4,130 research outputs found

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    Short-term electricity prices forecasting in a competitive market by a hybrid PSO-ANFIS approach

    Get PDF
    In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of one week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn. © 2011 Elsevier Ltd. All rights reserved

    Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting

    Get PDF
    As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability

    Solar radiation forecasting in nigeria based on hybrid PSO-ANFIS and WT-ANFIS approach

    Get PDF
    For an effective and reliable solar energy production, there is need for precise solar radiation knowledge. In this study, two hybrid approaches are investigated for horizontal solar radiation prediction in Nigeria. These approaches combine an Adaptive Neuro-fuzzy Inference System (ANFIS) with Particle Swarm Optimization (PSO) and Wavelet Transform (WT) algorithms. Meteorological data comprising of monthly mean sunshine hours (SH), relative humidity (RH), minimum temperature (Tmin) and maximum temperature (Tmax) ranging from 2002-2012 were utilized for the forecasting. Based on the statistical evaluators used for performance evaluation which are the root mean square error and the coefficient of determination (RMSE and RÂČ), the two models were found to be very worthy models for solar radiation forecasting. The statistical indicators show that the hybrid WT-ANFIS model’s accuracy outperforms the PSO-ANFIS model by 65% RMSE and 9% RÂČ. The results show that hybridizing the ANFIS by PSO and WT algorithms is efficient for solar radiation forecasting even though the hybrid WT-ANFIS gives more accurate results

    Forecasting foreign exchange rates with adaptive neural networks using radial basis functions and particle swarm optimization

    Get PDF
    The motivation for this paper is to introduce a hybrid Neural Network architecture of Particle Swarm Optimization and Adaptive Radial Basis Function (ARBF-PSO), a time varying leverage trading strategy based on Glosten, Jagannathan and Runkle (GJR) volatility forecasts and a Neural Network fitness function for financial forecasting purposes. This is done by benchmarking the ARBF-PSO results with those of three different Neural Networks architectures, a Nearest Neighbors algorithm (k-NN), an autoregressive moving average model (ARMA), a moving average convergence/divergence model (MACD) plus a naĂŻve strategy. More specifically, the trading and statistical performance of all models is investigated in a forecast simulation of the EUR/USD, EUR/GBP and EUR/JPY ECB exchange rate fixing time series over the period January 1999 to March 2011 using the last two years for out-of-sample testing

    A Hybrid Fuzzy Time Series Technique for Forecasting Univariate Data

    Get PDF
    In this paper a hybrid forecasting technique that integrates Cat Swarm optimization Clustering (CSO-C) and Particle Swarm Optimization (PSO) with Fuzzy Time Series (FTS) forecasting is presented. In the three stages of FTS, CSO-C found application at the fuzzification module where its efficient capability in terms of data classification was utilized to neutrally divide the universe of discourse into unequal parts. Then, disambiguated fuzzy relationships were obtained using Fuzzy Set Group (FSG). In the final stage, PSO was adopted for optimization; by tuning weights assigned to fuzzy sets in a rule. This rule is a fuzzy logical relationship induced from FSG. The forecasting results showed that the proposed method outperformed other existing methods; using RMSE and MAPE as performance metrics.            

    Using intelligent optimization methods to improve the group method of data handling in time series prediction

    Get PDF
    In this paper we show how the performance of the basic algorithm of the Group Method of Data Handling (GMDH) can be improved using Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The new improved GMDH is then used to predict currency exchange rates: the US Dollar to the Euros. The performance of the hybrid GMDHs are compared with that of the conventional GMDH. Two performance measures, the root mean squared error and the mean absolute percentage errors show that the hybrid GMDH algorithm gives more accurate predictions than the conventional GMDH algorithm

    Modelling Multi Regression with Particle Swarm Optimization Method to Food Production Forecasting

    Get PDF
    Tempe was one of the perishable foods with a durability of 2 to 3 days. Tempe home-based industry must take into account its production in order to avoid losses. Suitable planning and forecasting can determine the ways for the production process is implemented. Previously, regression analysis was used as the method to improve the process. This research proposed the particle swarm optimisation (PSO) and multiple regression for production forecasting. PSO is used for optimisation value of regression variable of the tempe productions while multiple regression is used to determine the best coefficients for forecasting. The result of the research showed that the combination of multiple regression and particle swarm optimisation method performed quite well, indicated by the RMSE value of 2.081641
    • 

    corecore