this approach is to fill the unmatched parts of an input sentence

by a TM suggestion at the word level. Whenever an unmatched word is found in the

input sentence to be translated, the system has to find its translation somewhere in

order to propose a complete translation. One way of achieving this is to keep a bilingual

dictionary. However, a dictionary is a costly resource for many language pairs. Therefore,

to keep it language independent, the system automatically generates a dictionary from the

background bilingual corpus available with the translation memory rather than using an

external dictionary. For illustration purposes, all the examples presented in this section are

in English–Bengali obtained from an English–Bengali parallel corpus of 13,000 sentences.

English is considered as the source language and Bengali as the target language. An

English–Bengali dictionary is generated from the parallel corpus where English words

are stored along with their parts of speech (POS) information and their corresponding
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translations in Bengali. In the present work we used the Stanford POS tagger16 to generate

the POS tags for the source side of the parallel corpus. The GIZA++ (Och and Ney,

2003a) implementation of the IBM word alignment model (Brown et al., 1993) is used to

produce one to many alignments between source and target language words. From these

source–target word alignments the system finds the translation correspondences of the

English words available in the parallel corpus. This dictionary is generated offline, only

once, and it gets loaded when the TM application is loaded.

The meaning of a polysemous word depends on the context it appears in. In the case of

translation, a source word can have completely different translations or may have different

suffixes attached to it based on its context. Therefore, to determine which translation is

more accurate in a particular context, we look at the neighboring context. Instead of

considering the lexical context (i.e., words), we take into consideration the POS context

in the present work. In its current version, the system uses a trigram back-off model (cf.

Algorithm 6) for determining the contextual translation of a source word. The system

generates three contextual dictionaries (Dcontext): a ±2 context based dictionary, a ±1

context based dictionary and a simple uni-gram dictionary. Here context refers to a POS

sequence context. In the ±2 contextual dictionary, for a particular source word, we store

the previous two POS tags, the POS tag of the word under consideration and the next

two POS tags. We also store the frequency of a tag sequence (in the training corpus)

along with the translation of the word in that context.

Figure 6.4 shows the POS based contextual dictionary entries for the word ‘book’. In

the second entry in the ±2 contextual dictionary, the ±2 context POS tag sequence

is MD_PRP_VB_DT_NN; [‘2’] represents the zero-based positional index of the POS

tag for the word ‘book’; ‘সংর ণ (songrakshon)’ is the corresponding translation and ‘1’

appearing at the end represents the frequency of this translation for the word ‘book’ in

this particular POS context. The other two dictionaries also follow the same format.

6.4.2 Finding Translations for Unmatched Parts

In order to find the translation of a non-matching word in the input sentence we perform

the operations described in Algorithm 6.

16http://nlp.stanford.edu/software/tagger.shtml
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Example for word “book”.

• POS_JJS_NN_.|2|বই|1
• MD_PRP_VB_DT_NN|2|

সসরকণ|1
• DT_NN_NN_.|2|বই|1
• MD_FW_VB_DT_NN|2|

 সসরকণ করতত|1
• MD_FW_NN_DT_JJ|2|

সসরকণ|1

• JJS_NN_.|1|বই|1
• PRP_VB_DT|1|সসরকণ|1
• NN_NN_.|1|বই|1
• FW_VB_DT|1|  সসরকণ

করতত|1
• FW_NN_DT|1|সসরকণ|1
• POS_NN_,|1|বই|1

• NN|বই|7;
• NN|বইটট|4;
• NN|  সসরকণ করতত|3;
• NN|সসরকণ|3;
• NN|  সসরকণ করন|1;
• NN|বইতযর|1;
• NN|বইতয|1;
• NN|  বই |1;
• VB|  সসরকণ করতত|9;
• VB|  ভটড়ট করতত|2;
• VB|করতত|1;
• VB|সসরকণ|1;

Uni-gramUni-gram±1Context

±2Context

Figure 6.4: POS-based context dictionary

In case of multiple matches found in Dcontext, the system chooses the most frequent

translation from the set of Wt. In case of a frequency tie, which is very unlikely, it

chooses any one of the most frequent translations randomly. While doing the POS context

matching, we first try to get an exact match. If no exact match is found, the system

looks for a basic POS context match. Since CATaLog internally uses the TER metric for

measuring similarity (cf. Section 6.3.1) between the input sentence and the TM database,

as a byproduct, TER also provides the alignment between the input sentence and selected

TM source suggestion sentences. From this alignment we can easily find out which words

in the input sentence do not match the suggested sentence. The unmatched words (Wu)

are searched in Dcontext. Considering POS context in the dictionary enables the system

to resolve ambiguities for selecting the correct translation for Wu e.g., book: NN|বই;

VBD|সংর ণ করা. That is, if the unmatched word in the input sentence is ‘book’ and it

is identified as an NN (noun), the system provides the translation “বই (boi)”; similarly,

if it is used as VBD (verb), the system picks up the translation “সংর ণ করা (sangrokshon

kora, English gloss: to reserve)”. Thus, POS based dictionary matching reduces the

ambiguity to some extent. However, if the word is not present in the dictionary it remains
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Algorithm 6: Finding translations of ith unmatched word W i
u

Data: input W i
u and Dcontext

Result: Return Set of Wt

begin

foreach W i
u do

POS±2 := {(POSi−2, POSi−1, POSi, POSi+1, POSi+2)} ; /* POS context ±2 */

POS±1 := {POSi−1, POSi, POSi+1)} ; /* POS context ±1 */

POSuni := (POSi) ; /* POS unigram */

if W i
u and POS±2 are found in Dcontext then
Return the Set of corresponding Wt

else if W i
u and POS±1 are found in Dcontext then

Return the Set of corresponding Wt

else if W i
u and POSuni are found in Dcontext then

Return the Set of corresponding Wt

else
Return W i

u

untranslated. While matching the POS tag we might not find an exact POS tag match.

In that case the system tries to find an approximate POS match, i.e., at the basic POS

category level (e.g., noun, verb, adjective, etc.).

6.4.3 Finding Positions to Insert Translations

After obtaining the translations (Wt) for all the unmatched words (Wu) from Dcontext (cf.

Algorithm 6), we need to find out where to put these Wt in the selected TM translation.

Unless the Wt are placed in proper positions, the suggested new translation will become

less fluent and unsuitable for post-editing. TM, despite being technologically very simple,

has proved itself to be a widely used technology in the localization industry mainly because

it presents the user with perfectly fluent translation suggestions for post-editing. Thus,

presenting the user with a more accurate but less fluent translation suggestion might

not be acceptable. To place Wt in proper positions in the target suggestion translation,

the system performs POS tagging17 and parsing18 of both the input sentence and the

selected source suggestion sentence. Our approach is somewhat similar to Zhechev and van

Genabith (2010), however, in case of multiple potential similar structured source subtree

17Stanford POS tagger: http://nlp.stanford.edu/software/tagger.shtml
18Stanford parser: http://nlp.stanford.edu/software/lex-parser.shtml
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replacements for an unmatched part in the input sentence, they choose a matching source

subtree randomly and place the translation in the aligned target subtree position in the

target TM suggestion. We used POS tag (cf. Section 6.4.3.1) and parse tree (cf. Section

6.4.3.2) based disambiguation for finding the position(s) of the source token(s) in the TM

match for replacement.

6.4.3.1 Finding Position Using POS Tag

First, the system finds a corresponding word (Wc) in the TM source suggestion that

does not match with any word in the input sentence. Successively, the system finds the

words (Wct) and their positions in the target side of the parallel TM suggestion that Wc

corresponds to. The alignment links between Wc and Wct are found from TM source–

target word alignment table (cf. Section 6.4.4). Those positions are the potential positions

where the Wt can be placed. The Wc can be found by using the POS tag of the Wu, such

that the POS tags of Wu and Wc are either the same or from the same POS category.

Once a Wc is found and is marked for a Wu, it is not considered for any other Wu. The

position of Wc is determined using a POS trigram back off model (cf. Algorithm 7).

If multiple candidates are found, the ambiguity is resolved using parse tree information

of the input sentence to determine which trigram/bigram sequence is more suitable (cf.

Section 6.4.3.2).

6.4.3.2 Finding Position Using Parse Tree

When multiple POS n-gram matches are found, the system resolves this ambiguity us-

ing the parse tree of the input sentence. For all the higher order POS n-gram matches,

we determine the lowest common ancestor (LCA) node in the parse tree. The n-gram

POS sequence choice for which the depth of the common ancestor node is maximized is

considered as the most appropriate candidate. If there is a tie, the system chooses one

among them randomly. The idea behind choosing the LCA (i.e., maximum depth) is

that the lower the common ancestor in the parse tree, the more syntactically coherent

the constituent words are. If the LCA is located in an upper level of the tree, the words

considered in the n-gram sequence are unrelated and hence the ‘corresponding n-gram’
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Algorithm 7: Finding Wc for the ith unmatched word W i
u

Data: input W i
u and POScontext

; /* POScontext is a set, containing all possible unigram, bigram and

trigram contexts of each W i
u and their corresponding positional

information j in TM Source suggestions */

Result: Return {Wc, j}

; /* returns Wc and its position j in the TM Source suggestion */

begin

foreach W i
u do

POStri := {(POSi−2, POSi−1, POSi), (POSi−1, POSi, POSi+1), and (POSi,

POSi+1, POSi+2)} ; /* Possible trigrams */

POSbi := {POSi−1, POSi), (POSi, POSi+1)} ; /* Possible bigrams */

POSuni) := (POSi) ; /* Possible unigram */

if any POStri is found in POScontext then
Return {Wc, j}

else if any POSbi is found in POScontext then
Return {Wc, j}

else if POSuni is found in POScontext then
Return {Wc, j}

else
Return W i

u

should be ignored. This motivates the idea behind using the LCA. The process is il-

lustrated using Example 6.1. For the sake of simplicity, we make use of the unigram

dictionary to obtain the translation for the unmatched words in the example. However,

the system uses a trigram back-off model for this purpose.

Example 6.1.

Input sentence: i would prefer something in a middle price range .

TM suggestion: i would prefer to sit in the back part of the plane .

TM suggestion translation: আিম িবমােনর িপছেনর অংেশ বসেত পছ করব . (Gloss: ami

bimaner pichoner angshe boste pochondo karbo.)
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Table 6.1 shows the TER alignment between the TM source suggestion and the input

sentence along with the edit operations required to turn the TM source suggestion into

the input sentence. Table 6.1 shows the word alignment information between the source

and target of the TM suggestion.

The Wu in the input sentence in this case are ‘something’, ‘a’, ‘middle’, ‘price’, ‘range’.

Unigram dictionary entries for the unmatched words are :

something: NN|একটা িকছু; NN|িকছু; NN| কান িকছু; NN|িকছু একটা

a: DT|একটা; DT| কান; DT|এক

middle: JJ|মাঝাির আকােরর; JJ|মােঝর

price: NN|দাম; NN|দামটা; NN|মূল

range: VBP| দড়'শ এর মেধ বদলােত থােক

TM Target

Suggestion

TM Source

Suggestion

TM Source

(POS)

Input

Sentence

Input

(POS)

Edit

Operation

আিম i FW i FW M

- would MD would MD M

পছ করব prefer VB prefer VB M

- to TO - - D

বসেত sit VB something NN S

- in IN in IN M

- the DT - - D

িপছেনর back JJ - - D

অংেশ part NN a DT S

- of IN middle JJ S

- the DT price NN S

িবমােনর plane NN range NN S

. . . . . M

Table 6.1: TM source–target alignment and TM source–input alignment

We perform the following steps to generate the new TM suggestion for the Example 6.1:
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• For every unmatched word (Wu) in the input sentence, the system searches for

Wu in TM source suggestions that appear in same or similar contexts as the input

sentence. A corresponding word, Wc, found for an unmatched word (Wu) in the

input sentence in this way is a potential candidate which could be replaced by Wu.

• Among the unmatched words in the input sentence in Example 6.1, the system

first considers the three trigrams: (i) ‘would/MD prefer/VB something/NN’; (ii)

‘prefer/VB something/NN in/IN’; and (iii) ‘something/NN in/IN a/DT’ involving

the word ‘something/NN’.

• Applying Algorithm 7, the third POS trigram matches with the POS trigram

‘part/NN of/IN the/DT’ in the TM source suggestion. Therefore, ‘part’ is con-

sidered as the corresponding word (i.e. Wc) for the unmatched word (i.e. Wu)

‘something/NN’ in the input sentence.

• After getting the Wc (i.e., ‘part’), the system searches for the position of the corre-

sponding target word Wct in TM target suggestion using the GIZA++ alignment.

The GIZA++ alignments between the TM source and TM target suggestion is given

below.

1-1, 3-6, 3-7, 5-5, 8-3, 9-4, 12-2, 13-8

Here the position index before the hyphen (-) is the word position in the TM source

suggestion and the position index after hyphen (-) is the word position in the TM

target suggestion. Wc = ‘part’ is the ninth word in the TM source suggestion and

according to the GIZA++ alignment, Wct is the fourth word in the TM target

suggestion, i.e., ‘অংেশ (angshe)’. Therefore, Wct = ‘অংেশ’ is replaced by Wt = ‘একটা

িকছু (ekta kichu)’, for Wu = ‘something’ (cf. Algorithm 6). Hence, the TM target

suggestion is modified as:

আিম িবমােনর িপছেনর একটা িকছু বসেত পছ করব .

• Next, the system tries to find a match for the Wu ‘a/DT’. The corresponding POS

trigrams are ‘something/NN in/IN a/DT’, ‘in/IN a/DT middle/JJ’ and ‘a/DT mid-

dle/JJ price/NN’. Since the POS sequence ‘part/NN of/IN the/DT’ starting with

‘part/NN’ already matched with ‘something’, this match is not considered again.
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However, the system gets a match for the other two trigrams – ‘in/IN the/DT back-

/JJ’ and ‘the/DT back/JJ part/NN’ where ‘the/DT’ has not matched with any Wu

of the input sentence.

• To resolve the ambiguity we consider the parse tree of the input sentence. The parse

tree of the input sentence is shown in Figure 6.5 The numeric values in parentheses

in Figure 6.5 represent the depth of the corresponding nodes.

ROOT(0)

S(1)

NP(2)

PRP

I

VP(2)

MD

would

VP(3)

VB

prefer

NP(4)

NN

something

PP(4)

IN

in

NP(5)

DT

a

JJ

middle

NN

price

NN

range

.(1)

.

Figure 6.5: Parse tree

The trigram ‘in/IN a/DT middle/JJ’ has the lowest common ancestor at depth 4

whereas ‘a/DT middle/JJ price/NN’ has the lowest common ancestor at depth 5.

We consider the trigram which has the lowest common ancestor at a higher depth

(i.e., lower level). Therefore, in this case, the trigram ‘a/DT middle/JJ price/NN’ is

considered and the corresponding matched sequence is ‘the/DT back/JJ part/NN’ in

the TM source suggestion and the word ‘the’ is the Wc for the Wu ‘a’. Subsequently

the system looks for the translationWct for theWc (seventh word in TM suggestion).

However, since there is no alignment corresponding to the seventh source word in

the GIZA++ alignment, the translation of ‘a’ is not placed in the TM suggestion

translation.
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• Afterwards the system searches for the Wu ‘middle/JJ’. The corresponding POS

trigrams are (i) ‘in/IN a/DT middle/JJ’, (ii) ‘a/DT middle/JJ price/NN’ and (iii)

‘middle/JJ price/NN range/NN’. The first two trigrams match with ‘in/IN the/DT

back/JJ’ and ‘the/DT back/JJ part/NN’ in the TM source suggestion. To resolve

this ambiguity the system checks the parse tree again. The POS trigram ‘in/IN

a/DT middle/JJ’ has the LCA at depth 4 while the POS trigram ‘a/DT middle/JJ

price/NN’ has the LCA at depth 5. Therefore, the second trigram is considered and

the Wc for ‘middle/JJ’ is ‘back/JJ’. Note that ‘back/JJ’ is located at position 8 of

the TM source suggestion and its translation is ‘িপছেনর’ which is located at position

3 of the TM target suggestion. Therefore the Wt of ‘middle/JJ’, ‘মাঝাির আকােরর’, is

replaced by the third word ‘িপছেনর’ in the TM target suggestion. Thus the modified

translation is formed as:

আিম িবমােনর মাঝাির আকােরর একটা িকছু বসেত পছ করব .

• The system next searches for ‘price/NN’ which is translated using ‘দাম’. The three

POS trigrams to be considered are ‘a/DTmiddle/JJ price/NN’, ‘middle/JJ price/NN

range/NN’, and ‘price/NN range/NN ./.’ . Here the POS sequence ‘a/DT middle/JJ

price/NN’ gets a match with ‘the/DT back/JJ part/NN’, where ‘part/NN’ is the

corresponding word for ‘price/NN’. However, ‘part/NN’ has already been used ear-

lier; therefore, the system ignores this match. The other two trigrams do not match

with any POS trigram in the TM suggestion. Two POS bigrams considered for

‘price/NN’ are ‘middle/JJ price/NN’ and ‘price/NN range/NN’. Here ‘middle/JJ

price/NN’ matches with ‘back/JJ part/NN’; however, it is ignored since the trans-

lation position of ‘part/NN’ has already been replaced. The other bigram does not

match either. Therefore the system falls back to the unigram match for ‘price/NN’.

It matches with ‘part/NN’ and ‘plane/NN’. Since ‘part/NN’ has already been used,

the system considers ‘plane/NN’ which is at position 12 of the TM suggestion and

its translation, ‘িবমােনর’, is at position 2 of the suggestion translation. Therefore,

‘িবমােনর’ is replaced by ‘দাম’ and the suggested translation is modified as given below.

আিম দাম মাঝাির আকােরর একটা িকছু বসেত পছ করব .

• The system tries to find a match for ‘range/NN’ later on. However, its trigram,

bigram, and unigram POS sequences are either being used already or do not match.
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Therefore, its translation is not put in the suggested translation. Finally the word

‘বসেত’ which is the translation of ‘sit’ is deleted since ‘sit’ does not match with any

word of the input sentence. Thus, the final translation suggestion is produced as

given below.

আিম দাম মাঝাির আকােরর একটা িকছু পছ করব .

Since the translations of ‘a/DT’ and ‘range/NN’ are not placed in the translation

suggestion, their translations ‘একটা’ and ` দড়'শ এর মেধ বদলােত থােক’, respectively, are

added to a list and are shown to the post-editor as suggestions. The post-editor can

directly use those translations without typing them and can put them in the proper

place. In this way the system modifies the TM translation suggestion to generate

more appropriate translation candidates. These translation candidates can be post-

edited with much less effort.

6.4.4 Placing Translations of Unmatched Words in a TM Suggestion

After finding the positions of the Wc in the selected TM source suggestion, we determine

the positions of the correspondingWct in the TM target suggestion using the source–target

alignment19 for the TM sentence pair. These positions in the TM suggested translation are

the potential positions where the translation of the unmatched word could be placed. Since

GIZA++ generates one-to-many alignments between source and target, three situations

can arise. The length (in terms of number of words) of the translation Wct of Wc could

be equal to, shorter, or longer than the length of the translation Wt of Wu.

The potential positions for inserting Wt may also be continuous or discontinuous in the

TM suggestion translation. If Wct is continuous, Wct is simply replaced by Wt. If Wct

is discontinuous, words in Wct are replaced by words in Wt one by one. If Wct is longer

than Wt, the additional words in Wct are simply deleted. If Wt is longer than Wct, then

the additional words in Wt are appended with the last word replaced in Wct.

POS tags and parse tree based sentence fusion in TM works well when the input sen-

tence and the suggestion translations are similar in length. If the input sentence and the

suggestion sentence differ widely in length, their parse trees may also differ significantly.

19TM source target alignment is an offline process and pre-trained using GIZA++
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In such cases, the suggested translation may lead to loss of fluency in the target trans-

lation. Therefore, we consider only those sentences in the translation suggestion whose

lengths are within a predefined limit with respect to the length of the input sentence.

TM retrieved source suggestions that are either above or below this predefined limit are

discarded.

6.5 CATaLog_TS_ReRank – Re-ranking of the TM Sug-

gestion Translations

CATaLog produces five most relevant TM translation suggestions. After producing the

newly generated translations corresponding to the TM suggestions (cf. Section 6.4), the

first option originally chosen by the TM module might not remain the best translation

option. This is also evident from the experimental results obtained (cf. ‘first’ vs. ‘best’

in Table 3.4, Section 6.6). This motivated us to perform re-ranking of the produced

translation suggestions in order to bring the most suitable translation to the top. Re-

ranking deals with various features including:

• Language model probability

• Length of the input sentence

• Length of source side TM suggestions

• Number of unmatched words for which translations are successfully inserted into

the corresponding TM translation suggestion

• The original similarity score produced by the CATaLog system

CATaLog calculates similarity scores on the basis of TER alignment. The similarity score

is computed in Equation 6.2, where nm and sm refer to the number of matches and match

reward scores, respectively; ei refers to four types of edit operations – insert, delete,

substitute and shift; nei and cei refer to number of ei edit operations required and the

corresponding edit cost, respectively. Thus we reward matches and penalize edits to arrive

at the final similarity score.
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S = nm × sm −
4∑

i=1

nei × cei (6.2)

Let us consider, sm=0.80, ce1=0.20 (deletion cost), ce2=0.50 (insertion cost), ce3=0.70

(substitution cost), and suppose TER alignment between an input segment and TM

source segment is “MMDIMISMM”. Therefore, the corresponding original TM match score

(OTMS) is calculated using Equation 6.2 as follows.

OTMS = 0.80× 5− 0.20− 0.50× 2− 0.70 = 2.1

Now, let us consider that CATaLog_TS has successfully inserted the translation of two

words represented as ‘I’ in the TER alignment. Therefore, two additional match_reward

scores are added with OTMS to arrive at the new TM match score (NTMS).

NTMS = OTMS + 2× 0.80 = 3.7

We estimate the fluency score of a translation suggestion using a language model and

the estimated length of the actual translation of the input sentence. We use a 5-gram

language model with back-off smoothing trained on the target side of the TM corpus. We

use the SRILM toolkit (Stolcke, 2002) for language modelling. The language model score

is normalized by the length of the translation suggestion.

We also use the concept of brevity penalty to penalize a translation if its length is much

smaller or longer than the estimated reference translation. Since no reference translation

is available for the input sentence, we estimate the length of the translation based on the

length of the input sentence. Let the length of the input sentence be SL and the length of

translation suggestion be TL. We assume that the reference translation length (RefLen)

will be in the range between 0.8× SL and 1.2× SL. If the candidate translation length

is out of this range, we assign it a length penalty based on Algorithm 8.

We calculate a fluency score using the language model score (LMS) and length-based

penalty (LP) as in Equation 6.3.

smoothness_score = LMS × LP (6.3)
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Algorithm 8: Calculate Length Based Penalty
Data: input SL, TL

Result: Return LP ; /* length penalty */

Initialization:

LP ← 0;

minRefLen← 0.8× SL ; /* minimum RefLen */

maxRefLen← 1.2× SL ; /* maximum RefLen */

diff ← 0;

begin

if TL ≥ minRefLen AND TL ≤ maxRefLen then
LP ← 1.0;

return LP ;
if TL ≤ minRefLen then

diff ← minRefLen− TL;

if TL ≥ maxRefLen then
diff ← TL−maxRefLen

LP ← e(
−diff
SL

);

return LP ;

Finally, we re-rank the translation suggestions based on the final score computed as in

Equation 6.4.

final_score = smoothness_score×NTMS (6.4)

6.6 Experiments with the Generated TM Suggestion

In this section we describe automatic evaluation of the new “translation” feature in the

CATaLog system called CATaLog_TS (cf. Section 6.4). CATaLog_TS was compared

against CATaLog (Nayek et al., 2015) and the Moses (Koehn et al., 2007) implementation

of the PB-SMT model. We used an English–Bengali parallel corpus which contains 13,000

sentences. This parallel corpus serves as the TM for both CATaLog and CATaLog_TS.

The baseline PB-SMT system is also trained on the same parallel corpus. For building

the PB-SMT system, we set the maximum phrase length to 7 and a 5-gram language

model was trained using KenLM (Heafield, 2011) on the target side training data. Pa-

rameter tuning was carried out using Minimum Error Rate Training (MERT) (Och, 2003)
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on a held-out development set containing 500 sentences. Two different test sets were

used for evaluation: testset1 contained 100 sentences and testset2 contained 500 sen-

tences. We evaluated our system using two well-known automatic MT evaluation metrics:

BLEU (Papineni et al., 2002) and TER (Snover et al., 2006c).

CATaLog_TS provides five translation suggestions based on the top five matches retrieved

from the TM by CATaLog. The term ‘First’ in Table 6.2 refers to the first (i.e. the top

ranked) translation suggestion provided by the CATaLog or CATaLog_TS system. The

term ‘Best’ refers to the best translation suggestion chosen by sentence level BLEU (S-

BLEU) among the five translation suggestions.

Table 6.2 shows that, as far as the ‘First’ translation suggestion is concerned, CATa-

Log_TS provides 2.13 and 2.03 BLEU points absolute (22.4% and 19.2% relative) im-

provement over CATaLog for testset1 and testset2 respectively. The respective improve-

ments are 8.21 and 9.64 points (12.8% and 14.6% relative) for TER. Similarly, for the

‘Best’ translation suggestion, the improvements provided by CATaLog_TS over CATaLog

for testset1 and testset2 are 3.59 and 1.91 BLEU points (29.8% and 14.5% relative) and

10.99 and 6.24 TER points (17.1% and 10.3% relative) respectively.

More importantly, for testset1, CATaLog_TS ‘Best’ performs better than the state-of-the-

art PB-SMT system in both BLEU and TER. However, in case of testset2, CATaLog_TS

‘Best’ performs better according to TER while Moses fares better according to BLEU. This

is probably due to the fact that the Moses system was tuned with the BLEU evaluation

metric.

From Table 6.2, we can conclude that CATaLog_TS always performs better than CATa-

Log. The TER scores for CATaLog_TS are much lower than those for CATaLog for both

‘First’ and ‘Best’ translation suggestions. BLEU scores also reflect the same trend. Com-

parison with the Moses system reveals that CATaLog_TS provides the lowest TER scores

for both the test sets, even if we just consider the ‘First’ translation suggestion. How-

ever, Moses is ahead on testset2 while CATaLog_TS fares better on testset1 according to

BLEU.

Table 6.2 also shows that after re-ranking the top suggestions, the CATaLog_TS_ReRank

system provides a much higher BLEU score and lower TER score compared to Moses for

testset1. However, in the case of testset2, the BLEU score of the CATaLog_TS_ReRank
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system is better than the ‘Best’ option of the CATaLog_TS system, but lower than that

of Moses. However, for both test sets, the TER score of CATaLog_TS_ReRank is con-

siderably better than the other systems. It is to be noted that the CATaLog_TS ‘Best’

system output was decided on the basis of the S-BLEU score, while for the actual eval-

uation purposes we use BLEU. BLEU is a system level score and does not perform well

at sentence-level evaluation; hence the BLEU and TER scores of CATaLog_TS_ReRank

are better than those of CATaLog_TS’s ‘Best’ system.

Testset System
Performance

TER BLEU

Set1

CATaLog
First 64.10 9.49

Best 64.41 12.03

Moses 57.12 14.57

CATaLog_TS
First 55.89 11.62

Best 53.42 15.62

CATaLog_TS_ReRank 48.49 18.07

Set2

CATaLog
First 65.98 10.58

Best 60.82 13.15

Moses 58.44 18.34

CATaLog_TS
First 56.34 12.61

Best 54.58 15.06

CATaLog_TS_ReRank 53.83 15.68

Table 6.2: Systematic comparison between CATaLog, CATaLog_TS, CATa-
Log_TS_ReRank and Moses.

6.7 User Studies with CATaLog Online

The English–German TM engine developed for CATaLog Online is based on the data

described in Chapter 4. The same data were also used to build the CATaLog Online MT

and the internal APE engines. The test data for human evaluation is collected from the

WMT-2015 test set data. We randomly choose 400 sentences from the test set for human

evaluation.
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In order to evaluate CATaLog Online, we conducted experiments with three professional

translators. All of them are native speakers of German with at least two years of experience

in translation. Before the user study was carried out with the translators in a controlled

environment, they were provided with the task guidelines and a short introduction about

CATaLog Online. The translators were asked to perform English to German translation

of 200 news sentences with CATaLog Online by choosing and editing one of the following

three options20.

(a) the output of CATaLog Online’s automatic post-editing system (APE)

(b) the suggestion from CATaLog Online’s internal translation memory (TM)

(c) translation from scratch (None)

The selection of options (a) or (b) entails that translators will perform post-editing in

most of the cases, while for option (c) they will have to translate from scratch without

any help from the TM or the APE.

200 sentences 100 sentences

Trans1 Trans2 Trans3 Trans1 Trans2 Trans3

APE 160 169 161 74 85 82

TM 1 16 0 1 7 0

None 39 15 39 25 8 18

Table 6.3: Selection of suggestions by translators in CATaLog Online.

From the set of 200 sentences each translator received, 100 were repeated (i.e., each trans-

lator received 100 common out of 200 sentences), allowing us to measure the agreement

between the three translators. Since CATaLog Online records an extensive editing log, we

collected information concerning the engine used in translation (APE, TM, or translation

from scratch), the number of deletions, insertions, substitutions and shifts (both words

and characters) as well the editing time (in seconds) for each segment.

The first analysis of the logs is presented in Table 6.3 which gives an overview of the

selected suggestions. Table 6.3 shows that all three translators showed a tendency to

20In case of tie, i.e., equal quality translations, translators can chose any of the suggestions between
APE and TM. However, during experiment, translators did not face this situation.
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Selected suggestions Editing time Number of edits

Trans1 Trans2 Trans3 Trans1 Trans2 Trans3 Trans1 Trans2 Trans3

Trans1 - 0.08 0.20 - -0.16 -0.06 - 0.49 0.42

Trans2 0.08 - 0.05 -0.16 - -0.13 0.49 - 0.26

Trans3 0.20 0.05 - -0.06 -0.13 - 0.42 0.26 -

Table 6.4: Cohen’s κ measuring agreement for the selected suggestion, editing time and
number of edits.

choose the suggestion made by the automatic post-editing system and perform further

editing on it. The APE system achieves a selection rate of around 80%. The remaining

sentences are either translated from scratch or by using the suggestions provided by the

TM. The ratios of the three options chosen by the individual translators are similar for

both the entire test set (200 sentences) and the set containing the common sentences

(100).

Figure 6.6: Correlation between the number of edits and edit time.

For the 100 sentences in common we measured pairwise inter-rater agreement between

translators by computing Cohen’s κ (Cohen, 1960) for different variables. We concentrated

on the suggestions used in the translation process (APE, TM, or translation from scratch),

editing time, as well as the overall number of edits. The pairwise inter-rater agreements

are presented in Table 6.4.

From Table 6.4 we observe that translators agree only in terms of overall number of edits.

Editing time and the selection of a specific suggestion (APE, TM, or translation from

scratch) are parameters on which the translators do not agree. We computed Pearson’s
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correlation coefficient ρ to test whether the total number of edits (with a low κ) influences

the post-editing time (with a high κ). We achieved a ρ value of 0.10 indicating a slight

correlation between these two parameters. Figure 6.6 depicts a suggestion that requires

a higher number of edits also requires more edit time. However, we also noticed cases in

which a high number of edits did not require much editing time and vice versa.

Figure 6.7: Box plot distributions of the different types of edits for the three translators
(T1,T2, and T3).

Taking a closer look at the type of edits performed, we noticed that the edits with the

highest frequency are substitutions, followed by insertions, deletions and shifts. Figure 6.7

depicts the variance of the four edit types. Concluding on the user studies described in

this section, we can say that translators have a clear preference for choosing the output of

the APE system for performing their translation task, even though they do not make the

same choice for the same segments. In terms of editing time, the data show that, in this

setting, time is a translator-dependent variable, influencing the low correlation coefficient

with respect to the number of edits.

The users also provided informal feedback regarding the tool. The translators rated the

tool by comparing it to other CAT tools in terms of usability. The main positive and

negative feedback about CATaLog Online are summarized below.

Positive Feedback

• The unique coloring system in CATaLog Online – offered by none of the existing

TM based CAT tools – helped to complete the editing of suggestions from the TM.
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• APE suggestions were often really helpful.

• The arrangement of the suggestions in CATaLog Online was an advantage.

• Displaying the source sentence without opening a new window, facilitating the com-

parison between source and suggested target translations, was also rated as positive.

Negative Feedback

• Sometimes verbs were entirely missing or the word order was very unnatural in MT

and APE suggestions.

• CATaLog Online lacks certain functionalities like a spell-checker and other quality

assessment (QA) features.

• It would be useful to have more suggestions from the TM; currently CATaLog Online

offers just one.

• The unavailability of keyboard shortcuts for navigation between segments, saving

a segment, opening a concordance search or copying a term from the glossary is a

disadvantage..

• Missing the possibility to display the layout of the source text is a negative.

6.8 Conclusions and Future Work

The chapter presents a new free open-source CAT tool and post-editing interface entitled

CATaLog Online which offers translation suggestions from TM, MT and APE. The tool

is specifically targeted towards improving post-editing productivity and user experience

with CAT. A novel feature in the tool is a color coding scheme that highlights matching

and irrelevant fragments in suggested TM segments. Color coding the TM suggestion

makes the decision process easy for the desktop version user as to which TM suggestion

to choose and work on and it also guides the translators as to which fragments to post-

edit on the chosen TM translation. The similarity metric employed in the tool makes use

of TER, the Needleman–Wunsch algorithm and Lucene retrieval to identify and re-rank

relevant TM suggestions. The tool keeps track of all post-editing activities and records
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detailed logs in well-structured XML which is beneficial for incremental MT/APE and

translation process research.

User evaluation of CATaLog Online revealed that translators have a clear preference in

choosing the output of the APE system for performing their translation task. They

also evaluated positively the color coding scheme for the TM suggestions as well as the

arrangement of the suggestions within the translation interface. Results of our experiment

conducted with professional translators in an industrial environment (Nayek et al., 2015;

Nayak et al., 2016; Pal et al., 2016e,d) show that CATaLog Online reflects both user and

research perspectives. This addresses our RQ6, i.e., “How can human interaction with

CAT tools be optimized in existing MT workflows?”. The informal feedback revealed

that features such as a spell-checker, QA features and keyboard shortcuts could further

improve the tool.

In this chapter, we also reported the introduction of another important function of TM:

TM based translation generation. Traditionally, TMs do not generate any new transla-

tions; therefore, we present a step beyond traditional TM. Furthermore, this improves

HCI issues with TM since this new functionality generates a new translation based on

the translation template chosen by the user. Although, this functionality is not currently

available in CATaLog Online, automatic evaluation of our prototype implementation re-

veals that this improves TM suggestion quality. This also reduces the human translation

effort and answers RQ6 raised at the beginning of this chapter. In future, we will include

this functionality in the online version.

CAT functionality can be improved in many different ways. We are exploring contex-

tual, syntactic and semantic features which can be included in similarity score calculation

to retrieve more appropriate translations. Another improvement we are currently work-

ing on concerns tuning the weights of the different edit operations to optimize system

performance.
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Conclusions and Future Work

7.1 Research Contributions and Questions Answered

In this thesis we have posed six research questions (RQ1 through RQ6, listed below) and

developed technologies to address each one of them.

RQ1: How can MT for low resource languages be improved?

In Chapter 3, we showed that parallel text fragments extracted from a comparable corpus

built from Wikipedia articles were able to bring about significant improvements in the

performance of an existing machine translation system. For low resource language pairs

our approach can help to improve state-of-the-art machine translation quality. Manual

inspection on a subset of the output revealed that the additional training material ex-

tracted from comparable corpora effectively resulted in better lexical choice and fewer

OOV words than in the baseline output. As the parallel text extracted from compa-

rable data does not belong to any particular domain, this work also shows that out of

domain data can be useful to enhance the performance of a domain specific MT system

for low resource languages. Although we have successfully shown that additional parallel

resources extracted from comparable corpora can improve machine translation for low

resource language pairs (e.g., English–Bengali), it remains an open research question how

our approach would scale to well resourced language pairs with large amounts of parallel

data. Substantial further research is required in the area of comparable corpora for MT.
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Technological contributions for RQ1:

• Textual entailment and extraction of parallel fragments of texts which is one of the

novel contributions in comparable corpus research.

RQ2: How can SMT better profit from the existing training data?

Our research reported in Chapter 4 shows how effective pre-processing of NEs and MWEs

in the parallel corpus, and their alignment and integration (directly and indirectly) into

PB-SMT and forest based SMT can improve system performance. Automatic prior align-

ment of MWEs, NEs, and example based phrase pairs and their integration into the word

alignment model using additional training examples or hybrid alignment techniques im-

prove the system performance significantly. Chapter 4 also presented a method of source

chunk pre-ordering based on word alignment. Source chunks are reordered based on their

associations with the target words and the target word order. The testset is reordered

using monolingual PB-SMT built on the original source training data and the reordered

source training data. Our experiments showed that word alignment based source chunk

pre-ordering is more effective than word alignment based source word pre-ordering and

tree-based reordering and produced statistically significant improvements on both. On

manual inspection we found significant improvements in terms of word alignments. This

method also reduces the data sparsity problem and reduces the model size. The pre-

ordering method presented in Chapter 4 has the advantage that it does not require any

language specific tools like parsers except a chunker for the source language.

Technological contributions for RQ2:

• Improved utilization of parallel data using word-alignment based pre-ordering and

pre-aligned example based phrase pairs and terminologies including MWEs and NEs.

RQ3: What could improved hybrid implementations of MT be like?

Chapter 4 reports a study on integrating hybrid word alignment in forest to string based

statistical machine translation (FSBSMT). Experimental results on an English–Bengali

dataset show that FSBSMT with Berkeley alignment brings about a huge improvement
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(69.83% relative, 8.75 absolute BLEU points) over state-of-the-art hierarchical Phrase

based SMT (HPBSMT). Systems like HPBSMT which work only with 1-best parse tree

may suffer from parsing errors. FSBSMT alleviates this problem by considering packed

forest of k-best parses. Additional integration of prior aligned named entities and EBMT

phrases in terms of additional training examples and the inclusion within hybrid word

alignment into the proposed system also brings further improvements. The enhanced sys-

tem provides 78.5% relative (9.84 absolute BLEU points) improvement over the baseline

HPBSMT system and and 5.12% relative improvement (1.09 absolute BLEU points) over

an FSBSMT system with Berkeley alignment. Chapter 4 also shows that a hybrid system

with NE/MWE alignment, EBMT phrases, and single-tokenized source MWEs results in

the best performing system. However, a confusion network-based system combination

outperforms all the individual MT systems. The fact that the systems were tuned with

BLEU scores may be one of the reasons behind the poor TER scores produced by the

systems. However, with the emergence of new technologies like neural MT, deep learning,

etc., the issue of hybrid MT will continue to be remain an open research question and

subject to further experimentation.

Technological contributions for RQ3:

• Parallel combination of word alignments.

• Hybrid implementation of MT in a multi-engine pipeline.

RQ4: How can we build an effective automatic post-editing system which can improve

the translation quality of the first-stage MT system?

Chapter 5 shows that the use of alignment combination models including both statistical

and edit-distance based methods in our hybrid word alignment model for APE improves

the translation quality over raw MT text. By improving word alignment, the APE system

automatically acquires better lexical associations and the ‘hybrid’ PB-SAPE system pro-

vides improvements over the raw Google MT baseline. The proposed system combination

based APE approach (SC-APE) was successful in improving over the baseline APE system

(PB-APE basic) performance. Additionally, we showed that a neural network based APE

system provides statistically significant improvements over existing state-of-the-art APE

models and produces significantly better translations than the Google Translate system
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which is a difficult system to beat. This enhancement in translation quality through APE

should reduce human PE effort.

Technological contributions for RQ4:

• System combination (parallel combination of alignment systems at the level of the

APE and parallel combination of APE and (first stage) MT systems) in the APE

stage of a sequential MT-APE combination.

• Introduced neural APE.

RQ5: To what extent is an APE system able to reduce final post-editing effort in terms

of increasing productivity?

In Chapter 5 we showed that parallel system combination in the APE stage of a sequen-

tial MT-APE combination yields substantial translation improvements both measured in

terms of automatic evaluation metrics as well as productivity improvements measured in

a post-editing experiment. We also showed that system combination on the level of APE

alignments yields further improvements. Overall our APE system yields a statistically

significant improvement of 5.9% relative BLEU over a strong baseline (English–Italian

Google MT) and 21.76% productivity increase in a human post-editing experiment with

professional translators.

Technological contributions for RQ5:

• Productivity improvements in real-life scenario.

RQ6: How can human interaction with CAT tools be optimized in existing MT

workflows?

Chapter 6 presented CATaLog Online, a free online CAT tool. We discussed three main

components (MT, APE and TM) of the tool and how they can be used in the translation

workflow. To the best of our knowledge, CATaLog Online provides a wider range of logs

than any other commercial CAT tool in the market. This information is very important for
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translation process research and translation project management. The tool also supports

a polling system developed as a resource for MT and TM evaluation.

We enhanced CATaLog Online in terms of both user perspective and translation process.

The user perspective includes: the color-coding, analytical summaries of post-editing

activities, and well-structured XML formatted logs. The XML formatted logs can be

customized according to the user’s choice, e.g., the user can download the entire logs or

some specific logs for a particular translation job.

In terms of translation process research and development perspectives, we implemented

several functions in CATaLog Online, e.g., recording word alignments between Source–

MT, MT–PE and source–PE, which will be beneficial for incremental MT and incremental

APE. Using the post-editing information we would like to build and integrate a further

enhanced APE system into CATaLog Online which can improve the background MT

system output.

In Chapter 6, we furthermore introduced an improved desktop version of CATaLog: CAT-

aLog_TS and CATaLog_TS_Rerank, where we explored how translations of unmatched

parts of an input sentence can be discovered and inserted into TM suggestions (generated

by the CAT tool) using parse tree and POS tags information to form a new translation

which is more suitable for post-editing and can reduce post-editing efforts. In this part

of our research, we are beginning to blur the distinction between TM and MT.

Finally, at the end of Chapter 6, we presented a study to quantify the extent to which

translators are faster or more productive using CATaLog Online.

Technological contributions for RQ6:

• Color coded TM translation suggestions (highlighted TM source and corresponding

target fragments are shown in the same interface).

• A wide range of editing logs.

• Alignment between source, TM/MT/APE and the results of human PE.

• Improved TM similarity measure and search technique.

• Additional translation option from APE which learns from human post-edited data.
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7.2 Future Work

Based on the work presented in the thesis, several research directions can be explored in

future which are listed below.

Comparable Corpora: A future direction would be to propose a scalable and com-

putationally less complex parallel fragment extraction method from comparable corpora.

Another important area for further research is on building an MT system entirely from

comparable corpora, i.e., without the availability of any seed parallel corpora. In terms

of comparable corpora research there are several other options to be explored, such as:

1. To experiment with more advanced and faster methods of collecting comparable

corpora from the Web.

2. To evaluate the similarity of documents across languages in a collection of compa-

rable documents by comparing different similarity schemes and propose improved

document similarity methods. News corpora represent a relatively untapped source

of comparable corpora which do not come with document alignment. In order to

make use of news corpora for parallel text extraction, they need to be aligned at the

document level first. Paragraph (or sub-document) level alignment is also another

important future area of research in this direction.

3. To explore alternate ways for discovering parallel fragments from comparable cor-

pora using computationally less expensive methods.

Concerning the hybrid approaches to MT, APE and the entire translation workflow, there

are several directions in which research could be extended.

Neural MT: The translation model in state-of-the-art SMT which represents the trans-

lation knowledge derived from the parallel corpus is a by-product of word alignment (e.g.,

using alignment can be based on other models, like, Berkeley word alignment (Liang et al.,

2006), IBM models (Brown et al., 1993)). However, despite being the backbone to the

SMT model, the IBM models suffer from erroneous alignment mappings; they can not

properly handle many-to-one, one-to-many and many-to-many alignments (Marcu, 2001;

Koehn et al., 2003). Moreover, each component of SMT produces errors that propagate

through the translation pipeline. While end-to-end NMT approaches solve these issues to
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a certain extent and can therefore lead to better translation quality, they are susceptible

to other limitations. Below, we list some of the limitations of NMT and mention some

future areas of research that could tackle them.

• NMT systems often focus on the most frequent words in the training corpus and

ignore the rest, considering them as unseen or unknown. Although this reduces the

model complexity, it causes a serious out-of-vocabulary (OOV) problem. Recently

proposed subword-based NMT (Sennrich et al., 2016a) helps to reduce the OOV

problem to some extent. However, the OOV problem is still considered as a serious

issue in NMT.

• The NMT decoder may lack coverage with respect to source sentences and therefore,

favor short translations. This, in turn, could lead to inadequate translations.

• NMT does not utilize the benefits from target side monolingual data and target

language models which have already been proven to improve translation quality in

SMT. In NMT, monolingual target language data also provides substantial improve-

ments. Gülçehre et al. (2015) incorporate a separately trained RNN language model

into the NMT model through shallow or deep fusion. Sennrich et al. (2016b) pro-

posed another effective solution to improve NMT performance; they used parallel

synthetic data where “source sentences” are obtained from automatically translating

the monolingual target sentences through back-translation.

Potential future areas of research to circumvent these limitations could be:

• OOV problems can be solved to some extent using pre-processing and post-processing.

Named entities (NEs) often raise OOV issues in MT. During preprocessing, NEs can

be identified from the input text and during post processing untranslated NE-OOVs

can be just carried over for source–target language pairs having the same script or

can be transliterated using dictionary look up (e.g., Wikipedia parallel NE dictionary

or parallel terminology bank) or using a dedicated transliteration model in case of

different scripts. Replacement of non-NE-OOVs by appropriate in-vocabulary syn-

onyms or word similarities (Singh et al., 2016) during pre-processing can help reduce

OOVs in the translation output.
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• Alleviate the inadequate translation problem in NMT by using a word rewarding

feature within a soft coverage vector to guarantee all source words are translated.

• We will extend the back-translation work proposed by Sennrich et al. (2016b) by

using comparable corpora. Instead of using parallel synthetic data, we will explore

back-translation to extract parallel segments from comparable corpora. We would

also like to apply a neural or statistical language model to re-rank the n-best NMT

output to improve translation quality.

• We will work towards factor-based NMT (García-Martínez et al., 2016) as in factored

SMT (Koehn and Hoang, 2007) where different linguistic features are considered as

different factors.

• To date, only Chen et al. (2016) treats the task of MT as a multi-objective optimiza-

tion problem. Chen et al. (2016) proposed an effective way for biasing the atten-

tion mechanism using a guided alignment training approach to improve translation

quality. They expressed a multi-objective optimization task as a single-objective

one by means of a linear combination of two loss functions: the original and the

new alignment-guided loss. There is a lot of scope for integrating multi-objective

optimization frameworks into NMT which we will investigate to handle different

linguistic information as different types of objective functions.

Future work in this direction will result in novel technology for training and exploiting

NMT engines within the hybrid framework or within CATaLog Online for end-to-end

high quality translation. Furthermore, future work should also carry out an empirical

evaluation of SMT (hybrid) with NMT (hybrid/ensembled (Luong et al., 2015a)) under

real-life scenarios.

Neural APE (NNAPE): Future work will also investigate a fully integrated second-

stage MT (APE), based on a neural network approach (cf. Figure 5.8, Neural APE (Pal

et al., 2016c)) that will improve translation quality and minimize translation effort and

cost by exploring a character/sub-word (Sennrich et al., 2016a) (using byte pair encoding)

based APE system to rectify morphological errors.

Pal et al. (2017) presented a neural APE model that extends the attention based NMT

model to traditional word alignment models and utilizes agreement of bidirectional mod-

els for alignment symmetry. The attentions are encouraged to symmetrization in both
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Figure 7.1: Generating the tth TLpe word yt for a given TLmt (x) and SLip (w).

translation directions. We will extend their approach and also focus on resolving word

ordering error by training an alignment model, translation model as well as the reorder-

ing model jointly by using three different objective functions within a single optimization

framework.

To enhance the NNAPE model described in Chapter 5, we will develop a similar archi-

tecture as in Figure 5.8; however, it will have another parallel input layer w, which is

another bidirectional RNN encoder for input source sequences, i.e., P (yt|y1, ...yt−1,w,x)

(cf. Figure 7.1): by encoding a variable-length sequence of tokens in the source language

SLip (e.g. w = w1, w2, w3...wl) into a fixed-length vector representation (Cip) as well as

TLmt (e.g. x = x1, x2, x3...xm) into a fixed-length vector representation (Cmt) and then

decoding a given joint representation of Cip and Cmt, back into a variable-length sequence

of TLpe (e.g. y = y1, y2, y3...yn). This model will take SLip as well as TLmt as input and

provide TLpe as output.

Like the NNAPE model in Figure 5.8, this model can also be designed by using an

attention based soft alignment model (Bahdanau et al., 2015) which provides a matching

score between the inputs around source input position i, MT output position j and the

PE output at position t.

Integration of a dynamic incremental APE framework in the MT-APE work-

flow: One of the main criticisms of the state-of-the-art MT technologies is that translators

frequently find the same errors to be corrected in the output of the translation systems (cf.

Chapter 5). APE systems described in Chapter 5 can automatically correct systematic
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errors to some extent. Future work will be carried out to develop an incremental/online

setting where human post-edited/complete MT output that is continuously fed back to

the MT or NNAPE system to continuously improve its quality as described in (Chat-

terjee et al., 2015a) for phrase based APE. The objective is to implement a dynamic,

incremental, active learning MT-APE framework, where the MT/APE system will learn

from users’ feedback or user corrections. The inclusion of online learning techniques into

the interactive NMT framework is the next research direction, in order to provide NMT

to build more adaptive and productive translation systems. Initial development of such

interactive NMT systems has been addressed in (Knowles and Koehn, 2016; Peris et al.,

2017).

The future direction towards the improvement of CATaLog and CATaLog Online would

be as follows:

• Applying the data captured by the polling system and the log informa-

tion: We plan to use the polling system and the information obtained in the log

functions to investigate translation quality not only at the segment level but also at

the document level (Scarton et al., 2015).

• Rank the translation examples based on their syntactic similarity with

the input sentence: If two TM matches have the same lexical similarity, but one

of them is syntactically more similar to the input sentence, then the TM should

give priority to the syntactically more similar TM segment. This could be another

important area of research in TM match.

• Rank the TM matches based on their semantic similarity with the input

sentence: If two TM matches have the same lexical similarity, then prefer the

TM match for which the differing words in the TM source are semantically closer

to the differing words in the input sentence (Gupta et al., 2015a). This could be

implemented, e.g., in terms of neural TM matching based on words embeddings

(word2vec) for words or segment level similarity.

• Tuning the edit weights: Tuning the edit costs corresponding to the different

types of editing operations would be an important future work.
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CATaLog Online: A Web-based

CAT Tool for Distributed

Translation with Data Capture for

APE and Translation Process

Research

We present a free web-based CAT tool called CATaLog Online which provides a novel

and user-friendly online CAT environment for post-editors/translators. The goal is to

support distributed translation where teams of translators work simultaneously on dif-

ferent sections of the same text, reduce post-editing time and effort, improve the post-

editing experience and capture data for incremental MT/APE (automatic post-editing)

and translation process research. The tool supports individual as well as batch mode

file translation and provides translations from three engines – translation memory (TM),

MT and APE. TM suggestions are color coded to accelerate the post-editing task. Users

can integrate their personal TM/MT outputs. The tool remotely monitors and records

post-editing activities generating an extensive range of post-editing logs. Compared with

current state-of-the-art CAT tools, CATaLog Online provides an enhanced interface, an

option to integrate APE and more informative logs to help translation process research.
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A.1 Introduction

Machine translation (MT) technology has improved substantially over the past few decades.

MT output is no longer used just for gisting but also for post-editing by professional

translators as an important part of the translation workflow. Several studies confirm that

post-editing MT output increases translators’ productivity and improves translation con-

sistency (Guerberof, 2009; Plitt and Masselot, 2010; Zampieri and Vela, 2014). Alongside

classical TM matches, computer-aided translation (CAT) tools that integrate MT and

TM output are a trend in the translation and localization industries providing translators

more useful suggestions. Another important trend is the development of web-based CAT

tools which require no local software installation and allow teams of translators to work on

the same project simultaneously (e.g., WordFast Anywhere1, MateCat2 (Federico et al.,

2014), and Wordbee3, Lilt4 etc.).

This paper presents CATaLog Online, a web-based CAT tool that provides translators

MT, TM and APE output and ensures data capture for APE development and translation

process research. The MT and APE systems integrated in CATaLog Online are based on

Pal et al. (2015a) and Pal et al. (2016f), respectively. In this paper, we present the key

features implemented in CATaLog Online and their importance to translation project

managers, translators, and MT and APE developers. Compared to state-of-the-art CAT

tools (e.g., MateCat, Lilt) CATaLog Online offers the following advantages: (i) color coded

TM translation suggestions (highlighted TM source and corresponding target fragments

are shown in the same interface), (ii) a wide range of editing logs, (iii) alignment between

source, TM/MT/APE and the results of human PE, (iv) improved TM similarity measure

and search technique (Pal et al., 2016e), and (v) additional translation option from APE

which learns from human post-edited data.

A.2 CATaLog

CATaLog (Nayek et al., 2015) is a TM-based CAT tool which provides core functionalities

for CATaLog Online. What distinguishes CATaLog from existing TM-based CAT tools
1https://www.freetm.com/
2https://www.matecat.com/
3http://www.wordbee.com/
4https://lilt.com/
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is a set of newly introduced features targeted towards improving post-editing experience

in terms of both performance and productivity. These include an improved TM similar-

ity measure, searching and a novel coloring scheme. The color coding introduced into

CATaLog guides the user during the translation (or post-editing) process. The matching

parts in the TM source matches, as well as their translations in the target, are displayed

in green, while the non-matching parts in both the TM source and target suggestions

are displayed in red. Unaligned words are shown in orange. Similarly, when the user

clicks on one of the 5 TM suggestions to start the post-editing task, the corresponding

matching and non-matching parts in the input segment are also displayed in green and

red, respectively. The color coding scheme not only helps the user to choose the most

suitable TM suggestion for post-editing, it also helps the user to identify which parts of a

TM match require more post-editing effort and which fragments are reliable translations.

Key features of CATaLog are presented below.

A.2.1 Similarity Measure

For determining useful TM matches CATaLog employs the automatic MT evaluation met-

ric - Translation Edit Rate (TER5) (Snover et al., 2006c). TER is intuitively a very useful

similarity metric for use in TM as it directly mimics the human post-editing behavior and

it shows a very high correlation with human evaluation. Moreover, TER provides the

alignments between a segment pair that indicate which parts are common to the pair and

which portions differ. TER is essentially an error metric: the lower the TER score, the

higher the match. Unlike Simard and Fujita (2012) who first proposed and studied the

use of different MT evaluation metrics as measure of similarity in TM, we do not use TER

in its original definition: TER weighs each editing operation equally. However, the dele-

tion operation takes much less time and effort compared to the other editing operations

in post-editing. Therefore, we assign a lower cost to the delete operation compared to

the other three edit operations. However, CATaLog allows users to set the editing costs

according to their own preference.

The top 100 most relevant TM suggestions returned by the Lucene based search engine

(cf. Section A.2.2) are re-ranked using the TER style CATaLog similarity score which

is computed following Equation A.1, where nm and sm refer to the number of matches

5http://www.cs.umd.edu/ snover/tercom/
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and match reward scores, respectively; ei refers to four types of edit operations – insert,

delete, substitute and shift; nei and cei refer to number of ei edit operations required and

the corresponding edit cost, respectively. Thus we reward matches and penalize edits to

arrive at the final similarity score.

S = nm × sm −
4∑

i=1

nei × cei (A.1)

A.2.2 Searching

To improve search efficiency, CATaLog online uses the standard information retrieval (IR)

model of Lucene6 with segment parsing, segment indexing, TF-IDF calculation, query

parsing and finally searching/segment retrieval and segment ranking. Here query refers

to the segment being translated and each indexed/retrieved segment contains (a) a TM

source segment, (b) its corresponding translation and (c) the word alignments. All stop

words are removed from the query (i.e. the input segment) before being presented to

Lucene. Lucene retrieves the most relevant TM source candidates with respect to the

query. The corresponding translations and the word alignments are also fetched. The

set of relevant retrieved candidates is re-ranked according to their similarity scores. The

ranking process also deals with a dissimilarity measurement (Kešelj et al., 2003) that

provides a final score to re-rank the retrieved segments (Pal et al., 2016e).

A.2.3 Color Coding

A new color coding scheme has been introduced into CATaLog that guides the user during

the translation (or post-editing) process. The matching parts in the TM source matches,

as well as their translations in the target, are displayed in green, while the non-matching

parts in both the TM source and target suggestions are displayed in red. Unaligned words

are shown in orange. Similarly, when the user clicks on one of the 5 TM suggestions to

start the post-editing task, the corresponding matching and non-matching parts in the

input segment are also displayed in green and red, respectively. The color coding scheme

not only helps the user to choose the most suitable TM suggestion for post-editing, it also

6http://lucene.apache.org/
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helps the user to identify which parts of a TM match require more post-editing effort and

which fragments are reliable translations.

A.3 CATaLog Online

CATaLog online provides a novel and user-friendly online CAT environment for post-

editors and translators to reduce post-editing time and effort and improve the post-editing

experience. The tool remotely monitors and records translator/post-editor activities gen-

erating a wide range of post-editing logs (cf. Section A.3.4.1) which are a fundamental

source of information for APE and translation process research (cf. Section A.4). CATa-

Log online, on the one hand, produces multiple translation options for an uploaded input

text file. On the other hand, it is a language independent tool that enables users to upload

their own translation memories.

Figure A.1 shows the main user interface of the tool. On the main user interface7, users

can translate a single segment after choosing the source language and the target language

(cf. “Quick Translation” in the main interface ). The suggested translations are generated

from three different engines: MT, TM and APE. The TM output is color coded. The

user has to click the “translation suggestions” link after presenting input source text,

choosing the language pair and pressing the “translate it!” button. Unlike other existing

CAT tools, CATaLog online provides many facilities including file translation, CAT tool

environment, user management, project management, translation data capture, etc.

A.3.1 File Translation

CATaLog online provides facilities for batch mode file translation, i.e., a user can input

a source file (English in this case) as shown in Figure A.2. The CATaLog online file

translation option provides a post-editing environment which allows the user to post-edit

the selected translation from among the three translation suggestions (MT, TM and APE)

in the target language (German in this case). The user has to choose the source–target

language pair and upload a text file which contains a set of source segments. The tool first

translates this text file at the back end by creating a project and then assigns a unique

7http://santanu.appling.uni-saarland.de/CATaLog/
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Figure A.1: Landing page user interface of CATaLog online

job identification number (Job ID) to the user which is displayed on the large red button

in the interface (cf. Figure A.6). Each project/job is associated with a unique job URL.

The user can either keep this Job ID for future reference or directly go to the job page by

clicking on the recent Job ID (i.e., the red button marked with the Job ID). Whenever an

user needs to recover his/her project/job, he/she has to simply remember the Job ID and

search the project/job using that Job ID (cf. Figure A.6). The File translation interface

provides on-the-fly user guidance regarding the “usage” and “tool functionality” in terms

of message services.

A.3.2 CAT Tool

The CAT Tool interface (cf. Figure A.3) is very similar to the File Translation interface

described in Section A.3.1, however, it differs a little in terms of features and function-

alities. A key option facilitates the user to upload their own translation memories in a

specific file format. The file format is a tab separated text file as given in Example 1.

Example A.1.

SourceSegment < TAB > Translation1 < TAB > Translation2

This option serves as a language independent feature for CATaLog online. The CAT

Tool interface does not utilize the full functionalities offered by CATaLog online, e.g. it
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Figure A.2: File translation interface

does not use MT or APE translation generated by the tool (cf. Section A.3.1). Users

have full freedom to use MT translations generated by their own MT system or third

party MT engines (up to two alternatives are supported in the current version for each

source segment). Additionally, CATaLog online provides color coded translations from

the back end TM. When the uploading finishes, the system provides a unique Job ID; the

functionality is similar to that described in Section A.3.1.

A.3.3 Project Management

Project managers (PM) initiate a translation project by understanding the project scope,

based on input and requests from the client. Translation PMs then review and examine

the source files to determine a variety of factors and finally decide how to accomplish the

work by distributing the job among translators. The CATaLog online project management

system is currently in the development stage. The released version supports basic project

management activity described below.
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Figure A.3: CAT interface

A registered PM creates a translation project for a specific language pair by uploading

a source file. Once a project/job has been created, a job Id appears in a row of the job

assignment table. Some additional information is also associated with the job Id e.g., issue

date, submission date, available translators for that particular language pair, etc. The

PM can review the job and assign translation sub-jobs to any of the available translators

by setting a submission deadline (cf. Figure A.4).

As soon as the PM assigns a job to a particular registered translator, the translator can

see and review that job. The interface provides three options to the translator by which

s/he can set the status of her/his activity for that particular job. A translator can either

delete the assigned job from her/his profile by setting a “Deny” status or s/he can accept

it by setting the “Accept” status (cf. Figure A.5). After finishing a translation task, the

translator sets the corresponding job status as “Completed” which is directly updated in

the PM’s job status where s/he can see the completed and pending jobs. Finally, after

reviewing, the PM can download the completed job (cf. Figure A.9) and deliver it to the

client.
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Figure A.4: Project Management interface for PMs

Figure A.5: Project Management interface for translators

A.3.4 Job Management

A job is created when the PM or a guest user uploads a source file. The job interface of

CATaLog online provides three different translation alternatives for each source segment

(cf. Figure A.7). One of the alternative translations which is fetched from TM is color

coded (cf. Section A.2). The other two outputs are either from MT and APE engines

provided by CATaLog online (cf. Section A.3.1) or the uploaded third party MT engine

outputs (cf. Section A.3.2). As shown in Figure A.7, source segments are listed in the blue

panel on the left and the corresponding translation suggestions appear on the right panel

upon clicking a link shown above the source segment. The translator has to choose one

of these suggestions and post-edit it. Figure A.8 shows the interface when the translator

selects the TM suggestion. The final translation appears in the green panel on the left

when the translator presses the “Save” button. The editing time (in seconds) is also shown

below the final translation panel. After finishing each translation, an editing summary

shows the number of editing operations performed by the translator. CATaLog online

provides an on-the-fly editing guide for each source segment throughout the translation

process. In case of re-editing a translation, the previously stored final translation shows
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up as the first translation suggestion in the suggestion panel.

Figure A.6: Job search interface of CATaLog online

Figure A.7: Job interface of CATaLog online

A.3.4.1 Editing Log

For a given input segment, the user edits the best translation suggestion which may con-

tain errors such as missing words, incorrect word order, wrong lexical choice, presence of

irrelevant words, untranslated words or punctuation errors. The system records the user

activities such as key strokes, cursor positions, text selection and mouse clicks. CATa-

Log online provides analytical summaries of post-editing activities during translation and

presents well structured XML formatted logs. The XML formatted logs can be customized
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Figure A.8: Job interface of TM selection

according to the user’s choice, e.g., the user can download entire logs or some specific logs

for a particular translation job (cf. Figure A.9).

Figure A.9: Job download interface

A.4 APE and Translation Process Research using CATaLog

Online

The post-editing logs collected during the translation process are a valuable source of

information for translation process research as well as APE research and development.

These user activity data logs not only help to assess the performance and understand the
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behavior of the translators, they also provide crucial information about cognitive aspects

of post-editing. The logs can be used to model APE to improve quality and productivity.

User Perspective: CATaLog Online generates a summary for every completed transla-

tion task which includes translator productivity in terms of number of words translated

per minute and time taken per word. From the logs it is also possible to generate a re-

port on translator style and behavior which can include, e.g., number of keystrokes per

(effective) character editing, repetitive typing, preference for certain function words, etc.

Research Perspective: CATaLog Online records word alignments between source–MT,

MT–APE, source–APE and source–HPE. These alignments and related post-editing in-

formation are beneficial for incremental MT/APE. Moreover, the source–HPE word align-

ments gathered by the tool can serve as a potential source for terminology extraction.

A.5 Conclusions and Future Work

CATaLog Online is a novel and user-friendly online CAT tool offering new features de-

veloped with the objective of improving translation productivity and experience. The

tool provides a wide range of logs and data which serve as important information to

translation process researchers, MT developers, and APE developers. The success of the

two editions of the APE shared task in WMT (Bojar et al., 2016) indicate that APE is

one of the important directions that research in MT is moving to. Post-editing tools,

such as CATaLog Online, are able to provide crucial information for APE development.

We would like to further expand and improve the tool by including additional features,

e.g., interactive translation prediction in the form of on-the-fly translation suggestion,

terminology extraction, option for compiling corpora, auto-suggestion for words, on-click

pop-up terminology view, etc. Finally, we would like to model user behaviour and imple-

ment incremental MT/APE using the edit logs provided by the tool.
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