9 research outputs found

    Solving Complex Multi-UAV Mission Planning Problems using Multi-objective Genetic Algorithms

    Full text link
    Due to recent booming of UAVs technologies, these are being used in many fields involving complex tasks. Some of them involve a high risk to the vehicle driver, such as fire monitoring and rescue tasks, which make UAVs excellent for avoiding human risks. Mission Planning for UAVs is the process of planning the locations and actions (loading/dropping a load, taking videos/pictures, acquiring information) for the vehicles, typically over a time period. These vehicles are controlled from Ground Control Stations (GCSs) where human operators use rudimentary systems. This paper presents a new Multi-Objective Genetic Algorithm for solving complex Mission Planning Problems (MPP) involving a team of UAVs and a set of GCSs. A hybrid fitness function has been designed using a Constraint Satisfaction Problem (CSP) to check if solutions are valid and Pareto-based measures to look for optimal solutions. The algorithm has been tested on several datasets optimizing different variables of the mission, such as the makespan, the fuel consumption, distance, etc. Experimental results show that the new algorithm is able to obtain good solutions, however as the problem becomes more complex, the optimal solutions also become harder to find.Comment: This is a preprint version of the article submitted and published in Soft Computin

    Constrained multi-objective optimization for multi-UAV planning

    Full text link
    Over the last decade, developments in unmanned aerial vehicles (UAVs) has greatly increased, and they are being used in many fields including surveillance, crisis management or automated mission planning. This last field implies the search of plans for missions with multiple tasks, UAVs and ground control stations; and the optimization of several objectives, including makespan, fuel consumption or cost, among others. In this work, this problem has been solved using a multi-objective evolutionary algorithm combined with a constraint satisfaction problem model, which is used in the fitness function of the algorithm. The algorithm has been tested on several missions of increasing complexity, and the computational complexity of the different element considered in the missions has been studied.Comment: Preprint of the article submitted and published in Journal of Ambient Intelligence and Humanized Computin

    The Dynamic Multi-objective Multi-vehicle Covering Tour Problem

    Get PDF
    This work introduces a new routing problem called the Dynamic Multi-Objective Multi-vehicle Covering Tour Problem (DMOMCTP). The DMOMCTPs is a combinatorial optimization problem that represents the problem of routing multiple vehicles to survey an area in which unpredictable target nodes may appear during execution. The formulation includes multiple objectives that include minimizing the cost of the combined tour cost, minimizing the longest tour cost, minimizing the distance to nodes to be covered and maximizing the distance to hazardous nodes. This study adapts several existing algorithms to the problem with several operator and solution encoding variations. The efficacy of this set of solvers is measured against six problem instances created from existing Traveling Salesman Problem instances which represent several real countries. The results indicate that repair operators, variable length solution encodings and variable-length operators obtain a better approximation of the true Pareto front

    Evolutionary Computation for Overlapping Community Detection in Social and Graph-based Information

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura : 26-06-2017Esta tesis tiene embargado el acceso al texto completo hasta el 26-12-201

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore