305 research outputs found

    WHY FUZZY ANALYTIC HIERARCHY PROCESS APPROACH FOR TRANSPORT PROBLEMS?

    Get PDF
    The evaluation of transport projects has become increasingly complex. Different aspects have to be taken into account and the consequences of the problems are usually far reaching and the different policy alternatives are numerous and difficult to predict. Several pressure or action groups have also emerged causing an even more complex decision making process. The use of multi criteria analysis for the evaluation of transport projects has increased due to this increasing complexity of the problem situation. At the same time, the importance of stakeholders within this evaluation process should have been recognized. Researches on transport projects are generally carried out to provide information to policymakers that have to operate within restrictive parameters (political, economical, social, etcñ€©). Researchers should therefore take greater account of the different priorities of stakeholders such as policymakers, private enterprises and households. These stakeholders should be incorporated explicitly in the evaluation process. The Analytic Hierarchy Process is one of the Fuzzy Multiple Criteria Decision Making methods. It can be applied in a very broad range of applications of decision problems. Logistics, urban planning, public politics, marketing, finance, education, economics are a part of this wide application area. In transport subjects it can be used for the evaluation of transport policy measures or decision making problems. Due to its wide range application area, it has been an exciting research subject for many different field researchers. The aim of this paper is to introduce AHP method and to offer how to benefit it for the preference of urban planners in transport problems. This paper is composed of two main parts. First part consists of the literature survey regarding with the AHP and its application areas. The advantage of methods had been mentioned. Second part focuses on a sample application of AHP technique. The study uses AHP technique to determine the selection criteria in the transhipment port selection decision-making process. Keywords: Analytic Hierarchy Process, Multi criteria analysis, Transshipment port selection.

    Intelligent Mobility in Smart Cities

    Get PDF
    Smart Cities seek to optimize their systems by increasing integration through approaches such as increased interoperability, seamless system integration, and automation. Thus, they have the potential to deliver substantial efficiency gains and eliminate redundancy. To add to the complexity of the problem, the integration of systems for efficiency gains may compromise the resilience of an urban system. This all needs to be taken into consideration when thinking about Smart Cities. The transportation field must also apply the principles and concepts mentioned above. This cannot be understood without considering its links and effects on the other components of an urban system. New technologies allow for new means of travel to be built, and new business models allow for existing ones to be utilized. This Special Issue puts together papers with different focuses, but all of them tackle the topic of smart mobility

    An Application of Analytic Hierarchy Process in Vehicle Routing Problem

    Get PDF
    Vehicle Routing Problem (VRP) facilitates on finding a set of trips, one for each vehicle and to deliver known quantities of goods from a single depot to a set of geographically dispersed customers. This paper proposes an effective hybrid approach that combines customer prioritization with the Clarke and Wright's savings algorithm to solve the capacitated vehicle routing problem. In this model, in addition to traditional objective of resolving vehicle routing problem, the customer satisfaction have been taken into account. Initially, all the customers have been clustered with the help of Clarke and Wright's saving algorithm and later the customers have been prioritized on assigning optimal route using Analytic Hierarchy Process (AHP) as a Multi Criteria Decision Making (MCDM) tool. The highlight of this research is to diminish the total transportation cost without violating the vehicle capacity and ultimately improve the customer satisfaction

    Dry Port Location Factor Determination using Delphi in Peninsular Region

    Get PDF
    Locating a dry port depends on various criteria such as distance, modes of transport, cost associated, environmental, geographical, and social concerns. The paper\u27s primary purpose is to identify the location-specific attributes impacting dry port locations, particularly in peninsular India, where seaports are very close to each other. The paper\u27s objective has been achieved through a four-cycle Delphi survey and criticality through linear ranking and consistency through Kendall’s ‘W’. Initially, the criteria are identified through a systematic literature survey. They are then sieved within a focus group consisting of five experts with experience of more than twenty years in port operations. Final vetting of the criterion is done through a Delphi survey; the experts with a mutual interest in the subject but from different backgrounds are included. The final vetted list is determined. In the last two rounds of the survey, the rankings were determined, a consensus was reached, and the final rank was obtained. The results indicate that proximity and economic criteria are the most crucial in the chosen geography, which contradicts the developed regions, where the environmental criterion dominates. However, the environmental criteria have been ranked third. Even though the Delphi method is an age-old method used in many literatures in different contexts, it is not used in a dry port problem in the peninsular region. Consensus building is significant in strategic decisions, like dry port location selection. Since this study involves multiple stakeholders from diverse backgrounds and a subjective opinion was required, the Delphi method and linear ranking have been adopted

    The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development

    Get PDF
    The development of intermodal transportation (IT) systems is of vital importance for the sustainability of logistics activities. The existing research point at individual directions of action for system improvement and increase of IT participation in overall transportation, thus reducing negative impacts of logistics on sustainability. However, there is a lack of research defining complex scenarios that unite existing ideas and concepts of IT system development and improvement. Accordingly, this article deals with the definition and selection of the most appropriate IT development scenario for the region of Southeastern Europe. Six different potential scenarios that differ in the network configuration, the required level of logistics infrastructure development, the role of different IT terminal categories, the involvement of different transportation modes, and goods flows’ transformation degree, are defined. The scenarios are analyzed according to four stakeholder groups and twelve defined criteria. A novel hybrid multi-criteria decision-making model, based on fuzzy Delphi, fuzzy Factor Relationship (FARE), and fuzzy Measurement of Alternatives and Ranking according to Compromise Solution (MARCOS) methods, is developed for solving the problem. The definition and analysis of the problem, the way of establishing the scenarios, as well as the development of a novel hybrid model are the main contributions of this article. A significant contribution is also the consideration of the Dry Port (DP) concept for the first time in the context of river ports. The results indicate that the scenario referring to the development of the IT core network with the Danube DP terminals is potentially the most appropriate scenario for the Southeastern Europe IT system

    Artificial neural networks-based route selection model for multimodal freight transport network during global pandemic

    Get PDF
    The global pandemic caused major disruptions in all supply chains. Road transport has been particularly affected by the challenges posed by the COVID-19 pandemic. The selection of an efficient and effective route in multimodal freight transport networks is a crucial part of transport planning to combat the challenges and sustain supply chain continuity in the face of the global pandemic. This study introduces a novel optimal route selection model based on integrated fuzzy logic approach and artificial neural networks. The proposed model attempts to identify the optimal route from a range of feasible route options by measuring the performance of each route according to transport variables including, time, cost, and reliability. This model provides a systematic method for route selection, enabling transportation planners to make smart decisions. A case study is conducted to exhibit the proposed model's applicability to real pandemic conditions. According to the findings of the study, the proposed model can accurately and effectively identify the best route and provides transportation planners with a viable option to increase the efficiency of multimodal transport networks. In conclusion, by proposing an innovative and efficient strategy for route selection in complex transport systems, our research significantly advances the field of transportation management

    Development of transportation and supply chain problems with the combination of agent-based simulation and network optimization

    Get PDF
    Demand drives a different range of supply chain and logistics location decisions, and agent-based modeling (ABM) introduces innovative solutions to address supply chain and logistics problems. This dissertation focuses on an agent-based and network optimization approach to resolve those problems and features three research projects that cover prevalent supply chain management and logistics problems. The first case study evaluates demographic densities in Norway, Finland, and Sweden, and covers how distribution center (DC) locations can be established using a minimizing trip distance approach. Furthermore, traveling time maps are developed for each scenario. In addition, the Nordic area consisting of those three countries is analyzed and five DC location optimization results are presented. The second case study introduces transportation cost modelling in the process of collecting tree logs from several districts and transporting them to the nearest collection point. This research project presents agent-based modelling (ABM) that incorporates comprehensively the key elements of the pick-up and delivery supply chain model and designs the components as autonomous agents communicating with each other. The modelling merges various components such as GIS routing, potential facility locations, random tree log pickup locations, fleet sizing, trip distance, and truck and train transportation. The entire pick-up and delivery operation are modeled by ABM and modeling outcomes are provided by time series charts such as the number of trucks in use, facilities inventory and travel distance. In addition, various scenarios of simulation based on potential facility locations and truck numbers are evaluated and the optimal facility location and fleet size are identified. In the third case study, an agent-based modeling strategy is used to address the problem of vehicle scheduling and fleet optimization. The solution method is employed to data from a real-world organization, and a set of key performance indicators are created to assess the resolution's effectiveness. The ABM method, contrary to other modeling approaches, is a fully customized method that can incorporate extensively various processes and elements. ABM applying the autonomous agent concept can integrate various components that exist in the complex supply chain and create a similar system to assess the supply chain efficiency.Tuotteiden kysyntÀ ohjaa erilaisia toimitusketju- ja logistiikkasijaintipÀÀtöksiÀ, ja agenttipohjainen mallinnusmenetelmÀ (ABM) tuo innovatiivisia ratkaisuja toimitusketjun ja logistiikan ongelmien ratkaisemiseen. TÀmÀ vÀitöskirja keskittyy agenttipohjaiseen mallinnusmenetelmÀÀn ja verkon optimointiin tÀllaisten ongelmien ratkaisemiseksi, ja sisÀltÀÀ kolme tapaustutkimusta, jotka voidaan luokitella kuuluvan yleisiin toimitusketjun hallinta- ja logistiikkaongelmiin. EnsimmÀinen tapaustutkimus esittelee kuinka kÀyttÀmÀllÀ vÀestötiheyksiÀ Norjassa, Suomessa ja Ruotsissa voidaan mÀÀrittÀÀ strategioita jakelukeskusten (DC) sijaintiin kÀyttÀmÀllÀ matkan etÀisyyden minimoimista. Kullekin skenaariolle kehitetÀÀn matka-aikakartat. LisÀksi analysoidaan nÀistÀ kolmesta maasta koostuvaa pohjoismaista aluetta ja esitetÀÀn viisi mahdollista sijaintia optimointituloksena. Toinen tapaustutkimus esittelee kuljetuskustannusmallintamisen prosessissa, jossa puutavaraa kerÀtÀÀn useilta alueilta ja kuljetetaan lÀhimpÀÀn kerÀyspisteeseen. TÀmÀ tutkimusprojekti esittelee agenttipohjaista mallinnusta (ABM), joka yhdistÀÀ kattavasti noudon ja toimituksen toimitusketjumallin keskeiset elementit ja suunnittelee komponentit keskenÀÀn kommunikoiviksi autonomisiksi agenteiksi. Mallinnuksessa yhdistetÀÀn erilaisia komponentteja, kuten GIS-reititys, mahdolliset tilojen sijainnit, satunnaiset puunhakupaikat, kaluston mitoitus, matkan pituus sekÀ monimuotokuljetukset. ABM:n avulla mallinnetaan noutojen ja toimituksien koko ketju ja tuloksena saadaan aikasarjoja kuvaamaan kÀytössÀ olevat kuorma-autot, sekÀ varastomÀÀrÀt ja ajetut matkat. LisÀksi arvioidaan erilaisia simuloinnin skenaarioita mahdollisten laitosten sijainnista ja kuorma-autojen lukumÀÀrÀstÀ sekÀ tunnistetaan optimaalinen toimipisteen sijainti ja tarvittava autojen mÀÀrÀ. Kolmannessa tapaustutkimuksessa agenttipohjaista mallinnusstrategiaa kÀytetÀÀn ratkaisemaan ajoneuvojen aikataulujen ja kaluston optimoinnin ongelma. RatkaisumenetelmÀÀ kÀytetÀÀn dataan, joka on perÀisin todellisesta organisaatiosta, ja ratkaisun tehokkuuden arvioimiseksi luodaan lukuisia keskeisiÀ suorituskykyindikaattoreita. ABM-menetelmÀ, toisin kuin monet muut mallintamismenetelmÀt, on tÀysin rÀÀtÀlöitÀvissÀ oleva menetelmÀ, joka voi sisÀltÀÀ laajasti erilaisia prosesseja ja elementtejÀ. Autonomisia agentteja soveltava ABM voi integroida erilaisia komponentteja, jotka ovat olemassa monimutkaisessa toimitusketjussa ja luoda vastaavan jÀrjestelmÀn toimitusketjun tehokkuuden arvioimiseksi yksityiskohtaisesti.fi=vertaisarvioitu|en=peerReviewed

    An industrial blockchain-based multi-criteria decision framework for global freight management in agricultural supply chains

    Get PDF
    In view of increasing supply chain disruption events, for example the China–United States trade war, the COVID-19 pandemic, and the Russia–Ukraine war, the complexity and dynamicity of global freight management keeps increasing. To build a resilient and sustainable supply chain, industrial practitioners are eager to systematically revamp the freight management decision process related to the selection of carriers, shipping lanes, and third-party logistics service providers. Therefore, this study aims at strengthening decision-making capabilities for global freight management, in which an industrial blockchain-based global freight decision framework (IB-GFDF) is proposed to incorporate consortium blockchain technology with the Bayesian best-worst method. Through the blockchain technology, pairwise comparisons can be conducted over the international freight network in a decentralized and immutable manner, and thus, a secure and commonly agreed-on pairwise comparison dataset is acquired. Subsequently, the pairwise comparison dataset with multi-stakeholder opinions is analyzed using the Bayesian best-worst method in order to prioritize the selection decision criteria related to carriers, shipping lanes, and 3PL service providers for global freight management. To verify the methodological feasibility, a case study of an Australian agricultural supply chain firm was conducted to support the development end-to-end (E2E) supply chain solutions originated from Australia. It was found that port infrastructure, ports of call and communication effectiveness were the major criteria for the selection decision, which can be emphasized in future global freight collaboration. In addition, an immutable and append-only record of pairwise comparisons can be established to support the visibility of time-varying stakeholders’ preferences

    Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposal

    Get PDF
    Purpose: Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.Peer Reviewe
    • 

    corecore